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Abstract

Anxiety is the most prominent source of stress, harmful be-
haviours, and psychological disorders. AI systems, usually
built for maximizing performance, increase the worldwide
exposition to anxiety. This foundational paper introduces
Anxiety-Aware Markov Decision Processes (AA-MDPs), the
first formalism rooted in fundamental psychology research
for modelling the anxiety tied to policies. In addition, this pa-
per formalizes models and practical polynomial algorithms
for generating anxiety-sensitive policies. Empirical valida-
tion demonstrates that AA-MDPs policies replicate the in-
fluence of anxiety on human decision-making observed by
fundamental psychology research. Last, this paper demon-
strates that AA-MDPs are directly applicable for social good,
through a real-world use case (Anxiety-Sensitive Itinerary
Planning), the immediate applicability for augmenting any
formerly-defined MDP model with anxiety-awareness, and
direct tracks developing future high-impact models.

Introduction
Anxiety is a fundamental future-oriented emotional drive
that can also threaten human wellbeing, as it also trig-
gers worry, stress, insomnia, aggressiveness, disengage-
ment, panic attacks, phobia, obsessive compulsive disorders,
eating disorders, psychosis, depression, addiction, post-
traumatic stress disorder, generalized anxiety disorder, car-
diovascular issues, and self-harm, including suicide (An-
drews et al. 2008; Avery, Clauss, and Blackford 2016; Grupe
and Nitschke 2013; Hartley, Barrowclough, and Haddock
2013; Huppert 2009; Neumann, Veenema, and Beiderbeck
2010; Taylor et al. 2005). Anxiety disorders are the largest
source of mental health disorders worldwide, affecting 33%
of the population, totalling an annual cost of C74.4 bil-
lion in 2010 (C41 billion in 2004) only for the European
Union, with excess costs up to C1600 per case (Alonso et al.
2018; Andlin-Sobocki and Wittchen 2005; Bandelow and
Michaelis 2015; Wittchen 2002). The Lancet Commission
defined anxiety as a key factor to be covered by the wellbe-
ing Sustainable Development Goal (Patel et al. 2018; Firth
et al. 2019).
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Artificial Intelligence (AI) has the potential for both alle-
viating and creating anxiety at a world scale in human soci-
eties. Despite the importance now given to wellbeing in AI
(IEEE 2017), simply considering and, a fortiori, avoiding
anxiety remains barely touched upon. At best, specific ap-
proaches such as artificial emotional intelligence (Schuller
and Schuller 2018) allow adjusting pre-written plans to ob-
served emotions (Loizou et al. 2012). Worse, the current
AI paradigm, near-ubiquitously driven towards performance
maximization, is tied to incidentally cause undesirable con-
sequences as side effects (Kulynych et al. 2020) and is seem-
ingly prone to inducing greater anxiety, by directly and in-
directly maximizing the stress of resources and engaging
in risk-taking strategies (e.g. optimized plans with minimal
room for error, high-risk high-rewards strategies).

AI has the potential for helping us to better deal with the
emotional impact of decisions. As an example, the COVID-
19 crisis has been a paroxysmal display of anxiety with a
deep impact on our daily life. The diffuse yet unquestion-
able threat brought by the virus lead to massive reactions,
from individuals to governments, from locking down activ-
ities to feeling threatening towards and threatened by our
closest ones (Briscese et al. 2020). This anxiety had and still
has large-scale global psychological, social, and economic
repercussions (Restauri and Sheridan 2020; Salari et al.
2020). What if we had models for estimating the psycholog-
ical repercussions of various measures? What if these mod-
els proposed alternatives that reduced the subsequent anxi-
ety? For answering such questions and others more general
about the topic, this paper develops: 1) a model grounded in
psychological theories for assessing the anxiety expected to
be raised by a policy; 2) a planning model, and 3) efficient
algorithms for generating policies that balance induced anx-
iety and expected value, beyond the COVID-19 crisis.

This paper places itself as a foundation for the domain of
anxiety-sensitive planning, a high-impact wellbeing-critical
topic that remains to be studied by the AI community. Anx-
iety being obviously too broad for being fully covered in
a single paper, the present paper is dedicated to study how
to generate anxiety-sensitive policies, i.e. policies that best
balance anxiety-avoidance and performance, depending on a
degree of sensitivity to anxiety. 1) We lay the formalization
of Anxiety-Aware Markov Decision Processes (AA-MDPs),
the first anxiety-sensitive planning model based on MDPs,
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grounded in fundamental psychological theories, which can
be directly applied to augment any existing MDP model with
anxiety-sensitivity; 2) we prove that solving AA-MDPs is
an NP-hard problem, 3) we introduce polynomial approx-
imate algorithms that are used 4) for empirically validat-
ing the soundness of AA-MDPs by demonstrating that they
replicate core anxiety-sensitive strategies observed in human
behavior; and 5) demonstrating the suitability of AA-MDPs
for mitigating worldwide sources of anxiety: Anxiety-Aware
Itinerary Planner1; last, 6) we present direct follow-up appli-
cations and extensions of the foundations laid by AA-MDPs,
such as therapeutic applications for post-traumatic stress dis-
orders and panic attacks.

Background
Anxiety is a central topic in (neuro)psychology, generally
defined as a future-oriented emotion related to a subjec-
tive impression of inability to cope with future events, in-
sufficient preparation, and worries (Barlow 2002a; Miceli
and Castelfranchi 2005; Rapee et al. 1996). Anxiety can be
sketched as anxiety = uncertainty× motive, crossing of the
intensity of internal motives (e.g. goals, needs, and plans)
with the intensity of uncertainty inherently caused by the
partial mastery of the environment. Higher stakes and higher
uncertainty cause higher anxiety. Uncertain positive as well
as negative outcomes generate anxiety (Carleton 2016). For
example, “100% chance of winning 50$” causes less anxi-
ety than “20% chance of winning 0$, 30% chance of win-
ning 50$, and 50% chance of winning 100$”, which causes
less anxiety than “50% chance of winning 100$, else 0$”
(Bach and Dolan 2012). (Bach and Dolan 2012) character-
ize four central sources of uncertainty: sensory uncertainty,
(partially observable) state uncertainty, (transition) rule un-
certainty, and outcome uncertainty. As a heuristic, anxiety
arises from the exposition to perceived unknowns (Carleton
2016), notably when repeated over a short timespan (Levy
and Schiller 2020). Anxiety can be caused by both exter-
nally observed uncertainty and internal exposition to uncer-
tainty (e.g. focus on uncertainty, backpropagation of future
projections (Levy and Schiller 2020)). For space consider-
ation, our model focuses on reward uncertainty, laying di-
rect foundations for additional uncertainty models (detailed
in conclusions). Anxiety differs from fear in that fear is 1)
a primal reaction to 2) explicit threats, whereas anxiety is
triggered by the potentiality of threats over longer periods
of time (Grupe and Nitschke 2013).

Anxiety relates to numerous physiological and be-
havioural responses, driven either to adapt to potential
threats usually through increasing predictability and con-
trollability (e.g. preparation, arousal, hypervigilance) (Beck
and Clark 1997); or to cope with the experience of anxi-
ety (e.g. impatience, self-sabotaging, pessimism, optimism,
substance abuse) (Barlow 2002a; Levy and Schiller 2020;
Rapee et al. 1996). While relevant in a state of nature with
lethal threats, anxiety often triggers maladaptive responses
in modern societies, sometimes up to a pathological extent

1The URL to our open-source AA-MDP repository is available
there: https://github.com/lvanhee/anxiety-aware-mdps.

(e.g. social media addictively overemphasizing social anx-
iety ), causing direct and indirect comorbidity in the long
run (physical diseases, sleep disorders, impatience, exhaus-
tion, depression, substance abuse) (Belik, Sareen, and Stein
2009).The instant anxiety2 is the anxiety experienced at
a given point in time (Spielberger et al. 1999). The cu-
mulated anxiety is the addition of the instant anxiety (to
be) experienced over time, which individuals seek to avoid
(Dugas et al. 1998). The sensitivity to and reactions caused
by anxiety are individual-dependent, including biological,
developmental, and cultural factors (Brandes and Bienvenu
2006; Hofstede, Hofstede, and Minkov 2010). Thus, individ-
uals react very differently to various types of stimuli (e.g.
not knowing when versus not knowing what). Moreover,
while the intensity of anxiety and the exposition duration
are positively tied to psychological repercussions, this rela-
tion leads to different outcomes in non-additive individual-
dependent manners: a long exposition to mild anxiety inten-
sity is tied with risks of depression, while a short exposition
to high anxiety intensity is tied to post-traumatic stress dis-
order (Ehlers and Clark 2000). As such, cumulative anxiety
is more than a sum of instant anxiety over time. As more
specific relations are still under investigation in research in
psychology, our models need to be generic for various indi-
vidual and temporal components.

Markov Decision Processes (MDPs) are stochastic pro-
cesses that are (partly) controlled by an agent represented
by a tuple 〈S,A, T,R〉, where S is a set of states; A is a set
of actions; T : S × A × S → [0, 1] is a transition func-
tion, where T (s, a, s′) is a probability of reaching s′ when
playing a from s; and R : S → R is a reward function,
where R(s) is the expected reward for being in s ∈ S. Op-
timizing MDPs within a bounded horizon h ∈ N consists
in finding a policy that maximizes the expected reward in
using h actions. A policy π : S → A defines an action to
be played for each state and Π is the set of all policies. The
value of a policy π within a horizon h is V πh : S → R,
where: V πk (s) = R(s) +

∑
s′∈S T (s, π(s), s′).V πk−1(s′) if

k > 0, else V π0 (s) = R(s). The set of optimal policies for
the horizon h, represented by Π∗h ⊆ Π is the set of policies
π∗ ∈ Π∗h such that for all s ∈ S, V π

∗

h (s) = maxπ∈Π V
π
h (s).

An example MDP is presented in Figure 1. S =
{s1, s21, s22, s31, s32, s33, s34}, A = {a, b, c, d, e, f}. T is
defined in s1 for a as T (s1, a, s21) = 0.7, T (s1, a, s22) =
0.3. R(s1) = 0; R(s21) = 2; R(s22) = 1; R(s31) = −10;
R(s32) = 20; R(s33) = 0 R(s34) = 1. A set of policies can
be applied in this MDP. The reward-maximizing policy (or
anxiety-blind), π∗ is: π∗(s1) = a; π∗(s21) = c; π∗(s22) =
f . For later use, we introduce the low-anxiety policy π∼,
where π∼(s1) = a, π∼(s21) = d and π∼(s22) = f , and the
zero-anxiety policy π0 , where π0 (s1) = b and π0 (s22) =
f . The value of π∗ is V π

∗
(s1) = 5.5; V π

∗
(s21) = 7;

V π
∗
(s22) = 2; V π

∗
(s31) = −10; V π

∗
(s32) = 20;

V π
∗
(s33) = 0; V π

∗
(s34) = 1.

2Generally called State Anxiety in psychology, but “instant anx-
iety” avoids ambiguity with Markovian states.
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Figure 1: Markov Decision Process example. White nodes
are states, including the state name and reward. Black nodes
are actions. Numbers on lines are probability distributions.

Anxiety-Aware Markov Decision Process
MDPs provide the basic modelling structures for represent-
ing the key features of anxiety depicted by fundamental
psychological research: uncertainty regarding future situa-
tions and rewards, including the effect of selected courses
of action (policy) (Barlow 2002a; Miceli and Castelfranchi
2005; Rapee et al. 1996), while keeping natural represen-
tation and polynomial computational complexity. However,
MDP structures are to be expanded for modelling anxiety,
and some of these combinations need to remain generic, as
the state of the art in psychology does not provide suffi-
ciently grounded insight. Experimentations described later
in this paper demonstrate how to implement AA-MDPs.
Instant Anxiety is directly tied to the uncertainty and inten-
sity of future outcomes, which depends on the current state,
world-dynamics, and intended policy. (Carleton 2016) for-
malize outcome-based anxiety as the variance of the possi-
ble outcomes weighted by their probability. This formaliza-
tion can be naturally expanded to the MDP framework by
representing value-distributions, i.e. the distribution of fu-
ture expected accumulated rewards from a given state and a
policy (instead of just the expected average captured by the
Bellmann value function (Bellman 1956)). Note that instant
anxiety cannot be reduced to rewards, as rewards are only
state-dependent while anxiety is also policy-dependent. The
model also assumes that the anticipated reward associated to
every state is static, whereas human anticipation of the va-
lence of situations can evolve over time (e.g. discounted sen-
sitivity to negative outcomes when they are far in the future,
increased sensitivity to negative outcomes when experienc-
ing a failure) (Kahneman 2011).

Definition 1 A value-distribution ∆ : Q → [0, 1] is a dis-
crete probability distribution over Q, an arbitrary discrete
subset of R. ∆(r) is the probability of acquiring r ∈ Q.∑
r∈Q ∆(r) = 1. The set of all value-distributions is ∆. By

extension, ∆(r) = 0 for any r ∈ R \ Q. ∆ can be repre-
sented as the set of pairs {(r,∆(r))|r ∈ Q}.

Intuitively, the degree of anxiety raised by situations
is tied to the variance of the value-distributions. For ex-
ample, consider ∆1 = {(−8, 0.07), (2, 0.72), (22, 0.21)},
∆2 = {(−8, 0.1), (2, 0.6), (22, 0.3)}, and ∆′2 =
{(−7, 0.2), (2, 0.5), (22, 0.3)} (∆1 and ∆2 correspond to

the value-distributions from s1 and s21 when following π∗;
∆′2 is similar to ∆2 except that the worst case is slightly
better but more probable at the expense of the average case
for ∆′2). ∆1 means that there is a probability 0.07 to ob-
tain a reward of −8, a probability 0.72 of obtaining 2 and
a probability 0.21 of obtaining 22. ∆1 objectively gener-
ates less anxiety than ∆2 = {(−8, 0.1), (2, 0.6), (22, 0.3)}:
in ∆2, the uncertainty is greater as the probability to reach
more extreme values (i.e. −8 and 22) is strictly greater than
in ∆1 and the probability to reach less extreme values (i.e.
2) is the strictly lower. Yet, the anxiety from reward dis-
tributions has no total order: certain individuals would ex-
perience more anxiety from ∆2 (greater extremes can be
reached) while some others would experience more anxiety
from ∆′2 (greater probability of reaching extremes). Value-
distributions can be seen as cumulative probability distribu-
tions.

In the context of MDPs, a given state and policy can be
tied to value-distributions, describing the probability of ev-
ery possible future value. Value-distributions can naturally
be computed using a straightforward extension of the Bell-
man equation that propagates the probability of every possi-
ble reachable outcome, instead of only the aggregated aver-
age. This model preserves the original structures for repre-
senting the future-orientation in MDPs and can be efficiently
computed by expanding classic algorithms such as the value-
iteration algorithm (Sigaud and Buffet 2010).

Manipulating value-distributions in ∆ (instead of val-
ues in R) requires introducing additional operators, no-
tably for computing the expected value-distribution given
a state and a policy. We formalize this expansion by ex-
panding the classic Bellman equation V π

h (s) = R(s) +∑
s′∈S T (s, π(s), s′) × V π

h−1(s′) to value-distributions. In
particular, we introduce the operator ⊕ for expanding to
value-distributions the addition of immediate rewards; and
the operator ⊗ for expanding to value-distributions the op-
eration

∑
s′∈S T (s, π(s), s′)×V π

h−1(s′) of factoring in the
probability of future (distributions of ) outcomes to occur
given an action π(s).

Definition 2 The scalar sum operator is represented by ~⊕ :
∆ × R → ∆, where if ∆′ = ~⊕(∆, x) then ∆′(r + x) =
∆(r). Informally, ~⊕(∆, x) shifts the rewards of ∆ by x.

Definition 3 The weighted product of value-distributions
is represented by ⊗ : P (∆) × W → ∆, where W :
∆ → [0, 1] is a weight function over ∆. ⊗(∆′, w)(r) =∑

∆∈∆′ w(∆) × ∆(r), where ∆′ ⊆ ∆ is the set of value-
distributions to be crossed and w : ∆′ → [0, 1].⊗ is de-
fined similarly to mixtures of distributions (Everitt and Hand
1981)

Example 1 If ∆1 = {(−2, 0.1); (3.1, 0.6); (10, 0.3)},
∆2 = {(−3, 0.2); (3.1, 0.4); (0, 0.4)}, w(∆1) =
0.2 and w(∆2) = 0.8 then ~⊕(∆1, 2) =
{(0, 0.1), (5.1, 0.6), (12, 0.3)} ⊗({∆1,∆2}, w) =
{(−3, 0.16); (−2, 0.02); (3.1, 0.44); (0, 0.32); (10, 0.06)}
Note the merge that happens for r = 3.1.

Given an MDP 〈S,A, T,R〉, value-distributions can
model the uncertainty raised by following a policy as:
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Distribution Probability
ds1,2,π∗(∆1,∆2, {(−10, 1)}) 0.07
ds1,2,π∗(∆1,∆2, {(20, 1)}) 0.21
ds1,2,π∗(∆1,∆2, {(0, 0)}) 0.42

ds1,2,π∗(∆1, {(2, 1)}, {(1, 1)}) 0.3

Table 1: Cumulative anxiety of π∗ from s1 in Figure 1.

Definition 4 The value-distribution of applying π ∈ Π
from a state s ∈ S for a horizon h ∈ N is represented
as ∆s,h,π ∈∆, where:

∆s,h,π =

{
{(R(s), 1)} if h = 0
~⊕(⊗({∆s′,h−1,π|s′ ∈ S}, w), R(s)) otherwise

wherew(∆s′,h−1,π) = T (s, π(s), s′). Informally, ∆s,h,π(r)
is defined as either the immediate reward from s when h = 0
or the immediate reward added to the reachable value-
distributions in h steps, weighted by the probability of reach-
ing them given π and T .

Definition 5 The instant anxiety raised by π ∈ Π from a
state s ∈ S for a horizon h ∈ N is represented based on
∆s,h,π ∈ ∆, which is the value-distribution from following
π from s for h steps.

For example, the instant anxiety for π∗ is
∆s1,2,π∗ = {(−8, 0.07), (2, 0.72), (22, 0.21)}, ∆s21,1,π∗ =
{(−8, 0.1), (2, 0.6), (22, 0.3)}, ∆s22,1,π∗ = {(2, 1)},
∆s31,0,π∗ = {(−10, 1)}, ∆s32,0,π∗ = {(20, 1)},
∆s33,0,π∗ = {(0, 1)}, ∆s34,0,π∗ = {(1, 1)}.

This value-distribution model preserves the utility proper-
ties of Markovian value (see technical annexes).
Cumulative Anxiety aggregates the exposition to instant
anxiety over time. As the repercussions of cumulative anxi-
ety are individual-dependent and still under scrutiny by the
psychology community they need to be kept generic. There-
fore, our models represent the cumulative anxiety as proba-
bilistic trajectories of instant-anxiety.

Definition 6 A trajectory of reachable instant anxiety lev-
els for a horizon h ∈ N is a sequence of value-distributions
represented by the tuple ∆h.

A distribution of trajectories for a horizon h ∈ N D∆h :
∆h → [0, 1] is a distribution over ∆h.

An expected cumulative anxiety for a horizon h ∈ N
for a policy π ∈ Π from a state s ∈ S is recursively
defined as: ds,h,π ∈ D∆h where: ds,h,π(∆1, . . . ,∆h) =∑
s′∈S T (s, π(s), s′) × ds′,h−1,π(∆2, . . . ,∆h) if h > 1;

ds,1,π(∆1) = 1 if ∆1 = ∆s,π,1, and ds,1,π(∆1) = 0 oth-
erwise. Informally, d(∆1, . . . ,∆h) measures the expected
probability of experiencing the sequence of instant anxieties
(∆1, . . . ,∆h) when following π.3

Pragmatic Anxiety-Avoiding Policies Individuals compro-
mise anxiety-avoidance and reward-maximization, thus fit-
ting the multiobjective optimization paradigm. Comparators
allow representing the relative importance between rewards
and cumulative anxiety profiles.

3The cumulative anxiety of π∗ is exemplified in Table 1.

Algorithm 1: Computing π∗h for Practical Anxiety-Aware
MDPs 〈S,A, T,R,R∆,W, s0, h〉. backpropDistr is opera-
tionalized from Definition 4
∀s ∈ S,∆0(s)← {(0, 1)}, V0(s)← 0, AV 0(s)← 0
for i ∈ [1, h] do

for s ∈ S do
π∗i (s)←argmaxa∈A∑

s′∈s
T (s, a, s′)×

((1−W )× (R(s′) + Vi−1(s′))+

W × (R∆(∆i−1(s′)) + AV π∗,i−1

i−1 (s′)))

∆i(s)← backpropDistr(∆i−1(s), π∗i (s))
Vi(s)←R(s) +

∑
s′∈S

T (s, π∗i (s), s′)× Vi−1(s′)

AV i(s)←R∆(∆i(s))+∑
s′∈S

T (s, π∗i (s), s′)×AV i−1(s′)
end for

end for
return π∗

Definition 7 A preference over expected cumulative anxi-
ety for a horizon h ∈ N is a partial order ≺D over D∆h .

The anxiety/performance preference for a horizon h and
a state s0 is represented by the preorder ≺R,D over R×D.
≺R,D is defined as a combination of the classic ≤ compara-
tor of R and an expected cumulative anxiety evaluator ≺D.
I.e. for any r, r′ ∈ R and d, d′ ∈ D, iff r ≤ r′ and d ≺d d′
then ((r, d)) ≺R,D ((r′, d′)). Optimal anxiety-aware policy
π∗ are policies that maximize ≺R,D.

≺R,D models important preferences over personal anxi-
ety, such as discounting anxiety for average positive rewards
or for avoiding risks of negative rewards (Kahneman 2011).
Note that this formalization, while relying on a certain hori-
zon h, can be applied for modelling the discounted impor-
tance of anxiety in a further future. The previous definitions
allow to define AA-MDPs:

Definition 8 An Anxiety-Aware MDP (AA-MDP) is a tu-
ple 〈S,A, T,R, s0, h,∆, D,≺D,≺R,D〉 where 〈S,A, T,R〉
is a classic MDP; s0 ∈ S is a starting state; h ∈ N a hori-
zon; ∆, derived from S,A, T,R and h, is the set of value-
distributions; ≺D is a preference over expected cumulative
anxiety at horizon h, and ≺R,D is an anxiety/performance
preference comparing cumulative anxiety with ≺D.

In the example from Figure 1, {π∗, π∼, π0}
form a Pareto-front of pragmatic anxiety-avoiding
policies. Whereas individual-dependent, intuitively
we have ds,h,π∗ ≺D ds,h,π∼ ≺D ds,h,π0 and
V π0 (s0) < V π

∼
(s0) < V π

∗
(s0).

Property 1 Computing optimal anxiety-aware policies is
NP-hard. Proof in technical annexes.
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Polynomial Algorithms
Practical AA-MDPs are AA-MDP approximations that can
be solved in polynomial time. These approximations are
multicriteria MDPs, combining reward and anxiety as a sec-
ond criterion. Using classic linearisation techniques, policies
can be computed in polynomial time (Roijers, Vamplew, and
Whiteson 2013; Sigaud and Buffet 2010). However, whereas
multicriteria approaches rely on one classic reward func-
tion per criterion, our anxiety-criterion is instead computed
based on value-distributions for reachable states, which can
be computed efficiently.

Definition 9 A Practical AA-MDP is defined as
〈S,A, T,R,R∆,W, s0, h〉, where 〈S,A, T,R〉 is a classic
MDP, R∆ : ∆ → R is a reward function that associates a
cost to an instant anxiety, W is the relative weight given to
anxiety versus objective rewards, s0 ∈ S is an initial state,
and h ∈ N is the horizon.

An Anxiety Value Function AV π
h(s) represents the cu-

mulative anxiety costs expected to be experienced follow-
ing π for h steps from s, defined as AV h

π : S → R
where: AV 0

π(s) = 0 and AV h
π(s) = R∆(∆s,h,π) +∑

s′∈S T (s, a, s′)×AV h−1
π (s′) if h > 0.

A Pragmatic Anxiety-Aware Value Function AAV h
π

combines objective rewards to be acquired and anxiety costs
to be experienced when following π for h steps, represented
as AAV π

h : S → R where AAV π
h(s) = (1 −W )V π

h (s) +
W ×AV π

h(s).

Practical AA-MDPs allow for a polynomial resolution
of AA-MDP problems. Algorithm 1 expands the Value-
Iteration algorithm for computing approximate policies π∗AA
that maximizes AAV . Moreover, k-bounded distributions
help cutting short computations, as Q can easily grow and
include many near-zero-probability values as h increases.

Definition 10 A k-bounded distribution ∆k of ∆ is a k-
value histogram based on ∆.

Property 2 The complexity of Algorithm 1 is O(h× |S|3 ×
(k2 + E)), if E is the evaluation cost of R∆.
Proof: This complexity is the complexity of classic Value-
Iteration algorithm including the additional cost O(k2) for
backpropagating and fusing value-distributions and O(|E|)
for computing R∆.

R∆ models linearise expected instant anxiety given a
value distribution. Standard deviation, introduced by (Bach
and Dolan 2012, p. 574), is a straightforward candidate
for a rational assessment of value distribution, defined as:
Rσ∆ = −

√∑
r∈Q ∆(r)× (V (∆)− r)2, where V (∆) is

the expected value of ∆. Rσ∆. Alternative models for rep-
resenting cognitive biases are introduced in annexes. The
Shannon entropy, while seemingly a relevant candidate, fails
to capture the intensity variable (e.g. {(0, 0.5); (10, 0.5)}
has the same entropy, but should raise higher anxiety than
{(0, 0.5); (1, 0.5)}) (Bach and Dolan 2012).

Note that this model implies being oblivious to the tempo-
ral dynamics of anxiety experience: experiencing ten units of
anxiety at once has the same valence than experiencing ten

Start position

Goal

Left passage
(safer, faster)

Right passage
(early resolution 
of uncertainty)

Figure 2: Experiment setup, black tiles are obstacles

times one unit of anxiety. Alternative ways for modelling
R∆ and AV π

h(s) can be considered. For example, adding
a power greater than 1 to the anxiety cost increases impor-
tance of avoiding relatively higher degrees of anxiety, e.g.
AV h

π(s) = R∆(∆s,h,π)2+
∑
s′∈S T (s, a, s′)×AV h−1

π (s′).
cumulation can be considered, such as associating

Definition 11 A model of ≺D or R∆ is sound if, for any
deterministic T , Π∗ = {π∗}.
Property 3 Standard deviation; pessimistic standard devi-
ation; and ε-extreme anxiety are sound.
Proof sketch: If T is deterministic, any backpropagated ∆
are singletons. Therefore, by their definitions, R∆(∆) = 0
and thus AAV = V .

Experimental Results
This section is dedicated to validating that our mod-
els generate policies that blend anxiety-avoidance with
goal-orientation. As an approach, we study in simulations
whether the policies generated by AA-MDPs are aligned
with the characteristics of anxiety-avoiding behaviors in hu-
mans, and whether this alignment is preserved as the relative
valence between anxiety and goal-orientation is altered.

Setup For validating that AA-MDPs replicate human-like
anxiety-induced behaviors, we adapted the experimental
setup from (Chow et al. 2015) with an obstacle map that
highlights anxiety-sensitive choices. This setup, illustrated
in Figure 2, consists of a navigation problem on a 2D-map
with obstacles to a goal, given a robotic vehicle with imper-
fect move abilities. This map consists of a 64× 53 grid with
obstacles (black tiles in the figures), every tile being mapped
to a state (i.e. 3312 states). Every round, the robot selects a
direction (North, South, East, West). Every action has a 0.95
probability of reaching the intended tile and 0.05 probability
of moving to any of the 8 tiles that neighbours the intended
tile. The horizon is 200 steps. Each action is rewarded −1
unless the goal is reached (battery usage) and−40 when hit-
ting obstacles. This model seeks for safe (obstacle-free) bat-
tery efficient policies. Policies are computed using Practical
Anxiety-Avoidance MDPs. The weight W is the prime ex-
perimental variable as it determines the relative prevalence
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of anxiety on decisions. By increasing W , we should ob-
serve behaviors that are increasingly sensitive to anxiety that
replicate human-like coping strategies. k = 20. All exper-
iments were run on a classic desktop computer (i7 CPU,
16GB of RAM, Windows 10, Java 16).

The map layout (i.e. obstacles) is organized for allowing
the emergence of a variety of general strategies: the map is
split in two, with a line of obstacle in the centre, requiring to
decide early whether to reach the goal by going through the
left or the right passage. The left passage is slightly shorter
and involves crossing a low-risk field of obstacle late in the
process. The right passage involves crossing a medium-risk
obstacle field early. For both passages, the agent can move
away from the centre using longer, but the safer routes.

Results This section describes the main types of strategies
generated by the system that we observed as we altered the
sensitivity of the system to anxiety (W ) and relates these
strategies to how anxiety sensitivity influences human be-
havior. These four types were selected based on the over-
arching strategies taken by the agent that we observed. No
more that the four phases described here were observed.
Low Sensitivity: Rational Behavior. Individuals who are in-
sensitive to anxiety, as a personal trait or contextual contin-
gency (e.g. high self-confidence, routine situation) are more
likely to display goal-oriented behavior. This property can
be verified in Figure 3 with W = 0. The agent behaves as a
an anxiety-free reward-maximizing agent.
Mild Sensitivity: Impatience. Individuals with mild sensi-
tivity to anxiety tend to prefer an early resolution of un-
certainty, even at the expense of some objective utility or
taking short-term risks. This property can be verified with
W = 0.1. Figure 3 highlights that the agent crosses through
the right passage, which is slightly longer and more risky,
but reduces the duration during which the agent is exposed
to the uncertainty of crossing the obstacle field.
Moderate Sensitivity: Hypervigilance and Dysfunctional
Performance. At higher sensitivity levels, individuals tend
to take irrational precautions for minimizing risks, even at
the expanse of highly ineffective behaviours. This property
is verified with W = 0.5, as displayed in Figure 3. In this
figure, the trajectory ensures a zero-risk of hitting any obsta-
cles, despite leading to a path that is irrationally long.
Severe Sensitivity: Task Avoidance and Self-Harm. The high-
est degrees of anxiety tend to trigger (pathological) behav-
iors, including task avoidance (i.e. refusing to attempt ac-
tivities for avoiding subsequent uncertainty even when out-
comes are exclusively positive) and self-harm (i.e. actively
seeking an unnecessarily negative outcome for the sake of
suppressing uncertainty). This property is observed with
W = 1, Figure 3. In this case, the agent demonstrates task-
avoidance in the pure-blue tiles by refusing to engage in the
task, as moving towards the goal creates some uncertainty on
whether the goal will be reached and how long it will take
(Maner and Schmidt 2006). The area marked with a red cir-
cle indicates self-destructive behaviors, as the agent prefers
to reach the goal by going through the wall once rather than
taking the risk of hitting an obstacle while crossing the ob-
stacle field in the future (Taylor et al. 2011).

Figure 3: Expected value depending on W , from top to bot-
tom: W = 0, W = 0.1, W = 0.5, and W = 1

Application: Anxiety-Aware Pathfinding
This section is dedicated to demonstrating that 1) AA-MDPs
allow augmenting any existing MDP-based solution with
anxiety-avoidance with minimal redesign effort; and 2) the
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City |S| Dist. Vπ∗ VπAA AV π∗AV πAA

Boston 1056376 35664 6546 7659 1048 10
Berlin 442523 23072 12158 12938 741 6
Johannesb. 290153 43933 7160 10019 2043 139
Kiev 120348 17645 5424 6611 913 64
London 445513 11893 3320 4162 731 0
Madrid 436073 17417 4890 6191 1099 15
Paris 697704 26299 3795 4484 790 3
Rome 155866 13653 3466 4068 769 6
Seoul 507341 69662 11092 14104 3327 11
Stockholm 146626 13468 5081 5492 565 12
Yokohama 656239 14161 4059 5237 1455 118

Table 2: Number of states, map width (in meters), expected
value V and anxiety AV of anxiety-blind π∗ and anxiety-
aware πAA policies, depending on the city (V and AV are
negative values), R∆ = Rσ∆

suitability of AA-MDPs for lowering human anxiety when
compared with pute reward maximization.

Itinerary-planning was selected as an example of how to
include anxiety-sensitivity in an ubiquitous AI-based model.
Whereas a car navigation map has been used for the conve-
nience of display, the application directly expands to public
transportation in general (Carrel and Walker 2017; Cheng
2010; Gobind 2018). The MDP model consists of a classic
navigation in a network: states S are locations in a city, ac-
tionsA are moves towards other locations, transitions T rep-
resent the location reached when deciding for a move mov-
ing, and rewards R represents the travel time for completing
the desired move. The value V of a policy thus represents
the total expected travel time. Delays (e.g. traffic jams, de-
layed transports) are a prevalent source of uncertainty when
planning itineraries as they cause variability on the duration
of move actions (formally, S is augmented with a marker in-
dicating what delay occurred when playing the last action,
thus increasing the cost and T has a small probability of
reaching a delayed state). For simplicity and readability, a
small probability of a long delay was associated to moving
through highways –which can of course be replaced by spe-
cific traffic data if available. For demonstrating the realism
of the approach, the navigation graphs used for the experi-
ments were used based on OpenStreetMaps (OSM) data of
capital cities around the world. Formally, OSM places la-
belled as small streets are associated with low speed and
high fluidity (crossed at a speed of 10m/s with a probability
of 1); and OSM places labelled as highways are associated
with faster speed but possible congestion (crossed 30m/s
with a probability of 0.8 and a speed of 3m/s; with a prob-
ability of 0.2). Simple graphical user interfaces can be set
up for every user to tailor the plan generation to their own
needs, such as a slider for setting W (i.e. tradeoff between
performance and anxiety). W was set to 0.1 as to demon-
strate how much basic care for anxiety can lead to dramatic
anxiety reduction for moderate performance costs.

The experiment shown in Table 2 compares anxiety-blind
(π∗) and anxiety-sensitive (πAA) policies for 100 trials for

each city (random start and end destinations). As a remark-
able result, anxiety-avoiding policies 97.1% of the average
AV cost at the expanse of 17.2% increase in travel time. Fig-
ure 4 depicts navigation trees to the destination, marked by
a star. Anxiety-aware policies tend to avoid highways and
prefer smaller, more certain streets, unless using highways
offer a significant gain.

An analytic cross-comparison (Greenberg and Buxton
2008) between AA-MDP policies and human anxiety-
avoiding strategies as depicted by psychology studies has
been put in place for validating the suitability of AA-MDPs
for reducing the anxiety of human users4. Commuting anx-
iety, notably caused by the irregularity of transportation, is
a well-recognized phenomenon and individuals are willing
to compromise a longer average travel time for more certain
travel duration (Carrel and Walker 2017; Cheng 2010; Gob-
ind 2018). Accounting for and alleviating transport anxiety
as done by anxiety-sensitive itinerary planner has thus the
prospect of reaching out and reducing the exposition of anx-
iety to billions of daily commuters. Of course, a (large-scale)
deployment of such a system is likely to entail side-effects,
for which in-depth social analysis is required. Such analysis
opens for future work for studying how to model the anxiety
a system exposes third parties and societies to (e.g. simula-
tion models featuring anxiety).

Related Work
To our knowledge, this paper pioneers in anxiety-aware
planning, despite extensive former research being dedicated
to aspects tightly related to anxiety: trust and deception,
explainability, predictability, privacy, transparency, robust-
ness/risk sensitivity, recognition (Bäuerle and Rieder 2013;
Castelfranchi and Tan 2001; Chakraborti et al. 2019; Cowie
et al. 2001; Franzoni, Milani, and Vallverdú 2017; Hou,
Yeoh, and Varakantham 2014; Mueller et al. 2018). To a cer-
tain extent, anxiety can be seen as a unifying factor for the
aforementioned aspects and may play a role of a “cognitive
currency” as to help the compromise between the various as-
pects. However, despite some commonalities, each of these
aspects involves fundamentally different conceptual models
and deliberation frameworks. For example, trust and risk can
be tied, but trust-building and risk-avoidance can involve in
practice largely differing perspectives and courses of action.

Anxiety-avoidance partly relates to risk-avoidance in that

4Human Computer Interface research provides an array of val-
idation methods for such an artefact. Human experiments are
one instance which we left out of this article due to its well-
recognized limitations (Greenberg and Buxton 2008; Lieberman
2003): rather than detailed a single, local-scale experimentation,
thus case-specific and sensitive to statistical variability, our valida-
tion approach allows crossing AA-MDP policies to more extensive
psychology findings that underwent significant empirical valida-
tion. From a methodological standpoint, tools such as the Visual
Analogue Scale for Anxiety (VAS-A) (Abend et al. 2014; Facco
et al. 2011), the Spielberger’s State-Trait Anxiety Inventory (STAI)
(Spielberger et al. 1999), and the Multiple Affect Adjective Check-
List Revised (MAACL-R) (Zuckerman, Lubin, and Rinck 1985)
can be used for assessing whether a certain system impacts the ex-
perienced anxiety.
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(a) Raw map (b) Anxiety-blind navigation tree (c) Anxiety-aware navigation tree

Figure 4: Navigation tree depicting all routes leading to a destination (star). In Figure 4a, red and orange routes are highways.
Figure 4b shows trajectories generated by an anxiety-blind policy. Figure 4c shows the trajectories generated by an anxiety-
aware policy. Red lines are highways and blue lines are regular streets. Thicker lines mean that more paths (i.e. from more
starting points) reach the destination using that route.

both are sensitive to worse outcomes. However, anxiety fun-
damentally differs from risk in that and anxiety are funda-
mentally different in that 1) anxiety-avoidance concerns un-
certainty in general, which covers both positive and nega-
tive events, whereas risk-avoidance only considers worst-
cases; and 2) anxiety-avoidance is sensitive to the tempo-
ral component, i.e. how to minimize the degree of uncer-
tainty and time during which this uncertainty is met, whereas
risk-avoidance only considers the outcome –regardless of
how long is the exposition to this uncertainty. For exam-
ple, engaging early to slightly greater risks (e.g. engaging
in conflicts, overspeeded) is a recognized anxiety-avoiding
strategy (Hofstede, Hofstede, and Minkov 2010, p.197-198)
that counteracts with risk-avoidance. Former models of risk-
avoidance, include Conditional Value-at-Risk (CVaR) and
bounded risks of reaching pit-states (Bisi et al. 2020; Chow
et al. 2015; Hou, Yeoh, and Varakantham 2014; Tian, Sun,
and Tomizuka 2021). Some recent models alleviate the focus
on purely negative outcomes by seeking to reduce variance,
which is also a limited form of anxiety (Whiteson, Zhang,
and Liu 2021). Related emotion-motivated models include
regret i.e. minimizing worse-case outcome given partly un-
known reward and transition functions (Rigter, Lacerda, and
Hawes 2021), which differs from anxiety in that it only fo-
cuses on negative outcomes and may engage in high-risk
policies; fear and hope (avoiding worse and seeking best-
case outcomes) (Moerland, Broekens, and Jonker 2016),
which are confined forms of anxiety5. Last, stability-seeking
models focus on the stability of sequences of rewards over
time (e.g. preferring “0,0” over “+10,-10”) (White 1988).
Both anxiety and stability are often tied to greater control
over rewards, which lower uncertainty, but cover different
phenomena, in that perfectly-controlled high variations may
raise little anxiety (e.g. double pay every two months) and
little variation can cause cumulative anxiety (e.g. being ex-
posed to a single high-risk situation in a far future).

5Models of fear and hope detailed in the annexes as pessimistic
and optimistic Practical AA-MDP reward functions

Conclusion
This paper introduces and formalizes the first anxiety-aware
planning formalism, which we call Anxiety-Aware Markov
Decision Processes (AA-MDPs), built on fundamental psy-
chology research (Barlow 2002a; Miceli and Castelfranchi
2005; Rapee et al. 1996). AA-MDPs allow generating poli-
cies that balance value-maximization and expected anxiety,
where this anxiety is modelled as the distribution of se-
quences of instant anxiety over time and instant anxiety is
modelled as the distribution of values expected to be ob-
tained by following a given policy π. This article proves that
finding optimal AA-MDP policies is NP-complete, while
also introducing an approximate polynomial algorithm for
computing realistic anxiety-avoiding policies. The sound-
ness of AA-MDPs has been demonstrated by showing that
it reproduces central properties of anxiety-coping behaviors
as described in fundamental psychology research. The direct
applicability and relevance of AA-MDPs has been shown by
demonstrating that any existing MDP-based solution can be
expanded with anxiety-sensitivity and that the policies gen-
erated by AA-MDP expansions align with lowered human
anxiety on, at least, pathplanning applications, which may
reach billions of users.

The array of possible applications is extremely broad.
Consider the example of managing the COVID-19 given in
the introduction, for which multiple advanced MDP-based
models have been proposed (Capobianco et al. 2021; Just
and Echaust 2020). AA-MDPs would allow providing very
concrete answers on questions such as: “how do policies
for lockdowns impact the experienced anxiety due to infec-
tions over future infections?”. Lockdowns reduce immediate
anxiety by reducing immediate risks but increase exposure
on the long run. Intermittent lockdown policies in reaction
to semi-random factors actually cause even further anxiety.
Such anxiety-sensitive AI tools would have been very handy
for anticipating and even mitigating the anxiety-induced ail-
ments caused by the pandemic, which are now endemically
observed. AA-MDPs allow to perform such assessment for
minimal cost.

This paper is intended as a foundational article dedicated
to opening new branches of innovative high-impact research
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and future applications, by demonstrating that anxiety sen-
sitivity and avoidance can be modelled and achieved in
practice. First, Practical AA-MDPs, by directly overlaying
MDPs, enable to turn any already-built MDP-based system
into an anxiety-sensitive system for minimal cost, as illus-
trated by our itinerary-planning application. AA-MDPs also
directly apply for developing anxiety-sensitive agents, such
as virtual characters for serious games and social simula-
tions. Second, AA-MDPs lay the structures for including
additional forms of anxiety, beyond outcome-based, cover-
ing nearly all forms of uncertainty described by (Bach and
Dolan 2012): uncertain state and partial observability (state
anxiety) can be covered by expanding AA-MDPs to Par-
tially Observable MDPs models (Bernstein et al. 2002) and
partial knowledge of the environment (transition uncertainty
(Bach and Dolan 2012)) can be covered by expanding AA-
MDPs with Reinforcement Learning models (Sutton and
Barto 1998). Third, the conceptual foundations provided by
this paper open for proactive user management through rep-
resentations of user mental models (Vanhée, Jeanpierre, and
Mouaddib 2021), including self-escalating anxiety loops
(e.g. a robot slowing down when being watched, a bus sys-
tem guaranteeing connections when buses are infrequent)
and long-term repercussions of anxiety (e.g. recommenda-
tions on strategies when taking a loan). Such models are di-
rectly suited for generating tailored optimized therapeutic
strategies: e.g. how to best cut maladaptive anxiety loops,
given the dynamics of the specific traumatic experience,
anxiety-induced disability, patient engagement, and thera-
peutic resources (Wells 2011).

Anxiety is a two-sided blade for human intelligence (Bar-
low 2002b): anxiety can both cause crippling avoidance and
risky behavior as it fuels the inner drive for proactively solv-
ing problems, knowing more and becoming better. Anxiety-
sensitive AI has not only a potential for reducing tremendous
health cost but also for supporting decisions that help society
and individuals to flourish out of the shackles of uncertainty.

Acknowledgements
The first author, Loı̈s Vanhée, acknowledges the support of
the Knut and Alice Wallenberg Foundation (project num-
ber 570080103), and of the project “GEDAI: Growing Eth-
ical Designers of Artificial Intelligence” at Umeå Univer-
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Ethical Impact
AA-MDPs allow generating plans that balance effectiveness
and exposition to outcome uncertainty for plan users. While
the stage of research is too early to anticipate all conse-
quences, AA-MDPs reasonably tie to humans as a system
for generating 1) anxiety-sensitive plans to human users; 2)
plans for an artefact that avoids anxiety “for itself”, notably
suiting 2.a) mimicking human-like intelligence, e.g. virtual

characters for the game, social simulations; and 2.b) systems
being observed by a user who can experience anxiety by
proxy (e.g. if user’s utility is tied to the artefact performance,
like for a trading agent). For all these applications, the user
can be reasonably expected to retain the freedom not use the
system, or else specific ethical inquiry is required.

The HLEG guidelines (on AI 2019) bring forward four
core ethical principles to be strived towards: respect for hu-
man autonomy, prevention of harm, fairness and explicabil-
ity and prescribes designers to find compromises that best
cover these four principles. AA-MDPs have a very clear pos-
itive valence regarding human autonomy and prevention of
harm as they reduce the risk of anxiety-induced ailments
that damage both health and autonomy. AA-MDPs have a
neutral to positive valence regarding fairness in that anx-
iety supports subgroups most exposed to anxiety and un-
certainty and groups that are usually discriminated against
(gender, age, disability). However, AA-MDPs fundamen-
tally offering alternative tradeoffs, require a scrutiny of the
fairness provided by the new tradeoff: one’s preference for
less anxiety can cause someone else’s loss (e.g. more ac-
curate buses schedules can incur greater costs). AA-MDPs
have a positive valence regarding explainability as they are
built upon the same explicit models as used in planning ex-
panded with explicit markers of anxiety measurement, al-
lowing for straightforward high-level explanations.

Besides a generally positive valence, prospective risk ar-
eas are to be considered as to anticipate possible harm. First,
a major reduction to the exposure to anxiety may lead to un-
expected psychological impact in the long run (e.g. reduced
general ability to cope with anxiety), thus calling for dedi-
cated psychology and sociology studies in case of a large-
scale prolonged uptake of the technology. Second, inten-
tional misuses of AA-MDPs may lead to lead to causing
greater anxiety as they can be used for building social simu-
lations that seek to optimize anxiety-inducing activities (e.g.
terrorism), though the benefit with regard to existing simu-
lation tools remains open to debate. An accidental misuse of
AA-MDPs is likely to be detected early as it would lead to
the generation of clearly suboptimal plans.
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Bäuerle, N.; and Rieder, U. 2013. More risk-sensitive
Markov decision processes. Mathematics of Operations Re-
search, 39(1): 105–120.
Beck, A. T.; and Clark, D. A. 1997. An information process-
ing model of anxiety: Automatic and strategic processes. Be-
haviour research and therapy, 35(1): 49–58.
Belik, S.-L.; Sareen, J.; and Stein, M. B. 2009. Anxiety
disorders and physical comorbidity. In Oxford handbook of
anxiety and related disorders.
Bellman, R. 1956. Dynamic Programming and the Smooth-
ing Problem. Management Science, 3(1): 111–113.
Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein, S.
2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research,
27(4): 819–840.
Bisi, L.; Sabbioni, L.; Vittori, E.; Papini, M.; and Restelli,
M. 2020. Risk-averse trust region optimization for reward-
volatility reduction. Proceedings of the International Joint
Conference on Artificial Intelligence.
Brandes, M.; and Bienvenu, O. J. 2006. Personality and anx-
iety disorders. Current psychiatry reports, 8(4): 263–269.
Briscese, G.; Lacetera, N.; Macis, M.; and Tonin, M. 2020.
Compliance with covid-19 social-distancing measures in
italy: the role of expectations and duration. Technical re-
port, National Bureau of Economic Research.
Capobianco, R.; Kompella, V.; Ault, J.; Sharon, G.; Jong,
S.; Fox, S.; Meyers, L.; Wurman, P. R.; and Stone, P. 2021.
Agent-based markov modeling for improved COVID-19
mitigation policies. Journal of Artificial Intelligence Re-
search, 71: 953–992.
Carleton, R. N. 2016. Into the unknown: A review and syn-
thesis of contemporary models involving uncertainty. Jour-
nal of anxiety disorders, 39: 30–43.
Carrel, A.; and Walker, J. L. 2017. Understanding future
mode choice intentions of transit riders as a function of past
experiences with travel quality. European Journal of Trans-
port and Infrastructure Research, 17(3).
Castelfranchi, C.; and Tan, Y.-H. 2001. Trust and deception
in virtual societies. Springer.

Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? legibility? pre-
dictability? transparency? privacy? security? The emerging
landscape of interpretable agent behavior. In International
conference on automated planning and scheduling.
Cheng, Y.-H. 2010. Exploring passenger anxiety associated
with train travel. Transportation, 37(6): 875–896.
Chow, Y.; Tamar, A.; Mannor, S.; and Pavone, M. 2015.
Risk-sensitive and robust decision-making: a cvar optimiza-
tion approach. In Advances in Neural Information Process-
ing Systems, 1522–1530.
Cowie, R.; Douglas-Cowie, E.; Tsapatsoulis, N.; Votsis, G.;
Kollias, S.; Fellenz, W.; and Taylor, J. G. 2001. Emotion
recognition in human-computer interaction. IEEE Signal
processing magazine, 18(1): 32–80.
Dugas, M. J.; Gagnon, F.; Ladouceur, R.; and Freeston,
M. H. 1998. Generalized anxiety disorder: A preliminary
test of a conceptual model. Behaviour research and ther-
apy, 36(2): 215–226.
Ehlers, A.; and Clark, D. M. 2000. A cognitive model of
posttraumatic stress disorder. Behaviour research and ther-
apy, 38(4): 319–345.
Everitt, B. S.; and Hand, D. J. 1981. Mixtures of discrete
distributions. In Finite Mixture Distributions, 89–105. Dor-
drecht: Springer Netherlands.
Facco, E.; Zanette, G.; Favero, L.; Bacci, C.; Sivolella, S.;
Cavallin, F.; and Manani, G. 2011. Toward the validation
of visual analogue scale for anxiety. Anesthesia progress,
58(1): 8–13.
Firth, J.; Siddiqi, N.; Koyanagi, A.; Siskind, D.; Rosenbaum,
S.; Galletly, C.; Allan, S.; Caneo, C.; Carney, R.; Carvalho,
A. F.; and Others. 2019. The Lancet Psychiatry Commis-
sion: a blueprint for protecting physical health in people with
mental illness. The Lancet Psychiatry, 6(8): 675–712.
Franzoni, V.; Milani, A.; and Vallverdú, J. 2017. Emotional
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