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Abstract

In this paper, we present a Deep Reinforcement Learning
(DRL) based real-time smooth UAV motion planning method
for solving catastrophic flight trajectory oscillation issues. By
formalizing the original problem as a linear mixture of dual-
objective optimization, a novel Deep smOoth Motion plAn-
ning (DOMA) algorithm is proposed, which adopts an al-
ternative layer-by-layer gradient descending optimization ap-
proach with the major gradient and the DOMA gradient ap-
plied separately. Afterwards, the mix weight coefficient be-
tween the two objectives is also optimized adaptively. Ex-
perimental result reveals that the proposed DOMA algorithm
outperforms baseline DRL-based UAV motion planning algo-
rithms in terms of both learning efficiency and flight motion
smoothness. Furthermore, the UAV safety issue induced by
trajectory oscillation is also addressed.

Introduction
Recently, the development of Deep Reinforcement Learning
(DRL) methods have attracted increasing attention in solv-
ing highly maneuverable autonomous UAV motion planning
problems. Compared with other traditional planning solvers,
i.e., in (González-Sieira et al. 2020; Kaur, Chatterjee, and
Likhachev 2021; González et al. 2015; Nägeli et al. 2017;
Liu et al. 2017), DRL converts the labor extensive onboard
planning workloads into the offline interactive sampling in
environment. Moreover, Deep Neural Network (DNN) is in-
troduced to model fitting pipeline, and continuously opti-
mizes the planning accuracy (Tong et al. 2021; Gutierrez and
Leonetti 2021; Wang et al. 2020; Faust et al. 2016). Once a
DNN-based motion planning model is learned, the onboard
planning is simply required to execute computational afford-
able DNN forward inference, which brings superior real-
time planning performance.

Nevertheless, one of the emerging challenges is to ad-
dress the flight trajectory oscillation problem during motion
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planning of UAVs. Specifically, the trajectory oscillation is-
sue induced by excessively switching aircraft steering ac-
tions is also the main cause of pilot-induced oscillation in
manned aircraft (Andrievsky et al. 2019). DRL methods nat-
urally require high-frequency trial and error interaction dur-
ing environment exploration. This exploration mechanism
brings additional difficulties in improving the stabilization
and smoothness which is focused on by this paper.

This paper presents a step in this direction. Specifically,
our particular interest is placed on improving vanilla DRL to
generate smooth flight trajectories during the motion plan-
ning skills learning and execution process. There are three
novel contributions as follows:
• The auxiliary motion smoothness optimization objective

is defined as a Multi-Step Smoothness Metric (MSSM).
On this basis, we formalize the practical smooth UAV
motion planning as a linear mixture of dual-objective op-
timization problem.

• A novel Deep smOoth Motion plAnning (DOMA)
method is proposed. The overall smooth flight motion
planning agent is thus obtained by adopting an alterna-
tive layer-by-layer optimization approach by processing
the major gradient and the DOMA gradient separately
with the mix weight coefficient adaptively updated.

• Experimental result reveals that the proposed DOMA al-
gorithm performs better than baseline DRL-based UAV
motion planning algorithms in terms of both learning ef-
ficiency and flight trajectory smoothness. Since the air-
craft steering action excessively switching phenomenon
is also properly suppressed, the overall flight safety is en-
hanced.

Preliminaries
A Markov Decision Process (MDP, denoted as M) is
adopted for the original UAV motion planning problem for-
mulation defined by the tuple ⟨S,A, r, T , ρ0, γ, T ⟩ (Sutton
and Barto 2018). Where S is the set of states, A is the set
of actions, r : S × A × S 7→ R is the bounded reward
function, T : S × A × S 7→ [0, 1] is the transition proba-
bility distribution, where T (s,a) is the deterministic transi-
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tioning of T (s′ | s,a) from state s to s′ assuming action
a was taken, ρ0 : S 7→ [0, 1] is the initial state distri-
bution, γ is the discount factor that we assume γ ∈ [0, 1]
and T is the episode horizon. The objective of a reinforce-
ment learning agent is to find a policy π that maximize
the expected cumulative discounted reward: J (π)MDP =

maxE(s,a)∼ρπ

[∑T
k=0 γ

kr (st+k,at+k)
]

where ρπ is the
state-action marginals of the trajectory distribution induced
by policy π.

In this study, an open access aerodynamic model and
thrust data from (Stevens, Lewis, and Johnson 2015; Nguyen
1979) is adopted in the vector form in Eq. (1)-(2).(
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Where V CG
K is the kinematic velocity of drone center of

gravity, FCG
tot is the total forces acting on the drone, ωIBK is

the kinematic angular velocity, ICGBB is the moment of inertia
about drone center of gravity denoted in body axes, MCG

tot
is the total moments acting on the drone.

The UAV nonlinear mathematical model (Wang and Sten-
gel 2004) in the state space form F (s,u) can be described
as Eq. (3).

d

dt
s = F (s,u) = f(s) + g(s)u (3)

Where s = [ α β VT T nn p q r ϕ θ ψ x y z ]
T is the UAV

state vector, α is the angle of attack, β is the side-slip an-
gle, VT is the true airspeed, T is the engine thrust, nn is
the normal overload, [p, q, r] is the attitude angular rate,
[ ϕ, θ, ψ ] is the attitude in form of euler angles , [x, y, z]
is the global position of UAV, and u = [ δa δe δr δT ]

T is
the airplane control input vector, which is consist of aileron
deflection, elevator deflection, rudder deflection and throttle
control command, f and g are nonlinear state and control
distribution functions, respectively.

Nonlinear Dynamic Inversion (NDI) controller is used
for stabilizing UAV configurations that would otherwise
be aerodynamically unstable (Snell, Enns, and Garrard Jr
1992). Mapping the basic actuator commands into higher
level control commands that would be easy for DRL agent to
learn with. Denote s̃c = [ Tc nnc pc ]

T ∈ R3 as DRL actions
a, the NDI control law can be found from Eq. (4) under the
assumption that g(s̃) is invertible for all values of s̃:

u = g−1 (s̃)

(
d

dt
s̃− f(s̃)

)
= g−1(s̃) (ω̃(a− s̃)− f(s̃))

(4)
Where Tc, nnc, and pc are thrust, normal load factor, and
rolling rate steering commands, respectively. ω̃ is bandwidth
frequency set as high as they can be without exciting struc-
tural modes or being subject to the bandwidth limitations of
the control actuators.

Figure 1: Multi-Step Smoothness Metric.

Differing from autonomous vehicles, the trajectory oscil-
lation is mainly induced by sustained flight attitude variation
(Xu et al. 2018; Wang, Chan, and de La Fortelle 2018; Zhu
et al. 2020). The quaternion form of aircraft attitude angular
rate

∥∥( d
dt

)
E
(q)E

∥∥ is adopted as the key smoothness met-
ric.We define One-Step Smoothness Metric (OSSM) κ(s,a)
as below:
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(5)

Where ϵ is the upper bound of OSSM, κ(s,a) indicates how
smooth the one-step UAV attitude angles change. OSSM
only represents the oscillation impact currently, which isn’t
enough to describe the smoothness of the overall episodic
policy. The metric of multi-step flight trajectory smoothness
is defined as a recursive form of MSSM.

As shown in Fig. 1, the pink flight trajectory from st to
s′t+1 which represents a excessive attitude change rate oscil-
lation within a given duration T . On the contrary, the cumu-
lative attitude change rate of the blue flight trajectory from
st to st+T is always within the light blue oscillation feasible
envelope, which achieves better smoothness. Notably, given
an OSSM limit ϵ and time horizon T by applying summation
formula of proportional sequence, assume that κ(s,a) < ϵ,
0 < γ < 1, ∀T ≥ 0, then the supremum of MSSM which is
denoted as Kt for the given policy π exists:

sup
(s,a)∼ρπ

E

[
T∑
k=0

γkκ (st+k,at+k)

]
:=

ϵ(1− γT )

1− γ
(6)

DOMA
The overall proposed DOMA network architecture is shown
in Fig. 2. In general, the whole neural network can be di-
vided into two parts: the major network and the DOMA net-
work, which carries motion planning and trajectory smooth-
ing functionality respectively. In which major network is
consist of actor network πθ(s) and critic network Qϕ(s,a),
the learnable parameters are θ and ϕ accordingly. Similarly,
the DOMA network κψ(s,a) holds ψ as its learnable pa-
rameter.

The corresponding smooth motion planning problem is
formalized by a linear mixture of dual-objective optimiza-
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tion problem, which can be formally defined as:

minE(s,a)∼ρπ λ̂
∗ [−κψ(s,a) +Kt]

+maxE(s,a)∼ρπQϕ(s,a)
(7)

DOMA then solves the above problem by using an al-
ternating gradient descending optimization as described in
Eq. (8). To begin with, the first level MDP accumulative
return optimizing gradient namely major gradient is calcu-
lated, the parameter update process is consistent with DDPG
(Lillicrap et al. 2015). The policy parameter θ is then op-
timized via major gradient till convergence, while parame-
ter ϕ of Qϕ(s,a) is then temporarily frozen. Successively,
the second-level MSSM constraint exceeding minimization
gradient namely DOMA gradient is calculated on this ba-
sis, policy parameter θ is further optimized, parameter ψ of
κψ (s,a) is also frozen till it’s converged. Consequently, hy-
perparameter λ̂∗ is optimized via a gradient descending pro-
cess.

λ̂∗ = argmin
λ̂>0

E(s,a)∼ρπ λ̂ [−κψ(s, πθ(s)) +Kt]

min
θ

E(s,a)∼ρπ λ̂
∗ [−κψ(s, πθ(s)) +Kt]

max
θ

E(s,a)∼ρπQϕ(s, πθ(s))

(8)

In order to calculate the proposed DOMA gradient at
the t-th iteration, we update the κψ(s,a) by minimizing
the associated mean squared Bellman error of transitions{(

si,ai, κi, s′,i, di
)}
i∈B sampled from an independent re-

play buffer which stores the OSSM metric namely DOMA
Replay Buffer (See Fig. 2 (c) for detail), in which κi is the
OSSM metric for the i-th time step. Let κ′

ψ(s,a) be the tar-
get network of DOMA, we have the training label zit in form
of:

zit = Es′∼p(·|s,a)
[
κ(s,a) + γκ′

ψ (s′, πθ (s
′))

]
(9)

Afterward, the MSSM fitting DNN ψt+1 can be updated
by the loss function listed below. Updating process are listed
as described in Eq. (10).

ψt+1 = argmin
ψ

∑
i∈B

(
zit − κψ

(
sit,a

i
t

))2
(10)

Furthermore, the DOMA gradient calculation for regular-
izing θ of UAV flight trajectory can be treated as second-
level gradient descending optimization and the DOMA gra-
dient is calculated with minimizing the MSSM constraint
exceeding times function κψ(s,a) by utilizing the chain
rule listed below:

θt+1 = θt + λ̂∗t
η

|B|
∑
i∈B

∇aκψt+1
(s,a)∇θπθt (si)︸ ︷︷ ︸

DOMA Gradient

(11)

We then need to adjust the approximate mix weight coef-
ficient λ̂. Instead of requiring the user to set the λ̂∗ manually,
we can automate this process by formulating a gradient de-
scending reinforcement learning objective below:

λ̂∗ = argmin
λ̂

E(s,a)∼ρ∗π − λ̂ [κψ(s,a)−Kt] (12)

Figure 2: DOMA Neural Network Architecture.

Moreover, the approximate mix weight coefficient λ̂∗ up-
dating gradient can be calculated against parameter λ̂ of the
above reinforcement learning objective, and the new λ̂t+1

can be updated by Eq. (13).

λ̂t+1 =λ̂t −
∂E(s,a)∼ρ∗π − λ̂ [κψ(s,a)−Kt]

∂λ̂

=λ̂t −
ηλ̂
|B|

∑
i∈B

(Kt − κψ(s,a))
(13)

Experiments
For the sake of concentrating on evaluating the perfor-
mance of DOMA, a specific sequential target zone ap-
proaching simulation is established. The scenario adopts the
NED (North-Earth-Down) global coordinate system, with
the space size of 15km×15km×10km respectively. A suc-
cessful UAV motion planning activity should pass through
all spherical target zones scattered among the environment.
The simulation interval is 0.3 seconds and the horizon for
each episode is 90 seconds. The reward settings are de-
scribed as follows. For the dense reward, we have a) r =
−|DT |/5000, where DT is the altitude difference between
UAV and target; b) r = −|AT |/pi, where AT is the an-
gle between the speed direction and the line of sight; c)
r = VT /100, where VT is approach velocity. Moreover, for
the option reward, we have a) r = 200 ∗ n, when getting the
nth target; b) r = −500, when UAV falling to the ground;
c) r = −500, when flight envelope limit is exceeded.

We first test the learning performance of the proposed
DOMA method and compare it with baseline DRL-based
motion planning methods, which include A2C, DDPG, and
SAC.

It can be directly observed from Fig. 3 that the DOMA al-
gorithm proposed has stronger learning ability and can mas-
ter UAV motion planning skills with less training samples
compared with other baseline algorithms. Generally speak-
ing, the learning efficiency of SAC algorithm is significantly
higher than that of DDPG algorithm (Haarnoja et al. 2018),
but DOMA algorithm, as a variant of DDPG with an auxil-
iary smooth regularizer, shows stronger learning efficiency
in experiments.
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Figure 3: Learning curves comparison with baseline algo-
rithms.

Figure 4: Times of MSSM constraint Kt violation.

Fig. 4 shows the times of MSSM constraint violation of
the two comparison algorithms with the training process.
As training processes, the times of violation for the original
method decreases linearly, but still shows a certain extent of
oscillation. When training ended, after 5×105 samples were
collected, the average violation times of the original method
is 32. In contrast, the average violation times in the com-
parative experimental group with DOMA is reduced to less
than 20 times only after 2× 105 samples collected. Further-
more, the overall violation times decays rapidly to about 10
times exponentially, and the corresponding variance is also
significantly reduced.

Compared with DOMA, the baseline algorithm shows
significant oscillation when flying over complex environ-
ments(See Fig. 5). In terms of |q̇| time series, the peak
value of baseline algorithm even reach 0.57 with more than
50 steps of MSSM constraint violations occur (See Fig. 6),
while DOMA is suppressed within 0.2 with none constraint
violation occur (See Fig. 7). The agent does not even adjust
its attitude excessively and violently in the whole process,

(a) (b)

Figure 5: Trajectory of complex multi-target scenario. (a)
Trajectoy w/o DOMA. (b) Trajectoy w/ DOMA.

Figure 6: Ket state time series w/o DOMA.

Figure 7: Ket state time series w/ DOMA.

which proves that DOMA achieves better trajectory stability
even in complex multi-target crossing task. Therefore, we
have reason to believe that DOMA will refrain from trajec-
tory divergence induced by oscillation.

Conclusion
In this paper, we have described approaches for ensur-
ing DRL-based UAV trajectory smoothness. A novel Deep
smOoth Motion plAnning (DOMA) algorithm is proposed
for addressing this issue. Firstly, the original problem is con-
verted into a linear mixture of dual-objective optimization
form. Secondly, the trajectory smoothness constraint is fur-
ther modeled as an auxiliary objective beyond the chief opti-
mization goal with an additional DOMA gradient calculated,
which significantly suppresses the trajectory oscillation by
utilizing an alternative layer-by-layer gradient descending
optimization approach. To a certain extent, DOMA improves
flight safety by inhibiting trajectory oscillation comprehen-
sively. Joint optimization is another way to improve flight
trajectory smoothness and related research will be carrying
out in future investigations. Also, meaningful extensions of
this work may attempt to enrich the application domain into
self-driving cars, unmanned ships, and any other intelligent
vehicles.
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