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Abstract

For a plan to achieve some goal – to be valid – a set of suf-
ficient and necessary conditions must hold. In dynamic set-
tings, agents (including humans) may come to hold false be-
liefs about these conditions and, by extension, about the va-
lidity of their plans or the plans of other agents. Since differ-
ent agents often believe different things about the world and
about the beliefs of other agents, discrepancies may occur be-
tween agents’ beliefs about the validity of plans. In this work,
we explore how agents can use their Theory of Mind to re-
solve such discrepancies by communicating and/or acting in
the environment. We appeal to an epistemic logic framework
to allow agents to reason over other agents’ nested beliefs,
and demonstrate how epistemic planning tools can be used to
resolve discrepancies regarding plan validity in a number of
domains. Our work shows promise for human decision sup-
port as demonstrated by a study that showcases the ability of
our approach to resolve misconceptions held by humans.

1 Introduction
“Planning is the art of thinking before acting” (Haslum
2014), but a problem with thinking before acting is that the
validity of the resultant plan is predicated on beliefs about
the way the world is, rather than ground truth, and even if
those beliefs are correct at the time of planning (and they
may not be!), the actual state of the world may change prior
to plan execution, invalidating the plan, sometimes unbe-
knownst to various agents. Moreover, agents may perceive
discrepancies between their own beliefs and other agents’
beliefs about the validity of plans (e.g., Alice believes that
Bob’s plan is not valid but that he believes it is).

Here we wish to allow agents to contemplate each others’
plans, realize when agents hold misconceptions about the
validity of their plans or the plans of other agents, and re-
solve discrepancies pertaining to the validity of these plans
by communicating and/or acting in the environment. For ex-
ample, a robot could communicate to its human teammate
that the conditions necessary to the success of her plan do
not hold or, alternatively, the robot could act in the world to
ensure that those conditions hold.

*Associated technical appendix appears in Shvo et al. (2022).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To contemplate another agent’s beliefs and plans, agents
must employ their Theory of Mind which, according to
Premack and Woodruff (1978), is exercised when an agent
imputes mental states (e.g., plans, goals, beliefs) to itself and
others. To enable agents to employ their Theory of Mind, we
appeal to epistemic logic and propose a framework that al-
lows agents to identify and resolve discrepancies between
their beliefs and the beliefs of others regarding plan valid-
ity. Importantly, our framework allows agents to be aware
of and reason about the mental states of human counterparts
and offer assistance by resolving perceived discrepancies.

Recent work in Explainable AI Planning (XAIP) has
stressed the need to consider the possibly incomplete and
incorrect perspective of other agents when resolving mis-
conceptions pertaining to various properties of plans (e.g.,
optimality and validity). For instance, the model reconcilia-
tion literature has investigated how to enable planning agents
to resolve discrepancies between the planning models of
the planning agent and the observing human(s) (Sreedha-
ran, Chakraborti, and Kambhampati 2021). In Section 7 we
elaborate and survey additional related work.

Our work goes beyond extant work by supporting a
unique variety of settings requiring complex Theory of Mind
reasoning. In particular, the expressive nature of our frame-
work supports (1) nested belief attribution (e.g., in order to
resolve Mary’s misconception about Bob’s beliefs about the
validity of his plan, Alice may inform Mary that Bob holds
a false belief about some fact relevant to the plan’s success);
and (2) reasoning about threats to the achievement of epis-
temic goals (e.g., if Bob’s epistemic goal is for Mary to know
ϕ without Eve knowing ϕ and Bob’s robot teammate knows
that (unbeknownst to Bob) Eve is within earshot, then the
robot could inform Bob of Eve’s proximity). To realize our
approach, we establish a relationship between our proposed
formulation of discrepancy resolution and epistemic plan-
ning which is focused on generating plans to achieve epis-
temic goals in the context of agents’ beliefs and knowledge
(Petrick and Bacchus 2002; Bolander and Andersen 2011;
Kominis and Geffner 2015; Muise et al. 2015b; Huang et al.
2017; Le et al. 2018; Fabiano et al. 2020, 2021).

The contributions of our paper are as follows:

1. We propose a formulation of discrepancy resolution that
appeals to a multi-agent epistemic logic (Sec. 3).

2. We present an algorithm that resolves discrepancies via
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epistemic planning and establish its soundness (Sec. 4).
3. We demonstrate that epistemic planning tools can be

used to resolve discrepancies via different modalities
(i.e., with communicative and/or world-altering actions)
in various domains and evaluate the impact of the depth
of nested belief on the runtime of our algorithm (Sec. 5).

4. We conduct a user study which indicates that our ap-
proach can effectively resolve misconceptions held by
humans pertaining to plan validity (Sec. 6).

2 Preliminaries
KD45n. We briefly discuss the multi-agent modal logic
KD45n which we appeal to in this work (Fagin et al. 2004).
LetAg and P be finite sets of agents and atoms, respectively.
ϕ and ψ are used to represent formulae. ⊤ and ⊥ represent
true and false, respectively. The language L of multi-agent
modal logic is generated by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ′ | Biϕ

where p ∈ P , i ∈ Ag, ϕ ∈ L and Biϕ means that “agent
i believes ϕ.” The semantics for formulae in L is given by
Kripke models (Fagin et al. 2004) which are triplets, M =
⟨W,R, V ⟩, containing a set of worlds, accessibility relations
between the worlds for each of the agents (R = {Ri | i ∈
Ag}), and a valuation map, V : W → 2P . The set of worlds
an agent i (at world w ∈ W ) considers possible is given by
M and the accessibility relations inRi pertaining tow.Ri is
a binary relation onW and is a subset ofW ×W . A formula
ϕ is true in a world w of a Kripke model M = ⟨W,R, V ⟩,
written M,w |= ϕ, under these conditions:

M,w |= p for an atom p, iff p ∈ V (w),
M,w |= ¬ϕ, iff M,w ̸|= ϕ,
M,w |= ϕ ∧ ψ, iff both M,w |= ϕ and M,w |= ψ,
M,w |= Biϕ, iff M,w′ |= ϕ ∀w′ ∈W s.t. Ri(w,w

′)

ϕ is satisfiable if there is a Kripke model M and a world
w of M s.t. M,w |= ϕ. ϕ is said to entail ψ, written ϕ |= ψ,
if for any Kripke model M , M,w |= ϕ entails M,w |= ψ.
We are interested in a set of properties of belief and assume
a number of constraints on Kripke models to achieve this
(Fagin et al. 2004). In particular, Kripke models are:

Serial - ∀w ∃v R(w , v)
Transitive - R(w , v) ∧R(v , u) ⇒ R(w , u)
Euclidean - R(w , v) ∧R(w , u) ⇒ R(v , u)

with the resulting properties of belief:

Biϕ ∧Bi(ϕ⇒ ψ) ⇒ Biψ (K - Distribution)
Biϕ⇒ ¬Bi¬ϕ (D - Consistency)
Biϕ⇒ BiBiϕ (4 - Positive Introspection)
¬Biϕ⇒ Bi¬Biϕ (5 - Negative Introspection)

This is the KD45n system (n is the number of agents in the
environment) that is defined by these properties of belief.
Epistemic planning combines automated planning and rea-
soning over the beliefs and knowledge of agents. We appeal
to a multi-agent epistemic planning formulation to represent
the beliefs of different agents in a dynamic setting.

Definition 1 (MEP Problem) A Multi-agent Epistemic
Planning Problem is a tuple ⟨Q, I, G⟩ where Q = ⟨P ,A,
Ag⟩ is the domain comprising sets of atoms P , actions A,
and agents Ag, together with the problem instance descrip-
tion comprising the initial state, I ∈ L, and the goal condi-
tion G ∈ L, where L is the language of multi-agent modal
logic corresponding to P and Ag.

A is a set of actions where each action a ∈ A is a tu-
ple ⟨Pre, {(γ1, ϵ1), ..., (γk, ϵk)}⟩, where Pre ∈ L is the pre-
condition of a (written Pre(a)), γi ∈ L is the condition of a
conditional effect, and ϵi ∈ L is the effect of a conditional
effect. To model how the state of the world and agents’ be-
liefs change following the execution of an action, we rely on
the definition and realization of progression by the epistemic
planner we use in this work, RP-MEP (Muise et al. 2015b).
RP-MEP’s definition of a progression operator, rather than
progressing arbitrary formulae in L, operates over syntac-
tically restricted formulae – Proper Epistemic Knowledge
Bases (PEKBs) (Lakemeyer and Lespérance (2012) build-
ing on Liu, Lakemeyer, and Levesque (2004) and Levesque
(1998) with further work by Muise et al. (2015a)). A PEKB
is defined as a set of restricted formulae called restricted
modal literals (RMLs) (Lakemeyer and Lespérance 2012).
An RML is obtained from the following grammar:

ϕ ::= p | Biϕ | ¬ϕ

where p ∈ P and i ∈ Ag, and as a consequence PEKBs do
not contain disjunctive formulae. For more details on PEKBs
and RMLs, see Appendix A and (Muise et al. 2022). Muise
et al. (2022) define a progression operator over a restricted
MEP setting where states, preconditions, and conditional ef-
fects are PEKBs. In the remainder of the paper, we make use
of this restricted form of MEP.

Definition 2 (PROG (Muise et al. 2022, Definition 4))
Given a PEKB state ϕ and an action a = ⟨Pre, {(γ1, ϵ1),
..., (γk, ϵk)}⟩ where Pre and each γi are PEKBs and each
ϵi is an RML, the progression of ϕ wrt a, a PEKB state
labelled PROG(a, ϕ), is

PROG(a, ϕ) = (ϕ (R ∪ U))✸Q

Q =
⋃

1≤i≤k

{ψ | γi ⊆ ϕ and ϵi |= ψ}

R =
⋃

1≤i≤k

{ψ | γi ⊆ ϕ and ϵi |= ψ}

U =
⋃

1≤i≤k

{¬ψ | γi ∩ ϕ = ∅ and ¬ϵi |= ¬ψ}

where P is the PEKB that contains the negation of every
RML in some PEKB P and and ✸ are belief erasure and
belief update operators1, respectively. In case a is not exe-
cutable in ϕ, i.e. Pre ̸⊆ ϕ, PROG(a, ϕ) is undefined. Finally,
Q defines the set of literals to be added, R defines the set

1Belief update and erasure for PEKBs have been defined and
shown to be polynomial time operations (Miller and Muise 2016).
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of literals to be deleted, and U defines the set of uncertain
firing2 literals to be deleted.

For additional details on RP-MEP’s progression, we re-
fer readers to (Muise et al. 2022). We use the shorthand
PROG([a1, ..., an], ϕ) or PROG(π, ϕ) to denote the progres-
sion of ϕ wrt a sequence of actions, a plan, π = [a1, ..., an].
We use I and S to denote PEKB states. Finally, when talking
about a tuple v⃗ = ⟨v1, . . . , vn⟩ of agents from Ag, we may
use Bv1...vn or Bv⃗ to stand for the belief operator sequence
Bv1

. . . Bvn
. In case v⃗ is empty, Bv⃗p represents p.

3 Resolving Discrepancies
In this section, we propose a formulation of discrepancy res-
olution for plan validity that appeals to a multi-agent epis-
temic logic. For a plan to achieve some goal – to be valid –
a set of sufficient and necessary conditions must hold.

Definition 3 (Plan Validity) Given a domain ⟨P ,A, Ag⟩, a
state S, and a goal G, a plan π is valid for achieving (or
simply achieves) G from S if PROG(π, S) |= G.

We want a formula VAL(π,G) that captures plan va-
lidity in the sense that PROG(π, S) |= G if and only if
S |= VAL(π,G). We characterize VAL(π,G) by appeal-
ing to regression rewriting (Waldinger 1977; Reiter 2001;
Rintanen 2008; Fritz and McIlraith 2007), a form of pre-
image computation that takes a formula and an action and
returns the condition that is necessary to hold in the current
state for the formula to hold in the state resulting from per-
forming the action. Regression can be applied repeatedly to
compute the condition that must be true in the initial state
for the goal to hold in the state resulting from the execu-
tion of the actions in a sequential plan. Here we suppose
that we have (given a domain) a regression operator REG
which maps a formula ϕ and action sequence π to a formula
REG(π, ϕ) which satisfies the property that for any state S,
S |= REG(π, ϕ) if and only if PROG(π, S) |= ϕ. Finally, we
say that S |= VAL(π,G) if and only if S |= REG(π,G). Im-
portantly, since VAL(π,G) is a formula, we can talk about
agents’ beliefs about it, which we can interpret as indicating
their beliefs about whether π is a valid plan.

Definition 4 (Subjective Plan Validity) Given a domain
⟨P ,A, Ag⟩, a state S, and a goal G, agent i believes that
a plan π is valid if S |= BiVAL(π,G).

Agents can also hold beliefs about other agents’ beliefs
(about other agents’ beliefs...) about the validity of a plan
and perceive discrepancies between their beliefs and the be-
liefs of other agents about plan validity.

Definition 5 (Discrepancy) Given a domain ⟨P ,A, Ag⟩,
agents i, j ∈ Ag, and a (possibly empty) tuple v⃗ =
⟨v1, . . . , vn⟩ of agents in Ag, we say that a formula ϕ is a

2Uncertain firing occurs when an agent is unsure whether a
cond. effect is true and should therefore not believe the effect but
must also not believe the opposite (Muise et al. 2022).

discrepancy perceived by agent i in state S between its be-
liefs and those of agent j (about the beliefs of agent v1 about
the beliefs of ... about the beliefs of agent vn) if the following
condition is entailed by S:

¬(Bi,v⃗ϕ ∧Bi,j,v⃗ϕ) ∧ ¬(Bi,v⃗¬ϕ ∧Bi,j,v⃗¬ϕ)

We will be interested in discrepancies about formulae
like VAL(π,G), i.e., in discrepancies about the validity of
plans, and in enabling agents to resolve such discrepancies
by changing the environment or other agents’ beliefs. To this
end, we cast the task of resolving a discrepancy perceived by
agent i between its beliefs and those of agent j as an epis-
temic goal, where agent i needs to either change j’s beliefs
to align with its own, or change its own beliefs to align with
j’s beliefs. The following definition is of a plan that achieves
this goal and ensures that in the end, VAL(π,G) will not be
a discrepancy perceived by agent i between its beliefs and
those of agent j (about the beliefs of agent v1 about the be-
liefs of ... about the beliefs of agent vn).

Definition 6 ((Plan Validity) Discrepancy Resolving Plan)
Given a domain Q = ⟨P ,A, Ag⟩, agents i, j ∈ Ag, a (pos-
sibly empty) tuple v⃗ = ⟨v1, ..., vn⟩ of agents in Ag, initial
state I, a plan π, and a goal G, a plan validity discrepancy
resolving plan (henceforth discrepancy resolving plan) for
⟨Q, I, i, j, v⃗, π,G⟩ is a plan π′ that achieves the following
goal from I:

(Bi,j,v⃗VAL(π,G) ∧Bi,v⃗VAL(π,G)) ∨
(Bi,j,v⃗¬VAL(π,G) ∧Bi,v⃗¬VAL(π,G)).

There are many ways to resolve a discrepancy, some of
which are trivial or undesirable. For instance, suppose that
agent i is a planning system trying to explain the validity
of its own plan, π, to agent j (Bob, the human user of the
system). The system believes that π is valid while believing
also that Bob believes that π is not valid. In this case, a valid
discrepancy resolving plan, π′, would be for the system to
render π invalid which resolves the discrepancy – the sys-
tem now believes that π is not valid and also believes that
Bob believes it is not valid. However, this is an undesirable
solution since the system’s intention was to convince Bob
of π’s validity. We therefore often wish to resolve discrep-
ancies under certain conditions by constraining the discrep-
ancy resolution epistemic goal specified in Definition 6.

Definition 7 (Constrained Discrepancy Resolving Plan)
Given a domain Q = ⟨P ,A, Ag⟩, agents i, j ∈ Ag, a
(possibly empty) tuple v⃗ = ⟨v1, ..., vn⟩ of agents in Ag,
initial state I, a plan π, a goal G, and a logical formula Φ
representing additional constraints, a constrained discrep-
ancy resolving plan for ⟨Q, I, i, j, v⃗, π,G⟩ is a plan π′ that
achieves the following goal from I:

[(Bi,j,v⃗VAL(π,G) ∧Bi,v⃗VAL(π,G)) ∨
(Bi,j,v⃗¬VAL(π,G) ∧Bi,v⃗¬VAL(π,G))] ∧ Φ.

Note that as written here, Φ imposes a constraint on what
states the plan can end in. It might also be desirable to con-
strain the plan trajectory (e.g., to require some condition
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holds throughout the entire plan), as has been explored in
the literature on temporally extended goals (e.g., Baier and
McIlraith 2006). Our definition could be extended to do that,
though we will not pursue that further here.

Each of the following definitions specifies different con-
ditions involving Φ, resulting in two conceptually distinct
ways to resolve discrepancies: (1) by changing agent j’s be-
liefs to align with i’s beliefs, and (2) by changing agent i’s
beliefs to align with j’s beliefs.

Definition 8 (i-aligned Discrepancy Resolving Plan)
Given a domain Q = ⟨P ,A, Ag⟩, agents i, j ∈ Ag, a
(possibly empty) tuple v⃗ = ⟨v1, ..., vn⟩ of agents in Ag,
initial state I, a plan π, and a goal G, an i-aligned discrep-
ancy resolving plan for ⟨Q, I, i, j, v⃗, π,G⟩ is a constrained
discrepancy resolving plan π′ where the constraint Φ
satisfies these conditions:

1. If I |= Bi,v⃗VAL(π,G) then
Φ |= Bi,j,v⃗VAL(π,G) ∧Bi,v⃗VAL(π,G).

2. If I |= Bi,v⃗¬VAL(π,G) then
Φ |= Bi,j,v⃗¬VAL(π,G) ∧Bi,v⃗¬VAL(π,G).

While discrepancy resolving plans need not contain only ac-
tions performed by agent i, one useful form of i-aligned
discrepancy resolving plans involves agent i communicat-
ing salient information to agent j either implicitly (e.g., by
opening a box in front of agent j, demonstrating that it is
unlocked) or explicitly (e.g., by telling agent j the box is un-
locked). i-aligned discrepancy resolving plans are important
for a variety of settings. For instance, recall the aforemen-
tioned undesirable discrepancy resolving plan π′ that ren-
dered the planning system’s plan invalid. While π′ is a valid
discrepancy resolving plan, it is not a valid i-aligned discrep-
ancy resolving plan. Therefore, to avoid such undesirable
solutions in the plan explanation setting, we would generate
i-aligned discrepancy resolving plans, thus preserving the
validity of the plan π. In contrast, discrepancies can be re-
solved by changing agent i’s beliefs to align with j’s beliefs.

Definition 9 (j-aligned Discrepancy Resolving Plan)
Given a domain Q = ⟨P ,A, Ag⟩, agents i, j ∈ Ag, a
(possibly empty) tuple v⃗ = ⟨v1, ..., vn⟩ of agents in Ag,
initial state I, a plan π, and a goal G, a j-aligned discrep-
ancy resolving plan for ⟨Q, I, i, j, v⃗, π,G⟩ is a constrained
discrepancy resolving plan π′ where the constraint Φ
satisfies these conditions:

1. If I |= Bi,j,v⃗VAL(π,G) then
Φ |= Bi,j,v⃗VAL(π,G) ∧Bi,v⃗VAL(π,G).

2. If I |= Bi,j,v⃗¬VAL(π,G) then
Φ |= Bi,j,v⃗¬VAL(π,G) ∧Bi,v⃗¬VAL(π,G).

One form of j-aligned discrepancy resolving plans involves
agent i changing the environment to align with j’s beliefs.
For example, agent i could place some item where she be-
lieves agent j falsely believes it to be, in order to make j’s
plan valid. Such plans facilitate assistance which does not
require coordination or communication with agent j.

Finally, Definition 6 does not consider the plans of the
other agents in Ag. Therefore, it is possible that a valid dis-
crepancy resolving plan will introduce new discrepancies
pertaining to the validity of other agents’ plans (e.g., mak-
ing some agent’s plan invalid while they believe it is valid).
Φ can be specified appropriately such that discrepancy re-
solving plans preserve the validity of other agents’ plans.

3.1 Example
Using an example, we illustrate the concepts discussed in
this section. Consider a search and rescue scenario with
three agents, Alice (virtual assistant or robot), Bob (human),
and Mary (human), where all agents are aware that Bob’s
goal is to obtain a particular medical kit (Kit1). Alice be-
lieves that Bob falsely believes that Kit1 is in room A (Al-
ice herself believes that the medical kit is in room B). Alice
also believes that Mary falsely believes that Bob believes
that Kit1 is in room B. We partially model this scenario:

Ag = {Alice, Mary, Bob} (1)
I |= BAliceat(Bob, Hall) (2)
I |= BAliceat(Kit1, RoomB) (3)
I |= BAlice¬at(Kit1, RoomA) (4)
I |= BAlice,Maryat(Kit1, RoomB) (5)
I |= BAlice,Bobat(Kit1, RoomA) (6)
I |= BAlice,Bob¬at(Kit1, RoomB) (7)
I |= BAlice,Mary,Bobat(Kit1,RoomB) (8)
I |= BAlice,Mary,Bob¬at(Kit1,RoomA) (9)

Let us assume that Bob’s goalG is holding(Bob,Kit1) and
that Alice predicts3 that Bob’s plan to achieve G is

[move(Bob,Hall,RoomA), pckUp(Bob,Kit1,RoomA)].

We refer to Alice’s prediction about Bob’s plan as πAliceBob.
Moreover, let us assume that Alice can reason that Mary pre-
dicts that Bob’s plan is

[move(Bob,Hall,RoomB),pckUp(Bob,Kit1,RoomB)].

We refer to Alice’s prediction about Mary’s prediction about
Bob’s plan as πAliceMaryBob. The actions in πAliceBob are:

move(Bob,Hall,RoomA) = ⟨at(Bob, Hall),
{(⊤, at(Bob, RoomA)), (⊤,¬at(Bob, Hall))}⟩

pckUp(Bob,Kit1,RoomA) =
⟨at(Kit1, RoomA) ∧ at(Bob, RoomA),

{(⊤, holding(Bob, Kit1)), (⊤,¬at(Kit1, RoomA))}⟩

Actions in πAliceMaryBob are identical with RoomB replacing
RoomA. Agents are ‘aware’ that an action has been per-
formed if they are in the same location in which the action is
performed. For example, if Bob picks up Kit1 in RoomA and
Mary is also there, then Mary will believe that Bob is hold-
ing Kit1. The planner we use in this work, RP-MEP, achieves
this by automatically generating conditional effects from an

3Plan recognition techniques can be used to predict or recognize
other agents’ plans. See Section 8 for a brief discussion.
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action’s existing set of conditional effects. For more details,
see (Muise et al. 2022) and Appendix E. Next, suppose that
VAL(πAliceBob, G) and VAL(πAliceMaryBob, G) are

at(Kit1, RoomA) ∧ at(Bob, Hall) and
at(Kit1, RoomB) ∧ at(Bob, Hall),

respectively. That is, for πAliceBob to be valid, Bob must ini-
tially be in the hallway and Kit1 must be in RoomA. Given
entailments (2)-(9) (and assuming that all agents believe
(that all agents believe) at(Bob, Hall)), the following holds
pertaining to agents’ beliefs about the validity of πAliceBob
and πAliceMaryBob:

I |= BAlice¬VAL(πAliceBob, G) (10)
I |= BAlice,BobVAL(πAliceBob, G) (11)
I |= BAlice,Mary,Bob¬VAL(πAliceBob, G) (12)
I |= BAliceVAL(πAliceMaryBob, G) (13)
I |= BAlice,Bob¬VAL(πAliceMaryBob, G) (14)
I |= BAlice,Mary,BobVAL(πAliceMaryBob, G) (15)

Alice perceives in I a number of discrepancies between her
beliefs and those of Bob and Mary pertaining to plan va-
lidity. In particular, VAL(πAliceBob, G) is a discrepancy per-
ceived by Alice between her beliefs and those of Bob, where
v⃗ is empty (entailments (10) and (11)). One possible (i-
aligned) discrepancy resolving plan is then

π′ = [inform(Alice,Bob,¬at(Kit1,RoomA))], such that

I |= VAL(π′,

BAlice,Bob¬VAL(πAliceBob, G) ∧BAlice¬VAL(πAliceBob, G))

The grounded inform action in π′ is modelled as follows:

inform(Alice,Bob,¬at(Kit1,RoomA)) =
⟨BAlice¬at(Kit1, RoomA),

{(⊤, BAlice,Bob¬at(Kit1, RoomA))}⟩.

The plan π′ consists of Alice informing Bob that Kit1 in
not in RoomA. This resolves Alice’s perceived discrepancy
about the validity of πAliceBob. That is, Alice believes that af-
ter Bob learns that Kit1 is not in RoomA, he will believe that
πAliceBob is not valid. In Section 4 we discuss how to leverage
epistemic planning to compute discrepancy resolving plans.

Modelling the inform action in this way enforces truth-
ful communication, since its precondition is that Alice be-
lieve ¬at(Kit1, RoomA). Moreover, we assume that agents
believe that other agents find their communications trustwor-
thy (see discussion of trust by Fabiano et al. (2021)).

The i-aligned discrepancy resolving plan π′ aligns Bob’s
beliefs with Alice’s beliefs via a communication action. In
contrast, the world-altering, j-aligned discrepancy resolving
plan π′′ resolves Alice’s perceived discrepancy pertaining to
πAliceBob by aligning Alice’s beliefs with Bob’s. Assuming

Alice is initially in the hallway,
π′′ = [move(Alice,Hall,RoomB),

pckUp(Alice,Kit1,RoomB),
move(Alice,RoomB,RoomA),
dropOff (Alice,Kit1,RoomA)], such that

I |= VAL(π′′,

BAlice,BobVAL(πAliceBob, G) ∧ BAliceVAL(πAliceBob, G)).

Intuitively, Alice aligns the environment with Bob’s be-
liefs by bringing Kit1 from where it actually is (RoomB), to
where Bob believes it to be (RoomA). Therefore, after Alice
performs these actions, both Alice and Bob will believe that
πAliceBob is valid, thereby resolving the discrepancy. In many
real world settings, it may either be undesirable or even not
possible for agents to resolve discrepancies by means other
than communication. For instance, if Alice were a virtual
assistant, then it is likely she would only be able to com-
municate information to other agents (π′). However, if Alice
were a robot, she could perhaps resolve Bob’s discrepancy
by executing π′′. In Section 5 we show examples of these
two discrepancy resolution ‘modalities’ in various domains.

There is also a ‘higher-order’ discrepancy in our example.
In particular, VAL(πAliceBob, G) is a discrepancy perceived
by Alice between her beliefs and those of Mary about Bob’s
beliefs, where v⃗ is ⟨Bob⟩. That is, while Alice believes that
Bob believes that πAliceBob is valid (entailment (11)), she also
believes that Mary believes that Bob believes that πAliceBob is
not valid (entailment (12)). This is because of Mary’s false
belief about Bob’s beliefs about Kit1’s location (entailments
(8) and (9)). A possible discrepancy resolving plan is
π′′′ = [inform(Alice,Mary,BBobat(Kit1,RoomA))],

such that I |= VAL(π′′′, BAlice,Mary,BobVAL(πAliceBob, G)

∧BAlice,BobVAL(πAliceBob, G)).

Alice believes that after Mary learns that Bob believes that
Kit1 is in RoomA, Mary will believe that Bob believes that
πAliceBob is valid (which resolves the discrepancy).

4 Computing Discrepancy Resolving Plans
As mentioned, epistemic planning combines automated
planning and reasoning over the beliefs and knowledge of
agents. In this section we present an algorithm that computes
discrepancy resolving plans using epistemic planning tools
and establish the soundness of our algorithm with a theo-
rem. In its general form, the plan existence problem in multi-
agent epistmeic planning (MEP) is undecidable (Bolander
and Andersen 2011). However, the epistemic planner we use
in this work, RP-MEP (Muise et al. 2015b, 2022), operates
over a decidable and fairly expressive fragment of epistemic
logic. In particular, (1) RP-MEP operates over PEKBs (and
hence is not able to reason with disjunctive beliefs), (2) rea-
soning in RP-MEP is done from the perspective of a single
agent, and (3) an upper bound is set on the depth of nested
belief reasoning. To compute solutions for MEP problems,
RP-MEP encodes a MEP problem as a classical+4 planning

4We refer to a classical+ planning problem as a classical plan-
ning problem augmented with ADL (Pednault 1989) features, most
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problem and augments actions in the domain with condi-
tional effects that enforce the KD45 axioms. The classically
encoded MEP problem can then be given to an off-the-shelf
classical planner. We appeal to this classical encoding of
MEP problems in our computation. Exposition on classical
planning is given in Appendix B.

Algorithm 1 accepts as input a tuple ⟨Q, I, i, j, v⃗, π,G⟩,
whereQ= ⟨P ,A, Ag⟩ is a domain, i, j ∈ Ag are agents, v⃗ is
a tuple of agents inAg, I is an initial state, π is a plan, andG
is a goal, and returns a discrepancy resolving plan for it. Ide-
ally, we would compute the validity formula for plan π and
goal G, VAL(π,G), and provide the epistemic goal specified
in Definition 6 to an epistemic planner. However, RP-MEP
cannot directly solve such goals due to the disjunction in the
goal expression and the possible disjunction in VAL(π,G).

Instead, we appeal to RP-MEP’s encoding, which allows
us to compute the validity formula and formulate the dis-
crepancy resolution goal in a classical+ planning setting.
To this end, in Line 3, the CLASSENCODEMEP function re-
turns a classical encoding of the initial state I, MEP domain
Q, the plan π and goal G, ⟨F , I ′, O, πc, Gc⟩, where F is a
set of propositional fluents representing each RML in the do-
mainQ, I ′ is the classically encoded initial state I,O is a set
of classically encoded operators corresponding to the set of
actions A in Q, πc contains operators from O (correspond-
ing to actions in A from π), and Gc corresponds to G and
is expressed using propositional fluents from F . We imple-
ment this function using RP-MEP’s machinery which does
not require any modification. Appendix C provides details
of the encoding as well as the definitions of C() and D(),
which are mapping functions from RMLs in Q to proposi-
tional fluents in F (and vice versa).

Next, given the classical+ planning domain ⟨F , O⟩, the
plan πc, and the goal Gc, in Line 4 the COMPUTEPLAN-
VALIDITYFORMULA function returns the formula ϕ =
VALc(πc, Gc), where VALc is the validity formula in a
classical+ planning setting, using an implementation of the
regression operator REG for classical planning with condi-
tional effects (Rintanen 2008). To force the classical plan-
ner to generate a discrepancy resolving plan, we formulate
a goal that includes ϕ. Due to the possible disjunction in ϕ,
and since RP-MEP does not support disjunctive belief, we
formulate this goal using the disjuncts ϕd of DNF(ϕ) and
DNF(¬ϕ), where each ϕd is a conjunction. Specifically, in
Line 6 CALLCLASSICALPLANNER tasks a classical plan-
ner that supports conditional effects and disjunctive goals
with solving the classical+ planning problem ⟨F , I ′, G′, O⟩,
where G′ is∨
ϕd∈DNF(ϕ)

 ∧
ϕdc∈ϕd

C(Bi,j,v⃗D(ϕdc)) ∧ C(Bi,v⃗D(ϕdc))

∨

∨
ϕd∈DNF(¬ϕ)

 ∧
ϕdc∈ϕd

C(Bi,j,v⃗D(ϕdc)) ∧ C(Bi,v⃗D(ϕdc))

 ,

ϕdc are conjuncts of ϕd, Bi,j,v⃗D(ϕdc) and Bi,v⃗D(ϕdc) are

notably here conditional effects and disjunctive goals. The popular
Fast Downward (Helmert 2006) planner supports these.

Algorithm 1

1: procedure RESOLVEDISCREPANCY(⟨Q, I, i, j, v⃗, π,G⟩)
Given a tuple ⟨Q, I, i, j, v⃗, π,G⟩, return a plan π′.

2: π′ ← [ ]
3: ⟨F , I′, O, πc, Gc⟩ ← CLASSENCODEMEP(Q, I, π,G)
4: ϕ← COMPUTEPLANVALIDITYFORMULA(F , O, πc, Gc)
5: G′ ←∨

ϕd∈DNF(ϕ)

( ∧
ϕdc∈ϕd

C(Bi,j,v⃗D(ϕdc))∧C(Bi,v⃗D(ϕdc))

)
∨

∨
ϕd∈DNF(¬ϕ)

( ∧
ϕdc∈ϕd

C(Bi,j,v⃗D(ϕdc))∧C(Bi,v⃗D(ϕdc))

)
6: π′ ← CALLCLASSICALPLANNER(⟨F , I′, G′, O⟩)
7: return π′

8: end procedure

RMLs, and C(Bi,j,v⃗D(ϕdc)) and C(Bi,v⃗D(ϕdc)) are the cor-
responding propositional fluents in F created in the encod-
ing process. Each ϕdc is a propositional fluent in F and
D(ϕdc) is the corresponding RML in the MEP domain Q.

4.1 Example
Let us illustrate the workings of Algorithm 1 using our
example, where agent i is Alice, j is Bob, and v⃗ is
empty. In Line 3, we classically encode ⟨Q, I, πAliceBob, G⟩,
where G is holding(Bob,Kit1), and obtain the tuple
⟨F , I ′, O, πc, Gc⟩. Then, in Line 4 we obtain the validity
formula ϕ = VALc(πc, Gc) via regression, where

ϕ = at Kit1 RoomA ∧ at Bob Hall

and DNF(¬ϕ) is therefore

¬at Kit1 RoomA ∨ ¬at Bob Hall,

where at Kit1 RoomA, at Bob Hall, and their negations are
propositional fluents in F . In Line 6 we task a classical plan-
ner with solving ⟨F , I ′, G′, O⟩, where G′ is

(C(BAlice,Bobat(Kit1, RoomA))∧C(BAliceat(Kit1, RoomA))
∧ C(BAlice,Bobat(Bob, Hall))∧C(BAliceat(Bob, Hall)))

∨(C(BAlice,Bob¬at(Kit1, RoomA))
∧ C(BAlice¬at(Kit1, RoomA)))

∨(C(BAlice,Bob¬at(Bob, Hall))∧C(BAlice¬at(Bob, Hall))),

corresponding to one disjunct in DNF(ϕ) and two disjuncts
in DNF(¬ϕ). at(Kit1, RoomA) = D(at Kit1 RoomA). We
discuss in the next section how the planner, depending on
what actions Alice has at her avail, will either generate the
communicative discrepancy resolving plan π′ (where Al-
ice informs Bob about Kit1’s location) or the world-altering
plan π′′ (where Alice moves Kit1 to where Bob believes it to
be), both discussed in the previous section. Both plans sat-
isfy one of the disjuncts of G′ and are therefore a solution
for ⟨F , I ′, G′, O⟩.

Finally, the input to Algorithm 1 includes a plan π and
agents i and j. To resolve discrepancies between agent i’s
beliefs and the beliefs of multiple agents, Algorithm 1 is
called multiple times, resulting in multiple discrepancy re-
solving plans, one for each agent. In our example, to resolve
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discrepancies between (1) Alice and Bob and (2) Alice and
Mary, we would call Algorithm 1 twice and generate two
plans. Similarly, we would call Algorithm 1 twice to resolve
discrepancies pertaining to two different plans.

4.2 Establishing the Soundness of Algorithm 1
Since we use RP-MEP in our implementation, we corre-
spondingly appeal to a Restricted Perspectival MEP formu-
lation to prove the soundness of Algorithm 1. In particular,
an RP-MEP problem is a MEP problem from the perspec-
tive of a root agent ⋆ ∈ Ag and with a bounded depth of
belief (Muise et al. 2022). Planning in RP-MEP is from the
perspective of the root agent. See definition in Appendix C.

In our implementation, the discrepancy-resolving agent,
agent i, is always the root agent. Since we wish to talk
about the root agent’s beliefs about other agents’ beliefs
about VAL(π,G), we define VAL(π,G) for the RP-MEP set-
ting. To do so, we use the mapping function D(), which
can be applied compositionally to Boolean combinations
of fluents (see Appendix C), and define VAL(π,G) =
D(VALc(πc, Gc)). So VAL(π,G) is a formula with the same
structure as VALc(πc, Gc), but which replaces the proposi-
tional fluents in it with the corresponding RMLs in the MEP
domain. Recall that VALc(πc, Gc) is the classical+ planning
validity formula, which ϕ is set to in Line 4 of Algorithm 1.

Theorem 1 (Soundness of Algorithm 1) Suppose that a
plan π′ is returned by Algorithm 1 given R = ⟨⟨P ,A,
Ag⟩, I, i, j, v⃗, π,G⟩. Then π′′ is a discrepancy resolving
plan for R, where π′′ is the plan comprising actions from
A corresponding to the classically encoded operators in π′.

Proof Sketch We want to show that if a plan π′ is re-
turned by RESOLVEDISCREPANCY given the tuple ⟨⟨P ,A,
Ag⟩, I, i, j, v⃗, π,G⟩, where ⟨⟨P ,A, Ag⟩, I, G⟩ is an RP-
MEP problem (where ⋆ ∈ Ag is the root agent), then the
plan π′′ corresponding to the plan π′ is a discrepancy re-
solving plan for ⟨Q, I, i, j, v⃗, π,G⟩ such that

PROG(π′′, I) |=(Bi,j,v⃗VAL(π,G) ∧Bi,v⃗VAL(π,G))∨
(Bi,j,v⃗¬VAL(π,G) ∧Bi,v⃗¬VAL(π,G)).

The plan π′ is returned in Line 6 by the classical planner
and therefore solves ⟨F , I ′, G′, O⟩. By Lemma 2 (found in
Appendix C), which builds on the correctness of RP-MEP’s
classical encoding, we have that

PROG(π′′, I) |=∨
ϕd∈DNF(ϕ)

 ∧
ϕdc∈ϕd

Bi,j,v⃗D(ϕdc) ∧Bi,v⃗D(ϕdc)

∨

∨
ϕd∈DNF(¬ϕ)

 ∧
ϕdc∈ϕd

Bi,j,v⃗D(ϕdc) ∧Bi,v⃗D(ϕdc)

 .

It follows that

PROG(π′′, I) |=
[Bi,j,v⃗D(ϕ) ∧Bi,v⃗D(ϕ)]∨
[Bi,j,v⃗D(¬ϕ) ∧Bi,v⃗D(¬ϕ)].

Since ϕ = VALc(πc, Gc), that can be rewritten (moving
negation signs around using the definition of D()) as

PROG(π′′, I) |=
[Bi,j,v⃗D(VALc(πc, Gc)) ∧Bi,v⃗D(VALc(πc, Gc))] ∨
[Bi,j,v⃗¬D(VALc(πc, Gc)) ∧Bi,v⃗¬D(VALc(πc, Gc))].

Since we defined VAL(π,G) = D(VALc(πc, Gc)) in the RP-
MEP setting, we are done. The full proof is in Appendix C.

5 Experimental Evaluation
In this section, we present the results of our evaluation,
where we set out to (1) demonstrate that epistemic planning
tools can be used to compute discrepancy resolving plans
with different modalities (i.e., with communicative and/or
world-altering actions) in various domains; and (2) evalu-
ate the impact of increased depth of nested belief on Algo-
rithm 1’s runtime. Code can be found in bit.ly/3Kv1UDj.

5.1 Experimental Setup
To satisfy our objectives, we ran Algorithm 1 to generate
discrepancy resolving plans in the following domains:

• BlocksWorld for Teams (BW4T) – an abstraction of a
search & rescue domain, modelling our running example

• Corridor – an epistemic planning benchmark with epis-
temic goals such as selective communication of a secret.
Interestingly, discrepancies may be resolved by closing
doors to prevent agents from overhearing secrets.

• 7 IPC domains (e.g., Driverlog, Depots, Logistics)

To evaluate the impact of the required depth of nested be-
lief, d, and number of agents, |Ag|, each domain (aside from
Corridor) includes instances with d = {2, 3, 5} (with 2, 3,
and 5 agents, resp). When d = 2, a ‘first order’ discrep-
ancy is resolved (e.g., where Alice resolves a discrepancy
pertaining to Bob’s beliefs about plan validity) and when
d = {3, 5}, a ‘higher order’ discrepancy is resolved (e.g.,
where Alice resolves a discrepancy pertaining to Mary’s be-
liefs about Bob’s beliefs (about ...)).

We experimented with different discrepancy resolution
modalities by conducting a simple ablation study where we
created 3 versions of each problem instance where either: (1)
no modifications were made to the problem instance; (2) a
subset of ontic actions was manually removed (such that the
discrepancy-resolving agent, i, cannot make certain changes
to the environment to resolve discrepancies); or (3) a subset
of communicative actions was removed (such that agent i
cannot communicate with agent j to resolve discrepancies).

The various domains used in our experiments are de-
scribed in detail in Appendix D. All domains were en-
coded using a file format used by RP-MEP called PDKB
Domain Description Language (PDKBDDL) (a variant of
the Planning Domain Definition Language (PDDL) (McDer-
mott et al. 1998)) that can encode MEP problems, includ-
ing nested agent beliefs. More details can be found in Ap-
pendix E and in (Muise et al. 2022). All problem instances
across all domains were modelled as tuples comprising a
domain, an initial state, a (possibly empty) tuple of agents,
a plan, and a goal, and given to Algorithm 1. We encoded
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Domain d Time (s) |π′
c|/|π′

o| Domain d Time (s) |π′
c|/|π′

o| Domain d Time (s) |π′
c|/|π′

o|
BW4T 2 1.93 2 / 6 IPC - Driverlog 2 1.51 3 / 6 IPC - Logistics 2 47.19 2 / 8
BW4T 3 2.31 2 / – IPC - Driverlog 3 3.77 3 / – IPC - Logistics 3 59.33 2 / –
BW4T 5 1552.49 2 / – IPC - Driverlog 5 472.97 3 / – IPC - Logistics 5 MO – / –
BW4T (EG) 3 3.16 2 / – IPC - Gripper 2 1.33 2 / 5 IPC - Zeno 2 22.49 3 / 7
Corridor (EG) 3 2.94 2 / – IPC - Gripper 3 4.47 2 / – IPC - Zeno 3 51.43 3 / –
— — — — IPC - Gripper 5 572.78 2 / – IPC - Zeno 5 MO – / –
IPC - Depots 2 20.93 3 / 8 IPC - Rovers 2 1.39 3 / 6 IPC - Satellite 2 2.38 2 / 6
IPC - Depots 3 37.41 3 / – IPC - Rovers 3 2.88 3 / – IPC - Satellite 3 4.25 2 / –
IPC - Depots 5 4028.12 3 / – IPC - Rovers 5 1428.50 3 / – IPC - Satellite 5 807.63 2 / –

Table 1: The depth of nested belief significantly increases Algorithm 1’s runtime. We report the average runtime in seconds for
Algorithm 1. d is the required depth of nested belief and EG signifies that problems in the domain involve an epistemic goal.
|π′

c| and |π′
o| are the average number of actions in plans returned by Algorithm 1 that resolve discrepancies via communication

or world-altering actions, respectively. MO means that the planner or classical encoding ran out of memory.

the initial state for each problem instance such that agent i
perceives a number of discrepancies between its beliefs and
those of agent j, where one of the discrepancies is the valid-
ity formula of the plan π in the tuple given to Algorithm 1.

To implement Algorithm 1 we make use of the latest ver-
sion of RP-MEP5. For every problem instance, RP-MEP is
given in Line 3 PDKBDDL files and outputs classically en-
coded PDDL files. In Line 6, the Fast Downward planner
(Helmert 2006) is given the encoded PDDL files and called
with an admissible heuristic that supports conditional effects
and disjunctive goals, to ensure optimal plans are computed.
We also make use of the SymPy Python library to convert
regression formulae to DNF and to compute their negation.

All plans given to Algorithm 1 were pre-computed us-
ing RP-MEP’s machinery that allows for agents to project to
reason as other agents and predict how they would achieve
a certain goal (see discussion of ‘Agent Projection’ in the
RP-MEP repository and (Muise et al. 2015b, Sec. 5)).

5.2 Results
Table 1 summarizes the results for the various domains. The
table shows the average runtime (in seconds) for Algorithm
1 (using RP-MEP) over 10 problem instances (and the 3 ver-
sions of each) of the respective domain. MO means that the
planner or classical encoding ran out of memory. d is the
depth of nested belief. The variances for the runtime for the
set of problem instances for each domain (and value of d)
ranged 0.07-0.45. The low variance is due to the planner’s
runtime being fairly similar for all problem instances in a
certain domain and with a certain value of d. Finally, the |π′

c|
and |π′

o| values are the average number of actions in plans
returned by Algorithm 1 that resolve discrepancies via com-
munication or world-altering actions, respectively, across all
problem instances in the domain. All discrepancy resolving
plans consisted of 1-8 world-altering or inform actions.

Different modalities of discrepancy resolution In our
ablation study, as expected, when removing a subset of the
ontic actions (such that the discrepancy-resolving agent can-
not resolve discrepancies by changing the environment) the

5https://github.com/QuMuLab/pdkb-planning

planner only found discrepancy resolving plans comprising
communicative actions. Similarly, when removing a sub-
set of communicative actions, the planner only found dis-
crepancy resolving plans that involve world-altering actions
(e.g., Alice moving Kit1 to RoomA in our example).

In the unmodified domains, the modality used depended
on the length of the various achievable discrepancy resolv-
ing plans. For example, if a discrepancy resolving plan that
involves communicating with agent j was shorter than a plan
that involves moving an object between two rooms, then
the planner chose the former. Overall, the planner found
discrepancy resolving plans that involved communication
(rather than environment alteration) in 74% of problem
instances. This is due to a bias in the way the domains
were created in that we simplify inter-agent communica-
tion which typically only requires a single inform action,
whereas altering the environment in order to resolve discrep-
ancies typically requires additional actions. We note that our
ablation-based approach to constraining the type of discrep-
ancy resolving plan the planner can compute requires do-
main knowledge and manual effort. More generally, Φ can
be specified appropriately. More details are in Appendix E.

Impact of d on runtime Table 1 shows that d, the depth
of nested belief, and the number of agents |Ag| that grows
commensurate with d, significantly increase our algorithm’s
runtime. This is because the number of new fluents intro-
duced during RP-MEP’s encoding process is exponential in
d and |Ag| (Muise et al. 2022). When d is sufficiently high
(as also observed by Muise et al.), some cells in Table 1
(where d = 5) read ‘MO’, i.e., either the compilation or the
planner ran out of memory (with 32 GB RAM) because of
the large number of fluents created during the compilation.
Reflecting on their results, Muise et al. (2022, p.16) aptly say
that: “...the majority of interesting use cases we have found
for planning with nested belief is restricted to depth [2-3].”
This is also true in our discrepancy resolution setting.

Finally, previous work empirically showed similar results
concerning RP-MEP and also that the performance of some
epistemic planners is not affected by the value of d (Le et al.
2018; Shvo et al. 2020). The application of these planners to
discrepancy resolution could be investigated.
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6 User Study
In the previous section we demonstrated that epistemic plan-
ning tools can be used to compute discrepancy resolving
plans in a number of domains. However, these results are not
necessarily a testament to the efficacy of our approach in the
presence of humans. As such, we conducted a user study to
evaluate the ability of our approach to resolve participants’
misconceptions. This research was approved by the Institu-
tional Review Board (IRB) at the authors’ university. Specif-
ically, we set out to test the following hypotheses:

H1: Participants will be more likely to generate a valid
plan to achieve their goal when presented with infor-
mation derived from a discrepancy resolving plan, com-
pared to the likelihood of generating a valid plan prior to
receiving the information.
H2: Participants will be more likely to correctly pre-
dict another agent’s plan when presented with informa-
tion from a discrepancy resolving plan, compared to their
prediction prior to receiving the information.

To test these hypotheses, participants were told that they are
part of an emergency response team whose members must
communicate with one another and obtain various items.
Participants were told that they are partnered with a virtual
assistant meant to provide decision support, and were pre-
sented with two scenarios, mirroring two of the BW4T sce-
narios used in our evaluation and discussed in Appendix D.1.
Initially, participants were given very limited and partially
incorrect information, causing discrepancies and allowing us
to control for the factors that impact participants’ reasoning.
For instance, in the first scenario participants were told that
the supply tent is at the east end of the base, when in fact
it was at the west end. Participants’ feedback indicated that
our controlled setting ensured that participants initially gen-
erated an invalid plan in the first scenario and incorrectly
predicted their teammate’s plan in the second scenario. This
is aligned with the initial states in our evaluation (and run-
ning example) where some agents initially have false beliefs
that cause discrepancies that need resolution.

In each scenario participants were given information by
the virtual assistant. Using RP-MEP, we generated one dis-
crepancy resolving plan (comprising only inform actions)
for each scenario and the assistant’s communication was
simply a natural language representation of the inform ac-
tions in the discrepancy resolving plan (e.g., “SupplyTent is
at BaseWestEnd”). Rephrased, H1 and H2 posited that the
information given to participants would be sufficient to re-
solve the initial discrepancies we created and enable partic-
ipants to perform better plan generation and prediction.

We had a total of 40 participants who were recruited via
Amazon Mechanical Turk and were paid upon completing
the questionnaire via SurveyMonkey. Participants had no
prior knowledge about the study. Here we present a sum-
mary of the study’s results; a detailed account of our method
and results can be found in Appendix F.

Results In the first scenario, after receiving information
from the assistant, all 40 participants generated a valid plan
to achieve their goal, compared to 0 participants who did so
prior to receiving the information. Next, a McNemar’s test

determined that participants’ predictions about their team-
mate’s plan (in the second scenario) after receiving informa-
tion from the assistant were significantly more accurate than
their predictions prior to receiving this information (95%
compared to 5%, p < .001). These results support both H1
and H2 and show promise for human decision support.

7 Related Work
XAIP. Typically in Explainable AI Planning (XAIP) (Hoff-
mann and Magazzeni 2019; Chakraborti, Sreedharan, and
Kambhampati 2020) – a special case of the general task of
explanation generation (e.g., Miller 2019; Shvo, Klassen,
and McIlraith 2020) – a planning agent is tasked with ex-
plaining some aspect of plan generation or execution (e.g.,
optimality or validity). Much work in XAIP has focused on
allowing a planning agent to explain some aspect of its plan
without considering potential model differences between the
planning agent’s model and that of the the recipient of the
explanation (the explainee), typically the user of the plan-
ning system (e.g., Eifler et al. 2020). In contrast, our work
emphasizes the need to consider the (possibly incomplete
and incorrect) beliefs held by the explainee.

Indeed, a growing body of extant work has promoted this
exact view. Chakraborti et al. (2017) have termed explana-
tions that do not consider the explainee’s perspective solilo-
quies and argued that planning agents offering explanations
should eschew soliloquies and instead consider the possi-
bly disparate model held by the explainee. To realize these
desiderata, Chakraborti et al. formulated the model recon-
ciliation problem, with a large body of work continuing this
line of research (Sreedharan, Chakraborti, and Kambham-
pati 2021). In addition, Vasileiou, Previti, and Yeoh (2021)
proposed a logic-based framework for model reconciliation
that operates over two knowledge bases – of an explainer and
an explainee. Relatedly, Miller (2021) – building on Halpern
and Pearl (2005) – proposed to use structural causal mod-
els to generate contrastive explanations, with application po-
tential in XAIP. Finally, Sreedharan et al. (2020) leveraged
a simplified version of RP-MEP’s compilation to classical
planning to generate explicable plans as well as plan ex-
planations delivered via implicit and/or explicit communi-
cation. Viewed through the lens of our work, this body of
work can be seen to enable agents to use Theory of Mind-
like reasoning and resolve discrepancies in XAIP settings.

Our work goes beyond extant literature by broadening the
role of Theory of Mind in such settings. Namely, by ap-
pealing to multi-agent epistemic logic and epistemic plan-
ning, our work supports a unique variety of settings requir-
ing complex Theory of Mind reasoning. Specifically, our
works enables agents to (1) reason about the nested beliefs
of other agents and resolve ‘higher-order’ discrepancies re-
garding plan validity; and (2) correct misconceptions per-
taining to the validity of plans pursuant to epistemic goals.

BDI. Work on Belief-Desire-Intention (BDI) agents and
architectures also explored the role of beliefs in explanation
(e.g., Broekens et al. 2010). The explicit modelling of be-
liefs allows a BDI agent to explain its plans and goals in
terms of its beliefs. However, these works did not appeal to
epistemic planning and did not consider multi-agent settings
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where agents may need to resolve discrepancies pertaining
to other agents’ beliefs about the validity of plans.

DEL. Finally, various fragments of Dynamic Epistemic
Logic (DEL) have been used in epistemic planning (e.g.,
Bolander and Andersen 2011; Le et al. 2018). DEL often
utilizes the modality [α] in formulae such as [α]ϕ to express
that ϕ is true after action α has occurred. Since the modality
[α] is inherent to the language, agents can hold beliefs about
such formulae as [α]ϕ and thus about plan validity, and as
part of future work we will explore the use of an epistemic
logic that includes this modality.

8 Concluding Remarks
In this work, we examined how planning agents can use The-
ory of Mind to resolve discrepancies between their beliefs
and the beliefs of other agents regarding plan validity. Our
formulation appeals to epistemic logic and allows agents to
reason about the nested beliefs of other agents and repair
beliefs that give rise to plan validity discrepancies. We real-
ized our approach using epistemic planning and showed how
epistemic planning tools may be used to resolve discrepan-
cies in various domains. A study showcased the ability of
our approach to resolve misconceptions held by humans.

As part of future work, we wish to explore synergies with
the body of work on implicit coordination (Engesser et al.
2017). Additionally, in some cases (e.g., two agents needing
to hear the same piece of information) aggregating all pair-
wise communications (e.g., by running Algorithm 1 for each
agent) might not be desirable. Algorithm 1 can be adapted
to instead encourage a global optimization.

The objective of our study was modest – validate our ap-
proach by showing that discrepancy resolving plans gener-
ated by Algorithm 1 contain useful information for humans.
To produce a user study with less modest objectives we are
currently investigating related issues with a humanoid robot
where we are able to test participants’ perceptions of the
robot’s helpfulness in real-world settings.

Work on model reconciliation, discussed in Section 7, can
handle misconceptions that stem from different agents hold-
ing different views about action definitions. While epistemic
planning can in general address such settings, in our cur-
rent regression-based approach we assume that the regres-
sion formula REG(π,G) is shared by all agents. However,
our approach could be extended by establishing satisfiabil-
ity of different regression formulas.

Finally, Algorithm 1 accepts, as part of its input, a plan
π and goal G. π and G may be obtained using plan recog-
nition, where an observing agent attempts to predict an ob-
served agent’s plan and goal given a sequence of observa-
tions about the world and the behavior of the observed agent
(e.g., Kautz 1987). However, in plan recognition observa-
tions often correspond to multiple plan or goal hypotheses.
There are a number of ways to deal with uncertainty about
other agents’ plans, including collapsing (some of) the un-
certainty via abstraction, exploiting probabilistic plan recog-
nition (e.g. Ramı́rez and Geffner 2010), and appealing to
ideas from conformant planning. To this last point, rather
than commit to a single plan hypothesis (and risk being
wrong), we might extend our current approach to resolve

discrepancies wrt the entire set of possible plans the agent
may be pursuing, without myopically treating each plan in-
dividually, one after the other. Another alternative is to use
probabilistic plan recognition techniques, generate a proba-
bility distribution over possible plans and goals, and, at the
risk of being wrong, resolve discrepancies pertaining to the
most probable plan and goal. Integrating plan recognition
and discrepancy resolution is left to future work.
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