
Conflict-Based Search for Explainable Multi-Agent Path Finding

Justin Kottinger1, Shaull Almagor2, Morteza Lahijanian1,3

1Department of Aerospace Engineering Sciences, University of Colorado Boulder, USA
2The Henry and Marilyn Taub Faculty of Computer Science, Technion, Israel

3Department of Computer Science, University of Colorado Boulder, USA
{justin.kottinger, morteza.lahijanian}@colorado.edu, shaull@cs.technion.ac.il

Abstract

The goal of the Multi-Agent Path Finding (MAPF) problem
is to find non-colliding paths for agents in an environment,
such that each agent reaches its goal from its initial location.
In safety-critical applications, a human supervisor may want
to verify that the plan is indeed collision-free. To this end, a
recent work introduces a notion of explainability for MAPF
based on a visualization of the plan as a short sequence of
images representing time segments, where in each time seg-
ment the trajectories of the agents are disjoint. Then, the prob-
lem of Explainable MAPF via Segmentation asks for a set
of non-colliding paths that admit a short-enough explanation.
Explainable MAPF adds a new difficulty to MAPF, in that it is
NP-hard with respect to the size of the environment, and not
just the number of agents. Thus, traditional MAPF algorithms
are not equipped to directly handle Explainable MAPF. In this
work, we adapt Conflict Based Search (CBS), a well-studied
algorithm for MAPF, to handle Explainable MAPF. We show
how to add explainability constraints on top of the standard
CBS tree and its underlying A∗ search. We examine the use-
fulness of this approach and, in particular, the trade-off be-
tween planning time and explainability.

Introduction
Multi-Agent Path Finding (MAPF) is a fundamental prob-
lem in AI, in which the goal is to plan paths for several
agents to reach their targets, such that paths can be taken
simultaneously without the agents colliding. Applications
of MAPF are ubiquitous in any area where several moving
agents are involved, such as air-traffic control, UAVs, ware-
house robots, autonomous cars, etc. While MAPF is gener-
ally intractable, the importance of this problem has gener-
ated a significant body of work over the past decade (Stern
et al. 2019; Standley 2010; Felner et al. 2017; Surynek et al.
2016; Bartak, Svancara, and Vlk 2018; Cohen et al. 2018;
Ma et al. 2019a), dealing with various aspects of the prob-
lem and suggesting increasingly scalable solutions. In par-
ticular, a well-performing algorithm for MAPF is Conflict-
Based Search (CBS) (Sharon et al. 2015), which is a decen-
tralized approach, and has extensions with various heuristics
(Boyarski et al. 2015; Li et al. 2019b,a; Felner et al. 2018).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Full Plan (b) k = [0, 2] (c) k = [2, 4] (d) k = [4, 8]

Figure 1: A plan for three agents (a), and a corresponding
explanation via disjoint decomposition (b)-(d). The circles
and stars mark the start and goal vertices, respectively.

A major barrier in adopting such capable MAPF algo-
rithms in safety-critical applications, as with many algo-
rithms in AI, is trust (or lack thereof) between the de-
signers of such algorithms, and their potential user. That
is, in heavily-regulated applications (e.g., air-traffic control,
hazardous-materials warehouses), automated planning has
to be trusted before acting upon in order to maintain le-
gal and ethical accountability. Designers can gain trust in
their algorithms through studying, developing, and exhaus-
tive testing. The same trust building methods may not be
available for the user. To combat this dilemma in the con-
text of MAPF, the current practice is to suggest a computed
plan to a human supervisor, who has to verify the correct-
ness of it to allow its execution (Fines, Sharpanskykh, and
Vert 2020). This poses an additional problem in MAPF – ex-
plainability of plans. In other words, plans must be presented
to the supervisor in some humanly-understandable manner.
In particular, the presentation (explanation) should enable
the supervisor to understand the paths taken by the agents,
and to easily verify that the agents do not collide, as other-
wise the supervisor would not necessarily approve the plan.
This study focuses on the problem of Explainable MAPF
and aims to develop a scalable algorithm whose solutions to
the MAPF problem are easily-interpretable and verifiable by
humans.

Explainable AI (XAI) is an active area of research in re-
cent years. Many studies focus on explaining decisions made
by machine learning algorithms, in both categories of classi-
fication and regression (Arrieta et al. 2020). In those works,
various forms of explanations are explored, but visual expla-

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

692



nations seem to be dominant for their ease of interpretability,
especially for classifiers (Lapuschkin et al. 2019). In other
cases, such as fault detection algorithms, explanations are
typically in the form of witness executions (Mari, Dang, and
Gössler 2021). In the planning community, explanations are
mostly studied in the context of the single agent problem,
and they often take a non-visual form. For example, explana-
tions are given based on alternative plans (Eifler et al. 2019),
minimal differences between plans (Kambhampati 2019), or
reasoning on quantitative advantage of one plan over another
(Fox, Long, and Magazzeni 2017). None of these studies,
however, focus on the MAPF problem.

Recent works (Almagor and Lahijanian 2020; Kottinger,
Almagor, and Lahijanian 2021) propose an explanation
scheme for MAPF by means of visualization. There, the idea
is to decompose a non-colliding plan into time segments,
such that within each segment the paths of the agents are
disjoint. Then, by depicting each segment separately (see
Figure 1), it is easy for a human supervisor to verify that the
agents do not collide. Indeed, recognizing line intersections
takes place early in the visual cognitive process (Hubel and
Wiesel 1959; Tang et al. 2018), making it easy to verify that
the depicted lines in each segment are disjoint. The useful-
ness of such explanations is also supported by the findings
of the survey study (Brandao et al. 2021). While decompo-
sition can be readily used on any MAPF plan obtained by
any algorithm, it is not guaranteed that doing so results in a
small number of segments. In case the number of segments
is very high, this undermines the explanation scheme. Thus,
the central problem in Explainable MAPF via Segmentation
is to find a plan for the agents that can be decomposed to a
small number of segments (and hence can be explained with
a small number of pictures).

Unfortunately, Explainable MAPF is much harder than
standard MAPF, in the sense that, unlike MAPF, it is NP-
hard already for two agents. In particular, the hardness of
Explainable MAPF is with respect to the size of the environ-
ment (as well as the number of agents), rendering the run-
time of algorithms for Explainable MAPF exponential in the
size of the environment. In contrast, the complexity of classi-
cal MAPF is polynomial in size of the environment, making
the problem much easier, especially with a low number of
agents. Unsurprisingly, centralized algorithms for Explain-
able MAPF do not scale well, as shown in (Almagor and
Lahijanian 2020).

In this work, we consider a decentralized approach to the
Explainable MAPF problem. Specifically, we adapt CBS, a
two-level algorithm that, in its low-level, plans individually
for each agent, and in its high-level, identifies collisions be-
tween the agents and places constraints to resolve them in
the next low-level iteration. Our main contribution is accord-
ingly split to two levels: at the high-level, we show how we
can use similar constraints as those used by CBS to cap-
ture segmentation conflicts, namely plans whose minimal
decompositions have too many segments. We then discuss
how to adapt CBS to compute and place these constraints
during its search, thus obtaining our new algorithm, dubbed
Explanation-Guided CBS (XG-CBS).

We then turn our attention to the low-level planner of XG-

CBS. As discussed below, standardA∗ seems, intuitively, ill-
fitted to work with XG-CBS. Indeed, minimizing the num-
ber of disjoint segments of a plan often requires lengthen-
ing the plan, which A∗ is reluctant to do since it minimizes
the path length. Thus, at the low level, our contribution fo-
cuses on developing appropriate search algorithms, that are
guided towards plans with small decompositions, which are
appropriate for XG-CBS. To this end, we propose three low-
level search algorithms. The first algorithm, dubbed XG-A∗,
guides the search toward a plan with minimum number of
disjoint segments, while maintaining the completeness of
XG-CBS. Moreover, it can be combined with standard A∗

to improve performance through a meta-parameter, result-
ing in the algorithm WXG-A∗.

We discuss how the optimal value for this parameter is
highly dependant on the instance of the problem, and hence,
difficult to choose a priori. Also, both XG-A∗ and WXG-
A∗, due to their completeness, are subject to the inherent
difficulty of Explainable MAPF with respect to the environ-
ment size. This is manifested by the need to track the his-
tory of paths within the search space. To address these prob-
lems, we propose another low-level algorithm, SR-A∗ that
uses the segmentation information in a coarse way such that
it does not need to track history, yet obtains solutions with
small number of decomposition. Theoretically, SR-A∗ sac-
rifices completeness, but our experimental results show that
with SR-A∗, XG-CBS has comparable computation time
to vanilla CBS (and even outperforms it), while obtaining
plans with much smaller decompositions. This is despite
solving a much harder problem.

Thus, our overall contribution is a decentralized algo-
rithm for the Explainable MAPF problem. To the best of our
knowledge, this is the first algorithm of its class that scales,
significantly outperforming previous algorithms. We show
properties of our algorithm and further evaluate it on many
benchmarks, comprising examples that demonstrate specific
intricacies of Explainable MAPF, as well as standard MAPF
benchmarks. Overall, this work illustrates the unique com-
putational challenges faced in Explainable MAPF and paves
the way for further algorithmic exploration of this problem.

Problem Statement
Consider n ∈ N agents, acting in a directed graph G =
〈V,E〉 where each agent i ∈ {1, . . . , n} has a source si ∈ V
and a goal gi ∈ V . A path inG is a sequence of vertices π =
v1v2 . . . vm such that (vk, vk+1) ∈ E for all 1 ≤ k < m.

Given paths π1 = v1v2 . . . vm and π2 = u1u2 . . . um in
G for some m > 1, we say that π1 and π2 are non-colliding
if the following conditions are satisfied for all 1 ≤ k < m:

(i) vk 6= uk (i.e., no vertex collisions),
(ii) (vk, vk+1) 6= (uk+1, uk) (i.e., no edge collisions).

We extend the definition to paths of different lengths by trun-
cating the longer path. Intuitively, this means that once a
path ends, the respective agent “disappears”1.

1Changing this to have the agents remain at the target location
does not impact our results in any significant way.

693



Given n agents on a graph G and two lists s1, . . . , sn and
g1, . . . , gn of source and goal vertices, respectively, a plan
P = {π1, . . . , πn} is a set of non-colliding paths (i.e., πi and
πj are non-colliding for all i, j ∈ {1, . . . , n} and i 6= j) such
that πi drives agent i from si to gi for every i ∈ {1, . . . , n}.
The length of the plan is the maximal length of a path in P .
The classical Multi-Agent Path Finding (MAPF) problem is
to find a plan2 P on G.

We now turn to recap the definitions of Explainable
MAPF via Segmentation from (Almagor and Lahijanian
2020). Consider a path π = v1 . . . vm and t1 ≤ t2. We de-
fine π[t1, t2] = vt1 . . . vt2 to be the segment of π between t1
and t2. If either t1 or t2 are not within the range {1, . . . ,m},
we simply disregard the out-of-bounds vertices.

A set of paths (better thought of as path segments)
{τ1, . . . , τn}where each τi = vi1 . . . viki

is vertex disjoint if
for all i 6= j we have {vi1, . . . , viki} ∩ {vj1, . . . , vjkj} = ∅.
Next, consider a plan P = {π1, . . . , πn} as above and let
K = maximi be its length, where mi is the length of
πi ∈ P . A vertex-disjoint decomposition of P is an or-
dered list of natural numbers 1 = t0 < t1 < . . . < tr =
K + 1 such that for every 1 ≤ k ≤ r, the path segments
{πj [tk−1, tk−1]}nj=1 are vertex-disjoint. We refer to r as the
index of the decomposition. The minimal index of a vertex-
disjoint decomposition of P is referred to as the index of P .
As shown in (Almagor and Lahijanian 2020) (and recapped
below), computing a minimal-index decomposition can be
done in polynomial time using a greedy algorithm, hence,
we only consider minimal index decompositions here. We
now present the formal definition of the Explainable MAPF
via Segmentation problem.

Problem 1 (Explainable MAPF via Segmentation). Given
a graph G = 〈V,E〉 with lists s1, . . . , sn and g1, . . . , gn
of source and goal vertices, respectively, and bound r ∈ N,
find a plan P for the agents with index of at most r or answer
that the instance is unsolvable – no such plan exists.

Almagor and Lahijanian (2020) proved that (the decision
version of) Problem 1 is NP-complete, even for 2 agents (un-
like MAPF, which is in P for a fixed number of agents). They
propose a centralized algorithm for the problem, but demon-
strate that it does not scale. To this end, the goal of this pa-
per is to develop a decentralized algorithm that is capable of
solving Problem 1 and scaling to a large number of agents.

Explanation-Guided CBS
Our solution to Problem 1 extends from CBS (Sharon et al.
2015), a decentralized MAPF algorithm. Here, we first re-
view this algorithm and then present our extensions to it to
obtain Explanation-Guided CBS (XG-CBS).

CBS for MAPF
CBS is a two-level search on the space of possible plans,
consisting of a high-level conflict-tree search and a low-
level graph search. At the high-level, CBS keeps track of
a constraint-tree, in which each node represents a suggested

2Typically, the plan is required to be optimal with respect to
some cost function, e.g., makespan or sum-of-costs.

plan, which might have collisions, referred to as conflicts.
Initially, a root node is obtained by using a low-level graph
search algorithm, typicallyA∗ with a shortest-path heuristic,
to find a path for each agent from start to goal, ignoring the
other agents (hence the decentralized nature of the method).

At each iteration, CBS picks an unexplored node from the
tree, based on some heuristic. Then, the conflicts (namely
collisions) in the plan corresponding to that node are identi-
fied. CBS attempts to resolve the conflicts by creating child
nodes based on the conflicts, as follows: if Agents i and j
collide at time t in vertex v, then two children are created
for the node, one with the constraint that Agent i cannot be
in vertex v at time t, and the other dually for Agent j. Then,
in each child node, a low-level search is used to replan a
path for the newly-constrained agent, given the set of con-
straints obtained thus far along the branch of the constraint
tree. This process repeats until either a non-colliding plan is
found, or no new nodes are created in the constraint tree, at
which point CBS returns that there is no solution.

We (partially) demonstrate CBS in Figure 2. In this exam-
ple, the root node has a colliding plan and hence a constraint
is placed on the yellow vertex at time 2, so two children are
created with new plans for each of the two colliding agents.

CBS performs well for standard MAPF queries. However,
it is ill-suited for solving Problem 1 due to its lack of regard
for vertex-disjoint decomposition of the proposed solutions.
More precisely, CBS is guided toward short plans, whereas
minimizing the index typically incurs a tradeoff with plan
length. Below, we build upon CBS to plan for explainability,
in order to address Problem 1.

CBS for Explainable MAPF
We modify CBS both at the high-level (constraint tree) and
low-level (graph search), to obtain a new algorithm dubbed
Explanation-Guided CBS (XG-CBS). To this end, we first in-
troduce segmentation conflicts to the constraint tree. These
are conflicts that occur when the plan is non-colliding, but
whose index is greater than the bound r. These conflicts are
resolved by placing appropriate constraints, as we detail be-
low. We elaborate on the low-level search below.

We remark that we focus on the classical CBS algorithm,
as opposed to improvements thereof (e.g., ICBS (Boyarski
et al. 2015)), as our goal is to study the efficacy of the well-
understood constraint-tree method to explanations.

Segmentation Conflicts Recall that in CBS, whenever a
plan has collisions, constraints are placed on the colliding
agents to force one of them away from the collision point.
We keep these constraints in XG-CBS, and introduce addi-
tional constraints to handle segmentation. In order to define
the new constraints, we recall how vertex-disjoint decompo-
sitions are computed.

Consider a plan P = {π1, . . . , πn}. In (Almagor and
Lahijanian 2020), it is shown that a minimal decomposi-
tion of P can be found greedily by lengthening the cur-
rent interval as long as the paths are disjoint, and starting
a new segment once an intersection occurs. More precisely,
we set t0 = t1 = 0 and check {π1[t0, t1], . . . , πn[t0, t1]}
for disjointedness. If it is disjoint, then t1 is incremented by

694



Figure 2: Illustration of XG-CBS with A∗ as the low-level
planner. Yellow and purple colors indicate collision and seg-
mentation conflicts, respectively.

one. The process continues until the segment is not disjoint,
at which point we add t1 − 1 as a segmentation point, set
t0 = t1, and start the process again. This continues until the
entire plan is segmented.

We use this greedy characterization to define segmenta-
tion constraints as follows. For a non-colliding plan P =
{π1, . . . , πn} of length K, let 1 = t0 < t1 < . . . < tr =
K + 1 be a vertex-disjoint decomposition found as above.
It follows that for every 1 ≤ ` ≤ r, we cannot extend the
disjoint segment [t`−1, t` − 1] to time t`. That is, there exist
agents i 6= j with πi[t`, t`] ∈ πj [t`−1, t`], where πi[t`, t`]
is a single vertex. With each such pair of agents i, j, we as-
sociate the vertex v = πi[t`, t`] and the times Ti = t` and
Tj to be a time such that πj [Tj , Tj ] = v. Intuitively, Ti and
Tj are the times when Agents i and j, respectively, visit v in
the segment [t`−1, t`]. Then, for a node with plan P in the
constraint tree of XG-CBS, we add two children with the
following constraints: one child prevents Agent i from visit-
ing v at time Ti, and the other prevents Agent j from visiting
v at time Tj . Note that, for a node with multiple segmenta-
tion conflicts, several such pairs of child nodes are added,
one pair per conflict.

In Figure 2, we depict segmentation conflicts as purple
squares. For example, in the orange node of the tree, the
plan requires two segments, due to the path intersection in
the purple node, visited by the blue agent at time 1 and by
the red agent at time 3. The two children of this node prevent
each of these visits, and replan for the corresponding agent.

XG-CBS We now describe the operation of XG-CBS,
with the caveat that we do not explicitly state the implemen-
tation of the low-level graph search algorithm. We leave this
detail the following section and only assume that the low-
level search algorithm is sound and complete, e.g., A∗.

XG-CBS algorithm proceeds as follows. Initially, the low-

level algorithm is called for each agent separately to obtain
an initial plan. If the initial solution does not have any con-
flicts (collision nor segmentation), the plan and its decompo-
sition are returned as the solution. If conflicts exist, they are
resolved by extending the tree according to the constraints
as above. Once a new node is created with a constraint on
Agent i, the low-level algorithm is called to replan for Agent
i. Each new node is assigned a cost (as we discuss below)
and added to a priority queue. At the next iteration, the min-
imum cost plan is popped from the queue, and gets evaluated
for conflicts. This process repeats until either a satisfactory
plan is found or the search is exhausted. We refer the reader
to the supplementary material for the pseudocode presenta-
tion of the XG-CBS algorithm.

An important remark is that during the low-level plan-
ning, an upper bound is set on the length of the path. The
bound originates from the proof of membership in NP of
Problem 1, and serves to bound the constraint tree.

A crucial aspect of XG-CBS is the cost function on the
tree nodes. Recall that a common cost function for the high-
level CBS is the combined length of all the paths (a.k.a. sum-
of-costs). This approach, however, tends to conflict with op-
timizing for explainability. Thus, XG-CBS utilizes the index
of the plan to define a cost function. Specifically, the primary
cost of a proposed plan is the index of the plan, with a small
tweak. Recall that plans in the constraint tree may contain
collisions, in which case the index is undefined. We circum-
vent this by viewing collisions as an end of a segment. Then,
the combined length of paths is only used as a tie-breaker.
This cost function enables XG-CBS to prioritize plans with
a lower number of segments.

Figure 2 demonstrates a run of XG-CBS where the low-
level planner is standard A∗, and the index bound r = 1. We
conclude this section by showing that XG-CBS is complete.

Theorem 1 (XG-CBS Completeness). XG-CBS always ter-
minates, and given a solvable instance of Explainable
MAPF via Segmentation, XG-CBS will terminate with a
valid solution.

We refer the reader to Kottinger, Almagor, and Lahijanian
(2022) for the proof of Theorem 1.

Low-Level Search
The low-level search has a twofold impact on the behavior
of CBS. First, it determines the concrete paths obtained after
placing constraints. Second, since it is run for every node,
it has a significant impact on the runtime. In this section,
we study four low-level search algorithms for XG-CBS. We
start with an overview of our approaches.

In classical CBS, the goal is to find the shortest plan,
making A∗ (with Hamming distance heuristic) a reasonable
choice. For XG-CBS, however, the typical behavior of A∗

is ill-fitting. Intuitively, this is because A∗ tends to make
very local changes in plans. Then, a segmentation conflict,
which occurs on an intersection of paths, is likely resolved
in a way that still intersects the same path in a nearby lo-
cation or time. To illustrate this, consider the orange node
in Figure 2, and observe that the segmentation conflict for
the red agent is resolved by going through the blue agent’s

695



origin, creating another segmentation conflict. Hence, many
segmentation conflicts are typically required to be able to re-
duce the index of the plan. Despite this, A∗ is very fast, and
thus allows a rapid exploration of the constraint tree. Thus,
A∗ can be seen as one extreme, where speed is preferred
over explanation-oriented paths.

At the other extreme, in order to orient XG-CBS toward
a minimal-index plan, we propose a low-level search called
Explanation-Guided A∗ (XG-A∗) that uses A∗ with a novel,
segmentation-based heuristic. Intuitively, XG-A∗ guides the
search by minimizing the number of segments, as opposed
to minizing the length. As discussed in the next section, XG-
A∗ is highly guided towards minimal explanations but is
slow due to keeping track of the path history. Our next ap-
proach is to get the best of both worlds, by combining XG-
A∗ and A∗ in a weighted manner. We elaborate on this later.

The three approaches above maintain the completeness of
XG-CBS. Our final low-level planner, however, sacrifices
completeness in favor of circumventing the need to keep
track of the path’s history in XG-A∗, thus obtaining a fast,
explanation-oriented search.

XG-A∗ – Explanation Guided A∗

Recall that in CBS, the low-level search A∗ ignores the ex-
isting explanation of other agents when replanning for a
certain agent. Thus, standard A∗ takes as input the graph
G = 〈V,E〉, start and goal vertices s, g ∈ V for an agent,
and the set of constraints C in the current node. In contrast,
XG-A∗ accounts for existing segments, and hence, also re-
ceives as input the set of paths of the other agents, denoted
by P−1, and a bound B on the maximal allowed path length
for the agent. We remark that the boundB is only used to ter-
minate the search if the plan becomes too long. This assures
progress so that completeness is retained (c.f., Theorem 1).

For brevity, in the following, we assume XG-A∗ plans
for Agent 1, and the paths for the other agents are P−1 =
{π2, . . . , πn}. Intuitively, XG-A∗ searches for a path for
Agent 1 from s to g (that does not violate the constraints
in C), while maintaining that the index of the decomposition
of P−1 combined with the planned path so far remains min-
imal. We demonstrate this before giving the precise details.

Consider the root node of Figure 2 with the colliding paths
of the two agents. Once the collision constraint is identified,
two children are generated with the respective constraints.
Now consider XG-A∗ planning for the red agent given the
path of the blue agent. XG-A∗ initially attempts to keep the
index at 1, i.e., to keep the paths of the agents disjoint. To
this end, XG-A∗ arrives at the plan in the green node (bottom
of Figure 2) before even suggesting the plan in the orange
node, which the standard A∗ does. Indeed, the orange node
has index 2, and therefore is not explored until all index 1
plans are exhausted. This example demonstrates how XG-
A∗ directs XG-CBS toward a minimal-index plan.

We now turn to the details of XG-A∗. The search space
of XG-A∗ consists of nodes of the form (v, t,H, i) where
v ∈ V is the vertex, t ∈ N is the timestamp, H is a sequence
of vertices, representing the history of the path from the last
segmentation time, and i represents the plan index up to time
t. XG-A∗ performs a search on the graph G from the start

(a) r = 1 plan exists. (b) r = 1 plan does not exist.

Figure 3: XG-A∗ drawback of Remark 2.

node (s, 0, ∅, 1) guided toward any node corresponding to
the goal vertex g as long as i ≤ r̄, where r̄ is the index of
P−1. The central element is the heuristic guiding the search.
A node (v, t,H, i) is assigned two values: the current index
i, which is the primary heuristic value, and the shortest-path
metric from v to the goal g in the graph G itself, which is
used as a tie-breaker. In order to expand a node, a neighbor
of v is selected on the graph, and t is increased by 1. At
this point the new vertex and time are checked against the
constraints C, and if they are not constrained, H and i are
computed as per the greedy approach described previously.
Thus, XG-A∗ starts by exploring all 1-segment plans, and
only once these are exhausted, moves on to 2-segments, etc.
We refer the reader to the supplementary material for the
pseudocode of XG-A∗ and two methods of speeding it up.
We now make two important observations about XG-A∗.
Remark 1. Observe that the index of a node depends not
only on the plan for Agent 1, but also on the decomposition
of the plan P−1. Therefore, if P−1 alone causes segmenta-
tion, XG-A∗ also increases i in the current node. This causes
XG-A∗ to “synchronize” segmentations. That is, if a path
intersection in P−1 induces a new segment, the XG-A∗ at-
tempts to make Agent 1 intersect another path at that exact
time, in order to avoid creating a new segment, which ulti-
mately leads to a lower index.
Remark 2. Since the primary heuristic is not guided toward
the goal g, XG-A∗ spends a lot of time covering. For in-
stance, it exhausts all index-1 plans before incrementing the
index, even if it is impossible to reach g in 1 segment. This is
demonstrated in Figure 3, where XG-A∗ is used to compute
a path for the red agent given the existing path of the blue
agent. In Figure 3a, an index-1 plan exists, and XG-A∗ finds
it relatively quickly, as it is guided toward the goal within
the space of index-1 plans (by going around the blue agent).
In Figure 3b, it is clear that no index-1 plan exists. However,
XG-A∗ first has to exhaust all index 1 plans, before attempt-
ing index 2 (the shortest path). This severe drawback means
XG-A∗ is slow with respect to the size of the graphG, rather
than the number of agents. As mentioned previously, this dif-
ficulty is inherent to Explainable MAPF via Segmentation.

Since XG-A∗ eventually exhausts the space of possible
plans, ordered by index, and since this space is bounded us-
ing the bound B, we obtain the following.
Theorem 2 (XG-A∗ Completeness). Given a set of paths
{π2, . . . , πn}, source and goal vertices s1 and g1, respec-
tively, a set of constraints C, and a bound B, if there exists a
path from si to gi of length at most B that does not violate
the constraints in C, then XG-A∗ will terminate with such a
path πi that minimizes the index of {π1, . . . , πn}.

696



WXG-A∗ – Weighted Explanation Guided A∗

As demonstrated in Remark 2, XG-A∗ spends a lot of time
exhausting the plans of a certain index before making any
progress towards the goal. This occurs because the cost
function of XG-A∗ is the plan index and uses path length
only as a tie-breaker. Conversely, standard A∗ uses path
length as the cost function and becomes efficient with a
heuristic (estimate of path length to goal), completely ig-
noring the plan index. These algorithms are two extremi-
ties of explanation-guided graph search. To get the best of
both worlds, we design a general algorithm called weighted
XG-A∗ (WXG-A∗) that combines the two search methods.
The premise behind WXG-A∗ is to simultaneously inherit
the index-minimization property of XG-A∗ and the efficient
search property of A∗.

Let fx and fa denote the cost functions of XG-A∗ andA∗,
respectively. We define the cost function of WXG-A∗ to be
a linear combination of fx and fa, i.e, for node q,

fw(q) = wfx(q) + (1− w)fa(q),

where w ∈ (0, 1). The function fw(q) encourages both in-
dex minimization and efficient graph search. The amount
that fw tends toward either type of graph-search depends on
weight w. As w → 1, fw biases more towards minimal-
index paths, and hence, the search becomes exhaustive
(slower). Conversely, as w → 0, the search tends more to-
wards shortest path length (hence faster). Algorithmically,
WXG-A∗ is simply XG-A∗ guided by fw rather than fx.

We note that careful consideration is needed in choosing
a value for w. An intuition is that fa (path length) is typ-
ically much greater than fx (number of segments). Unless
w is very large, fa is dominant and fx acts more like a tie-
breaker. We empirically show how varying w changes the
behavior of XG-CBS. Finally, note that WXG-A∗ exhausts
the same search space as XG-A∗, differing only in the order
of the search. Therefore, Theorem 2 still holds for WXG-A∗,
i.e., WXG-A∗ is complete.

SR-A∗ – Segmentation Respecting A∗

While WXG-A∗ can theoretically provide a good balance
(trade-off) between efficiency and index minimization, it
suffers from two drawbacks. First, it is difficult to choose
an appropriate weight w a priori to achieve a good bal-
ance, since it is highly instance dependent. Second, WXG-
A∗ needs to maintain the history of the path (as in XG-A∗) in
order to perform segmentation, resulting in a slow search al-
gorithm. We propose a new low-level algorithm that does not
keep track of history, thus obtaining a significant speedup.

Recall from Remark 1 that XG-A∗ computes paths that
fit within the existing segmentation of P−1 by keeping track
of the index of P−1 combined with the new path, which re-
quires keeping the history of the path from the last segmenta-
tion point. A coarse way of eliminating the need to keep the
history is to make sure the planned path completely avoids
all paths in P−1, and so does not contribute to segmentation.
This, however, likely results in no plans being found, as it
amounts to keeping the agents disjoint. Our proposed algo-
rithm, dubbed segmentation-respecting A∗ (SR-A∗), refines

(a) CBS (b) XG-CBS, r = 1

(c) CBS ∆k = [0, 2] (d) CBS ∆k = [2, 5]

Figure 4: Road crossing: solutions via CBS and XG-CBS

this idea, by making sure that the planned path is disjoint
from all paths within the current segment. Intuitively, SR-A∗

treats every disjoint segment within P−1 as time dependent
obstacles. That is, existing paths within a segment become
obstacles only for the time window of the segment. The re-
sulting behavior is an efficient graph search algorithm that is
dedicated to fitting within an existing segmentation.

Formally, consider a plan P−1 with a disjoint decompo-
sition t0 < t1 < . . . < tr, and a planning query for Agent
1. The search space is now modified by adding a “timed ob-
stacle” at vertex v at time t as follows. Let 1 ≤ i ≤ r be
the segment such that ti ≤ t ≤ ti+1, then we add a timed
obstacle if there is a path of P−1 that visits vertex v at the
interval [ti, ti+1]. For example, if P−1 contains the segment
v1, v2, v3 at times 3, 4, 5, respectively, then vertices v1, v2
and v3 are all obstacles at times [3, 5].

Observe that crucially, if Agent 1 does not intersect with
any timed obstacle, then it also does not create new seg-
ments, and hence “respects” the segmentation of P−1. In
particular, SR-A∗ breaks the completeness of XG-CBS. In-
deed, the restriction of the search space means that some
paths are never explored. From an efficiency perspective,
however, SR-A∗ both limits the search space, and eliminates
the tracking of history, rendering this search comparable to
A∗. We demonstrate that SR-A∗ performs exceedingly well,
both in terms of efficiency and plan index.

Case Studies
We evaluate the performance of XG-CBS on a combina-
tion of self-designed problems and standard MAPF bench-
mark problems from Bose and Markelov (2019). The self-
designed spaces exhibit interesting behaviors that are unique
to Problem 1. The benchmark results show the advantages
and disadvantages of the proposed algorithms in various sce-
narios. All experiments were performed on a machine with
an AMD Ryzen 7 3.9GHz CPU and 64 GB of RAM. Our
implementation is available on GitHub (Kottinger 2021).

Illustrative Examples
To gain insight into XG-CBS, we showcase it on settings
that present unique explanation challenges. Figure 4a shows
a CBS solution of MAPF, where four agents need to cross an

697



(a) CBS (b) CBS ∆k = [0, 1] (c) CBS ∆k = [1, 2]

(d) CBS ∆k = [2, 4] (e) CBS ∆k = [4, 8] (f) XG-CBS, r = 1

Figure 5: Apparent collision in short plan vs. optimal index

intersection. Visually verifying that the plan is collision free
is difficult. It becomes easy using the explanation scheme,
which decomposes the plan into two disjoint segments in
Fig. 4c and 4d. Using XG-CBS, we obtain a plan with index
1, as depicted in Fig. 4b, which is much easier to verify. This
demonstrates the trade-off between plan length and explana-
tions: the shortest plan requires index 2, while index 1 can
be achieved with a longer plan.

Performance-wise, XG-CBS with A∗, as proposed previ-
ously, timed out after a 15 minute threshold, whereas XG-
CBS with XG-A∗ arrived at an index-1 solution in 0.05 sec-
onds. This difference can be attributed to the facts that the set
of index-1 plans is comparatively sparse in the set of plans,
and that index-1 plans greatly deviate from the shortest plan.
As we discuss in in the next section, these factors have a sig-
nificant effect on the efficacy of each algorithm.

Our next use case is depicted in Figure 5a. A human ex-
amining the plan may notice a possible collision between
the red and green agents. However, it becomes clear in the
explanation (Figures 5b-5e) that the red agent does, in fact,
wait at the first vertex, thus avoiding collision. An improved
explanation can be obtained using XG-CBS with XG-A∗ as
shown in Fig. 5f. This solution was obtained in 0.5 seconds,
whereas XG-CBS with A∗ again timed out. For more case
studies, we refer the reader to the supplementary material.

Benchmark Evaluation
We now evaluate XG-CBS with the different low-level algo-
rithms on a large set of MAPF benchmarks from Bose and
Markelov (2019). Our comparison of the algorithms is along
three axes: computation time, segmentation index, and plan
length (average cost, i.e., sum-of-costs divided by number of
agents). We also evaluate CBS as a baseline.

Our experiments are run as follows. For each benchmark,
we run CBS. If CBS finds a plan, we segment it and use the
index as an upper bound for XG-CBS. We then repeatedly
lower the bound in XG-CBS, until failure. We refer to the
former result as first and to the latter as best. In case CBS
does not terminate, we run XG-CBS with an initial bound of
∞. We remark that whenever an algorithm times out with-
out a solution, we do not include this in the computation
time. Our benchmarks were on grid worlds with the follow-
ing sizes and number of agents: 9 × 9 with 4, 8, 10, and 12

agents, 16 × 16 with 5, 10, 15, and 20 agents, and 33 × 33
with 10, 20, and 30 agents. For each grid size and agent
number combination, we ran 100 unique experiments. The
timeout for a single algorithm on a single benchmark was 5
minutes (the high threshold is due to the fact that Problem 1
is computationally harder than MAPF). The results are par-
tially presented in Figures 6, 7, and 8. We refer to Kottinger,
Almagor, and Lahijanian (2022) for the full set of bench-
mark results. For 33× 33 environments, XG-A∗ and WXG-
A∗ nearly always time out, and hence not evaluated.

For the most part, the results match our expectations:
vanilla CBS offers the best trade-off between plan length
and computation time, but invariably outputs plans with high
index. Of the two extremities A∗ and XG-A∗, the speed of
A∗ allows it to eventually find smaller index plans than XG-
A∗, with comparable path length. However, XG-A∗, being
guided towards minimal index plans, often outputs a lower
index plan initially (c.f., first column). Moreover, as the en-
vironment becomes smaller and more congested (9 × 9, 12
agents), XG-A∗ outperformsA∗. Unfortunately, the history-
dependence of XG-A∗ means it cannot scale to larger envi-
ronments. In particular, this rules out the use of WXG-A∗,
which is also history-dependent, for larger environments.

The surprising results come from SR-A∗. Despite be-
ing theoretically incomplete, in practice it offers an excel-
lent success-rate (matching CBS), and invariably reduces
the index of the plan (compared to CBS) by a significant
amount (e.g., for 33 × 33, 30 agents, the reduction is from
roughly 24 segments to 6 segments!). Moreover, it’s limited
search space allows it to match CBS in computation time,
and sometimes even outperform it. The trade-off, naturally,
comes in the path length, which increases.

Another pleasant surprise comes from A∗, which despite
the expected increase in computation time, does manage to
give some decrease in the index, even on larger environ-
ments. Moreover, since A∗ uses the distance to the goal as
a heuristic, the plans found by A∗ are typically shorter than
those of SR-A∗ (but usually have a higher cost, since lower-
ing the cost eventually causes it to time out).

On smaller environments, WXG-A∗ sometimes finds
smaller index plans than XG-A∗ on the first try. In ad-
dition, it has a higher success rate (often higher than all
other versions, including CBS) due to being guided in part
by A∗. However, since finding the best weight parameter
is instance-dependent, it is not clear whether batch experi-
ments capture the performance of WXG-A∗.

To summarize the results, on larger environments, if one
wishes to optimize explainability, then SR-A∗ is a clear win-
ner. On smaller environments, A∗ usually works fairly well,
but XG-A∗ can offer smaller indices on congested environ-
ments. Finally, by carefully tuning a combined weight (e.g.,
by trying different options), one can obtain better explana-
tions in small environments using WXG-A∗.

Discussion and Future Work
We introduced a CBS-based decentralized algorithm for Ex-
plainable MAPF via Segmentation. Our technical contribu-
tion is twofold: first, we describe the extension XG-CBS,
which can be readily implemented on top of existing CBS

698



Figure 6: Plan Index for 9× 9 (top) and 16× 16 (bottom) environments.

Figure 7: Success Rate for 9× 9 (top) and 16× 16 (bottom)
environments.

implementations. Second, we describe new low-level search
algorithms, namely XG-A∗, WXG-A∗ and SR-A∗ oriented
toward low index plans. While the former two are complete
algorithms, we show they do not scale well. The latter, de-
spite not being complete, scales well and is often as efficient
as CBS, while yielding easily explainable plans.

Future research will adapt other MAPF algorithms to
the explainable settings, such as Priority-Based Search (Ma
et al. 2019b), and SAT-based solutions, as well as extensions
and improvements of “vanilla” CBS. Finally, we remark that
Explainable MAPF via Segmentation has potential appli-
cations beyond gaining trust. Disjoint decompositions can
be used during the actual execution of the plan, in case the
agents’ paths must not cross. For example in tethered robots,
we wish to minimize tangling of the tethers as they constrain
robot motion. This essentially means we desire plans with
a small index, which XG-CBS enables us to achieve. Sim-
ilarly, 3D pipe routing (Belov et al. 2020), small explana-

Figure 8: Benchmark results for 33× 33 environment.

tions may allow for simpler routing. Other applications can
be found in multi-layered circuit board design. In particular,
such applications show that even an index reduction of one
may by financially beneficial.

699



References
Almagor, S.; and Lahijanian, M. 2020. Explainable Multi Agent
Path Finding. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS ’20,
34–42. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 9781450375184.
Arrieta, A. B.; Dı́az-Rodrı́guez, N.; Del Ser, J.; Bennetot, A.; Tabik,
S.; Barbado, A.; Garcı́a, S.; Gil-López, S.; Molina, D.; Benjamins,
R.; et al. 2020. Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI.
Information Fusion, 58: 82–115.
Bartak, R.; Svancara, J.; and Vlk, M. 2018. A Scheduling-Based
Approach to Multi-Agent Path Finding with Weighted and Capaci-
tated Arcs. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 748–756.
Belov, G.; Du, W.; De La Banda, M. G.; Harabor, D.; Koenig, S.;
and Wei, X. 2020. From multi-agent pathfinding to 3D pipe rout-
ing. In Thirteenth Annual Symposium on Combinatorial Search.
Bose, A.; and Markelov, I. 2019. Multi-Agent Path Planning in
Python. https://github.com/atb033/multi agent path planning. Ac-
cessed: 2021-08-01.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.; Betzalel,
O.; and Shimony, E. 2015. ICBS: Improved conflict-based search
algorithm for multi-agent pathfinding. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence.
Brandao, M.; Canal, G.; Krivić, S.; Luff, P.; and Coles, A. 2021.
How experts explain motion planner output: a preliminary user-
study to inform the design of explainable planners. In 2021 30th
IEEE International Conference on Robot & Human Interactive
Communication (RO-MAN), 299–306. IEEE.
Cohen, L.; Koenig, S.; Kumar, S.; Wagner, G.; Choset, H.; Chan,
D.; and Sturtevant, N. 2018. Rapid Randomized Restarts for Multi-
Agent Path Finding: Preliminary Results. In Proceedings of the
International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), 1909–1911.
Eifler, R.; Cashmore, M.; Jorg, H.; Magazzeni, D.; and Steinmetz,
M. 2019. Explaining the Space of Plans through Plan-Property
Dependencies. Proceedings of the 2nd Workshop on Explainable
Planning (XAIP).
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T. K. S.;
and Koenig, S. 2018. Adding Heuristics to Conflict-Based Search
for Multi-Agent Path Finding. Proceedings of the International
Conference on Automated Planning and Scheduling, 28(1): 83–87.
Felner, A.; Stern, R.; Shimony, E.; Goldenberg, M.; Sharon, G.;
Sturtevant, N.; Wagner, G.; and Surynek, P. 2017. Search-Based
Optimal Solvers for the Multi-Agent Pathfinding Problem: Sum-
mary and Challenges. In Proceedings of the Symposium on Com-
binatorial Search (SoCS), 28–37.
Fines, K.; Sharpanskykh, A.; and Vert, M. 2020. Agent-based
distributed planning and coordination for resilient airport surface
movement operations. Aerospace, 7(4): 48.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable Planning.
arXiv:1709.10256.
Hubel, D. H.; and Wiesel, T. N. 1959. Receptive fields of single
neurones in the cat’s striate cortex. The Journal of Physiology,
148(3).
Kambhampati, S. 2019. Synthesizing Explainable Behavior for
Human-AI Collaboration. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, 1–2.
Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems. ISBN 9781450363099.

Kottinger, J. 2021. Explanation-Guided Conflict-Based Search
for Explainable MAPF. https://github.com/aria-systems-group/
Explanation-Guided-CBS. Accessed: 2021-12-01.
Kottinger, J.; Almagor, S.; and Lahijanian, M. 2021. MAPS-X:
Explainable Multi-Robot Motion Planning via Segmentation. In
Proceedings of the IEEE International Conference on Robotics and
Automation. Xi’an, China: IEEE.
Kottinger, J.; Almagor, S.; and Lahijanian, M. 2022. Conflict-
Based Search for Explainable Multi-Agent Path Finding. https:
//arxiv.org/abs/2202.09930.
Lapuschkin, S.; Wäldchen, S.; Binder, A.; Montavon, G.; Samek,
W.; and Müller, K.-R. 2019. Unmasking Clever Hans predictors
and assessing what machines really learn. Nature Communications,
10(1).
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S. 2019a.
Improved Heuristics for Multi-Agent Path Finding with Conflict-
Based Search. In IJCAI, volume 2019, 442–449.
Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and Koenig, S.
2019b. Disjoint splitting for multi-agent path finding with conflict-
based search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 29, 279–283.
Ma, H.; Harabor, D.; Stuckey, P.; Li, J.; and Koenig, S. 2019a.
Searching with Consistent Prioritization for Multi-Agent Path
Finding. In Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI), (in print).
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S. 2019b.
Searching with consistent prioritization for multi-agent path find-
ing. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 7643–7650.
Mari, T.; Dang, T.; and Gössler, G. 2021. Explaining Safety Vio-
lations in Real-Time Systems. In International Conference on For-
mal Modeling and Analysis of Timed Systems, 100–116. Springer.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding. Arti-
ficial Intelligence, 219: 40–66.
Standley, T. S. 2010. Finding optimal solutions to cooperative
pathfinding problems. In Twenty-Fourth AAAI Conference on Arti-
ficial Intelligence.
Stern, R.; Sturtevant, N. R.; Atzmon, D.; Walker, T.; Li, J.; Co-
hen, L.; Ma, H.; Kumar, T. K. S.; Felner, A.; and Koenig, S. 2019.
Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks.
Symposium on Combinatorial Search (SoCS), 151–158.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016. An Em-
pirical Comparison of the Hardness of Multi-Agent Path Finding
under the Makespan and the Sum of Costs Objectives. In Proceed-
ings of the Symposium on Combinatorial Search (SoCS), 145–147.
Tang, S.; Lee, T. S.; Li, M.; Zhang, Y.; Xu, Y.; Liu, F.; Teo, B.; and
Jiang, H. 2018. Complex Pattern Selectivity in Macaque Primary
Visual Cortex Revealed by Large-Scale Two-Photon Imaging. Cur-
rent Biology, 28(1): 38–48.e3.

700


