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Abstract

In humans, perceptual awareness facilitates the fast recogni-
tion and extraction of information from sensory input. This
awareness largely depends on how the human agent interacts
with the environment. In this work, we propose active neural
generative coding, a computational framework for learning
action-driven generative models without backpropagation of
errors (backprop) in dynamic environments. Specifically, we
develop an intelligent agent that operates even with sparse re-
wards, drawing inspiration from the cognitive theory of plan-
ning as inference. We demonstrate on several simple control
problems that our framework performs competitively with
deep Q-learning. The robust performance of our agent offers
promising evidence that a backprop-free approach for neural
inference and learning can drive goal-directed behavior.

Introduction
Manipulating one’s environment in the effort to understand
it is an essential ingredient of learning in humans (Spiel-
berger and Starr 1994; Berlyne 1966). In cognitive neuro-
science, behavioral and neurobiological evidence indicates a
distinction between goal-directed and habitual action selec-
tion in reward-based decision-making. With respect to ha-
bitual action selection, or actions taken based on situation-
response associations, ample evidence exists to support the
temporal-difference (TD) account from reinforcement learn-
ing. In this account, the neurotransmitter dopamine creates
an error signal based on reward prediction to drive (state) up-
dates in the corpus striatum, a particular neuronal region in
the basal ganglia that affects an agent’s choice of action. In
contrast, goal-directed action requires prospective planning
where actions are taken based on predictions of their future
potential outcomes (Niv 2009; Solway and Botvinick 2012).
Planning-as-inference (PAI) (Botvinick and Toussaint 2012)
attempts to account for goal-directed behavior by casting it
as a problem of probabilistic inference where an agent ma-
nipulates an internal model that estimates the probability of
potential action-outcome-reward sequences.

One important, emerging theoretical framework for PAI is
that of active inference (Friston, Mattout, and Kilner 2011;
Tschantz, Seth, and Buckley 2020), which posits that bio-
logical agents learn a probabilistic generative model by in-
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teracting with their world, adjusting the internal states of this
model to account for the evidence that they acquire from
their environment. This scheme unifies perception, action,
and learning in adaptive systems by framing them as pro-
cesses that result from approximate Bayesian inference, ele-
gantly tackling the exploration-exploitation trade-off inher-
ent to organism survival. The emergence of this framework
is timely – in reinforcement learning (RL) research, despite
the recent successes afforded by artificial neural networks
(ANNs) (Mnih et al. 2013; Silver et al. 2018), most models
require exorbitant quantities of data to train well, struggling
to learn tasks as efficiently as humans and animals (Arulku-
maran et al. 2017). As a result, a key challenge is how to
design RL methods that successfully resolve environmental
uncertainty and complexity given limited resources and data.
Model-based RL, explored in statistical learning research
through world (Ha and Schmidhuber 2018) or dynamics
models (Sutton 1990), offers a promising means of tack-
ling this challenge and active inference provides a promising
path towards instantiating it in a powerful yet neurocogni-
tively meaningful way (Tschantz et al. 2020b).

Although PAI and active inference offer an excellent story
for biological system behavior and a promising model-based
RL setup, most computational implementations are formu-
lated with explainability in mind (favoring meaningfully la-
beled albeit low-dimensional, discrete state/action spaces)
yet in the form of complex probabilistic graphical models
that do not scale easily (Friston et al. 2015, 2017a,b, 2018).
In response, effort has been made to scale active inference by
using deep ANNs (Ueltzhöffer 2018; Tschantz et al. 2020a)
trained by the popular backpropagation of errors (backprop)
(Rumelhart, Hinton, and Williams 1986). While ANNs rep-
resent a powerful step in the right direction, one common
criticism of using them within the normative framework
of RL is that they have little biological relevance despite
their conceptual value (Lake et al. 2017; Zador 2019). Im-
portantly, from a practical point-of-view, they also suffer
from practical issues related to their backprop-centric de-
sign (Ororbia and Mali 2019). This raises the question: can a
biologically-motivated alternative to backprop-based ANNs
also facilitate reinforcement learning through active infer-
ence in a scalable way? In this paper, motivated by the fact
that animals and humans solve the RL problem, we develop
one alternative that positively answers this question. As a re-
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Figure 1: An ANGC agent predicts the world, acts to manip-
ulate it, and then corrects itself given observations/rewards.

sult, the neural agent we propose represents a promising step
forward towards better modeling the approximations that bi-
ological neural circuitry implements when facing real-world
resource constraints and limitations, creating the potential
for developing new theoretical insights. Such insights will
allow us to design agents better capable of dealing with con-
tinuous, noisy sensory patterns (Niv 2009).

While many backprop-alternative (backprop-free) al-
gorithms have recently been proposed (Movellan 1991;
O’Reilly 1996; Lee et al. 2015; Lillicrap et al. 2016; Scellier
and Bengio 2017; Guerguiev, Lillicrap, and Richards 2017;
Whittington and Bogacz 2017; Ororbia and Mali 2019), few
have been investigated outside the context of supervised
learning, with some notable exceptions in sequence (Wise-
man et al. 2017; Ororbia et al. 2020a; Manchev and Spratling
2020) and generative modeling (Ororbia and Kifer 2020). In
the realm of RL, aside from neuro-evolutionary approaches
(Such et al. 2017; Heidrich-Meisner and Igel 2009) or meth-
ods that build on top of them (Najarro and Risi 2020), the
dearth of work is more prescient and our intent is to close
this gap by providing a backprop-free approach to inference
and learning, which we call active neural generative cod-
ing (ANGC), to drive goal-oriented agents. In our system,
we demonstrate how a scalable, biologically-plausible infer-
ence and learning process, grounded in the theory of pre-
dictive processing (Friston 2005; Clark 2015), can lead to
adaptive, self-motivated behavior in the effort to balance the
exploration-exploitation trade-off in RL. One key element
to consider is that ANGC offers robustness in settings with
sparse rewards which other backprop-free methods such as
neuroevolution (Such et al. 2017; Heidrich-Meisner and Igel
2009) struggle with.1 To evaluate ANGC’s efficacy, we im-
plement an agent structure tasked with solving control prob-
lems often experimented with in RL and compare perfor-
mance against several backprop-based approaches.

Active Neural Generative Coding
To specify our proposed ANGC agent, the high-level intu-
ition of which is illustrated in Figure 1, we start by defining
of the fundamental building block used to construct it, i.e.,

1It is difficult to determine a strong encoding scheme as well as
an effective breeding strategy for the underlying genetic algorithm.
Such design choices play a large role in the success of the approach.

the neural generative coding circuit. Specifically, we exam-
ine its neural dynamics (for figuring out hidden layer values
given inputs and outputs) and its synaptic weight updates.

The Neural Generative Coding Circuit
Neural generative coding (NGC) is a recently developed
framework (Ororbia and Kifer 2020) that generalizes clas-
sical ideas in predictive processing (Rao and Ballard 1999;
Clark 2015) to the construction of scalable neural models
that model and predict both static and temporal patterns
(Ororbia et al. 2020a; Ororbia and Kifer 2020). An NGC
model is composed of L + 1 layers of stateful neurons
N0,N1, · · · ,NL that are engaged in a process of never-
ending guess-then-correct, where N` contains J` neurons
(each neuron has a latent state value represented by a scalar).
The combined latent state of the neurons in N` is repre-
sented by the vector z` ∈ RJ`×1 (initially z` = 0 in the
presence of a new data pattern). Generally, an NGC model’s
bottom-most layer N0 is clamped to a sensory pattern ex-
tracted from the environment. However, in this work, we de-
sign a model that clamps both its top-most layer NL and
bottom-most layer N0 to particular sensory variables, i.e.,
zL = xi and z0 = xo, allowing the agent to process streams
of data (xi,xo) where xi ∈ RJL×1 and xo ∈ RJ0×1.

Specifically, in an NGC model, layer N`+1 attempts to
guess the current post-activity values of layer N`, i.e.,
φ`(z`), by generating a prediction vector z̄` using a ma-
trix of forward synaptic weights W`+1 ∈ RJ`×J`+1 . The
prediction vector is then compared against the target ac-
tivity by a corresponding set of error neurons e` which
simply perform a direct mismatch calculation as follows:
e` = 1

βe
(φ`(z`)− z̄`).2 This error signal is finally transmit-

ted back to the layer that made the prediction z̄` through a
complementary matrix of error synapses E`+1 ∈ RJ`+1×J` .
Given the description above, the set of equations that charac-
terize the NGC neural circuit and its key computations are:

z̄` = g`

(
W`+1 · φ`+1(z`+1)

)
, e` =

1

2βe
(φ`(z`)− z̄`)

(1)

z`+1 ← z`+1 + β
( leak︷ ︸︸ ︷
−γvz`+1 +

pressure︷︸︸︷
d`+1 +

lateral term︷ ︸︸ ︷
ϑ(z`+1))

)
(2)

where d`+1 = −e`+1 + (E`+1 · e`)

where · indicates matrix/vector multiplication and φ`+1 and
g` are element-wise activation functions, e.g., the hyperbolic
tangent tanh(v) = (exp(2v)− 1)/(exp(2v) + 1) or the lin-
ear rectifier φ`(v) = max(0, v). In this paper, we set g` as
the identity, i.e., g`(v) = v, for all layers. In Equation 2, the
coefficient that weights the correction applied to state layer
`+1 is determined by the formula β = 1

τ where τ is the inte-
gration time constant in the order of milliseconds. The leak
variable−γvz` decays the state value over time (γv is a posi-
tive coefficient to control its strength). ϑ(z`) is lateral excita-

2One may replace 1
2βe

with Σ−1, i.e., a learnable matrix that
applies precision-weighting to the error units, as in (Ororbia and
Kifer 2020). We defer using this scheme for future work.
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Figure 2: The NGC circuit (left) and the high-level ANGC architecture, with both a controller and generator, (right). Green
diamonds represent error neurons, empty rectangles represent state neurons, solid arrows represent individual synapses, dashed
arrows represent direct copying of information, open circles indicate excitatory signals, and filled squares indicate inhibitory
signals. Note that tt, which is enclosed in a rounded blue box, entails a more intricate calculation (see Equation 6).

tion/inhibition term, which is a function that creates compe-
tition patterns among the neurons inside of layer N` (Oror-
bia and Kifer 2020) – in this paper we set ϑ(z`) = 0 since its
effect is not needed for this study. Upon encountering data
(xi,xo), the model’s top and bottom layers are clamped, i.e.,
zL = xi and z0 = xo, and Equations 1-2 are run K times
in order to search for activity values {z1, · · · , zL−1} (see
INFER in the pseudocode provided in the Appendix3).

After the internal activities have been found, the synap-
tic weights may be adjusted using a modulated local error
Hebbian rule adapted from local representation alignment
(LRA) (Ororbia and Mali 2019; Ororbia et al. 2020b):

∆W` = e` · (φ`(z`+1))T ⊗M`
W (3)

∆E` = γe(W
`
t −W`

t−1)⊗M`
E (4)

where γe controls the time-scale at which the error synapses
are adjusted (usually values in the range of [0.9, 1.0] are
used). The dynamic modulation factors M`

W and M`
E help

to stabilize learning in the face of non-stationary streams and
are based on insights related to nonlinear synaptic dynamics
(see Appendix for a full treatment of these factors). Once
the weight adjustments have been computed, an update rule
such as stochastic gradient ascent, Adam (Kingma and Ba
2014), or RMSprop (Tieleman and Hinton 2012) can be used
(see UPDATEWEIGHTS in Algorithm CC, Appendix).

The online objective that an NGC model attempts to min-
imize is known as total discrepancy (TotD) (Ororbia et al.
2017), from which the error neuron, state update expres-
sions, and local synaptic adjustments may be derived (Oror-
bia et al. 2020b; Ororbia and Kifer 2020). The (TotD) objec-
tive, which could also be interpreted as a form of free energy
(Friston 2009) specialized for stateful neural models that uti-
lize arbitrary forward and error synaptic pathways (Ororbia
et al. 2020b), can be expressed in many forms including the
linear combination of local density functions (Ororbia and
Kifer 2020) or the summation of distance functions (Oror-

3Appendix at: https://arxiv.org/abs/2107.07046.

bia et al. 2020a). For this study, the form of TotD used is:

L(Θ) =
L−1∑
`=0

L(z`, z̄`) =
L−1∑
`=0

1

βe
||φ`(z`)− z̄`||22.

Algorithm CC (see Appendix), puts all of the equations
and relevant details presented so far together to describe how
NGC processes (xi,xo) from a data stream. We note here
that the algorithm breaks down the processing into three rou-
tines – INFER(◦), UPDATEWEIGHTS(◦), and PROJECT(◦).
INFER(◦) is simply the K-step process described earlier
to find reasonable values of the latent state activities given
clamped data and UPDATEWEIGHTS(◦) is the complemen-
tary procedure used to adjust the synaptic weight parameters
once state activities have been found after using INFER(◦).
PROJECT(◦) is a special function that specifically clamps
data xi to the top-most layer and projects this information
directly through the underlying directed graph defined by the
NGC architecture – this routine is essentially a variant of the
ancestral sampling procedure defined in (Ororbia and Kifer
2020) but accepts a clamped input pattern instead of samples
drawn from a prior distribution. Figure 2 (left) graphically
depicts a three layer NGC model with 2 neurons per layer.

Generalizing to Active Neural Coding
Given the definition of the NGC block, we turn our atten-
tion to its generalization that incorporates actions, i.e., active
NGC (ANGC). ANGC is built on the premise that an agent
adapts to its environment by balancing a trade-off between
(at least) two key quantities – surprisal and preference. This
means that our agent is constantly tracking a measurement of
how surprising the observations it encounters are at a given
time step (which drives exploration) as well as a measure-
ment of its progress towards a goal. In effect, maximizing
the sum of these two terms means that the agent will seek
observations that are most “suprising” (which yield the most
information when attempting to reduce uncertainty) while
attempting to reduce its distance to a goal state (which max-
imizes the discounted long-term future reward). Formally,
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this means that an ANGC agent will maximize:

rt = αer
e
t + αir

i
t = rept + rint (5)

which is a reward signal that can be decomposed into an
epistemic (or exploration/information maximizing) signal
rept and an instrumental (or goal-oriented) signal rint . Each
component signal is a product of an importance factor, αe
for the epistemic term andαi for the instrumental term, and a
raw internal signal produced either by the generative model
(ret to drive rept ) or an external goal-directing signal (rit to
drive rint ). Although we chose to interpret and represent the
active inference view of the exploration-exploitation trade-
off as (dopamine) scalars, our instrumental signal is not lim-
ited to this scheme and could incorporate an encoding of
more complex functions such as (prior) distribution func-
tions over (goal) states (see Appendix).

As indicated by the architecture diagram in Figure 2
(right), the implementation of our ANGC agent in this pa-
per is a coupling of two NGC circuits – the generator (or
dynamic generative model), which is responsible for pro-
ducing the epistemic term rept , and the controller, which is
responsible for choosing the actions such that the full reward
rt, which includes the instrumental term rint , is maximized.

The NGC Generator (Forward Model) Once the gen-
erator’s top-most latent state is clamped to the current D-
dimensional observation ot ∈ RD×1 and the 1-of-A en-
coding of the controller’s currently chosen action at (out
of A possible actions), i.e., at ∈ {0, 1}A×1, the generator
attempts to predict the value of the next observation of the
environment ot+1. Using the routine INFER (Algorithm CC,
Appendix), the generator, with parameters Θg , searches for a
good set of latent state activities to explain output xo = ot+1

given input xi = [at,ot+1] where [·, ·] indicates the vector
concatenation of ot and at. Once latent activities have been
found, the generator then updates its synapses via routine
UPDATEWEIGHTS (Algorithm CC, Appendix).

The generator plays a key role in that it drives the ex-
ploration conducted by an ANGC agent. Specifically, as the
generator progressively learns to how to synthesize future
observations, the current activities of its error neurons em-
bedded at each layer, i.e., E = {e0, e1, · · · , eL}, are used to
produce an epistemic modulation term. Formally, this means
that the exploration signal is calculated as ret =

∑
` ||e`||22

which is the result of summing across layers and across each
error neuron vector’s respective dimensions.4 The epistemic
term rept = αer

e
t is then combined with an instrumental term

rint = αir
i
t, i.e., the scalar signal produced externally (by the

environment or another neural system), to guide the agent
towards a goal state(s), via Equation 5. The final rt is then
subsequently used to adapt the controller (described next).

The NGC Controller (Policy Model) With its top-most
latent state clamped to the tth observation, i.e., xi = ot, the
controller, with parameters Θc, will generate a prediction of
the full reward signal rt. Specifically, at time t, given a target
scalar (produced by the environment and the generator), the

4Observe that ret is the generator’s TotD, i.e., ret = L(Θg).

controller will also infer a suitable set of latent activities us-
ing the INFER routine defined in Algorithm CC (Appendix).

Since the NGC controller’s output layer will estimate a
potential reward signal for each possible discrete action that
the agent could take (which is typical in many modern Q-
learning setups), we must first compose the target activity
tt for the output nodes once the scalar value rt is obtained.
This is done by first encoding the action as a 1-of-A vector
at (this is what done by the TOONEHOT function call in Al-
gorithm 1), computing the boot-strap estimate of the future
discounted reward dt+1 = PROJECT(ot+1,Θc), and finally
checking if the next observation is a terminal. Specifically,
the target vector is computed according to the following:

tt = ttat + (1− at)⊗ PROJECT(ot,Θc) (6)
where the target scalar tt is created according to the follow-
ing logical expression:
(ot is terminal→ tt = rt) ∧ (ot is not terminal→ t′t) (7)

where t′t = rt + γmax
a

PROJECT(ot+1,Θc)).

Once tt has been prepared, the controller is run to find its
latent activities for ot and tt using INFER and calculates
its local weight updates via the UPDATEWEIGHTS routine
(Algorithm CC, Appendix). Furthermore, observe that the
second sub-expression in Equation 7 involves re-using the
controller to estimate the (reward) value of the future obser-
vation, i.e., γmaxa PROJECT(ot+1,Θc) term. This term can
be replaced with a proxy term γmaxa PROJECT(ot+1, Θ̂c)
to implement the target network stability mechanism pro-
posed in (Mnih et al. 2015), where Θ̂c are the parameters of
a “target controller”, initialized to be the values of Θc at the
start of the simulation and updated every C transitions or by
Polyak averaging Θ̂c = τcΘc + (1− τc)Θ̂c.

The ANGC Agent: Putting It All Together At a high
level, the ANGC operates, given observation ot, according
to the following steps: 1) the NGC controller takes in ot and
uses it to produce a discrete action, 2) the ANGC agent next
receives observation ot+1 from the environment, i.e., the re-
sult of its action, 3) the NGC generator runs the dynamics in
Equations 1-2 to find a set of hidden neural activity values
that allow a mapping from [a,ot] to ot+1 and then updates
its own specific synapses using Equations 3-4, 4) the reward
rt is computed using the extrinsic/problem-specific reward
plus the epistemic signal (produced by summing the layer-
wise errors inside the generator, i.e., total discrepancy), 5)
the NGC controller then runs the dynamics in Equations 1-
2 to find a set of hidden neural activity values that allow a
mapping from ot to tt (which contains rt) and then updates
its synapses via Equations 3-4, and, finally, 6) the ANGC
agent transitions to ot+1 and moves back to step 1.

The above step-by-step process shows that the NGC gen-
erator (forward model) drives information-seeking behavior
(facilitating exploration better than that of random epsilon-
greedy), allowing the ANGC agent to evaluate if an incom-
ing state will allow for a significant reduction in uncertainty
about the environment. The NGC controller (policy) is re-
sponsible for estimating future discounted rewards, balanc-
ing the seeking of a goal state (since the instrumental term
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Algorithm 1: The ANGC total discrepancy process under an environment for E episodes (of maximum length T ).

Input: environment S, controller Θc, generator Θg , deque memoryM, and constants E, T , αe, αi, εdecay , ε, γ
function SIMULATEPROCESS(S, E, T,Θc,Θg,M, αe, αi, ε, εdecay)

remax = 1
for e = 1 to E do

ot ← o0 from S . Get initial state/observation from environment
for t = 1 to T do

// Sample action at according to an ε-greedy policy
dt = PROJECT(ot,Θc), p ∼ U(0, 1)(
p < ε→ at ∼ Ud(1, A)

)
∧
(
p ≥ ε→ at = arg maxa dt

)
, at = TOONEHOT(at)

// Get next state/observation from environment & compute component reward signals
(rit,ot+1)← S(at), (Λ, E) = INFER([at,ot],ot+1,Θg)

ret =
∑
` ||E [`]||22, remax = max(ret , r

e
max), ret ←

ret
remax

, rt = αer
e
t + αir

i
t

// Store transition and update weights from samples in memory
Store (ot, at, rt,ot+1) inM
(oj , aj , rj ,oj+1) ∼M . Sample mini-batch of transitions from memory

tj =

{
rj if oj is terminal
rj + γmaxa PROJECT(oj+1,Θc) otherwise

aj = TOONEHOT(aj), tj = tjaj + (1− aj)⊗ PROJECT(oj ,Θc)
(Λc, Ec) = INFER(oj , tj ,Θc), Θc ← UPDATEWEIGHTS(Λc, Ec,Θc) . Update controller Θc

(Λg, Eg) = INFER([aj ,oj ],oj+1,Θg), Θg ← UPDATEWEIGHTS(Λg, Eg,Θg) . Update generator Θg

ε← max(0.05, ε · εdecay)

represents the “desire” to solve the problem) with the search
for states that will give it the most information about its envi-
ronment. The controller keeps the agent focused on finding a
goal state(s) and reinforcing discovered sequences of actions
that lead to these goal states (exploitation) while the genera-
tor forces the agent to parsimoniously explore its world and
seek elements that it knows least about but will likely help
in finding goal states – this reduces the number of episodes
and/or sampled states needed to uncover useful policies.

Given that ANGC is inspired by active inference (Fris-
ton, Mattout, and Kilner 2011), the intuition behind our ap-
proach is that an agent reduces the divergence between its
model of the world and the actual world by either: 1) chang-
ing its internal model (the generator) so that it better aligns
with sampled observations (which is why it seeks states with
high epistemic/total discrepancy values), or 2) changing its
observations such that they align with its internal model
through action, i.e., this is done through the controller track-
ing its problem-specific performance either through extrin-
sic reward values or other functions, i.e., prior preferences
(Tschantz, Seth, and Buckley 2020). The ANGC agent’s bal-
ancing act between finding goal states with better exploring
its environment strongly relates to the rise of computational
curiosity in the RL literature (Pathak et al. 2017) – since we
focus on using problem-specific rewards (instead of craft-
ing prior preference distributions as in (Friston, Daunizeau,
and Kiebel 2009; Tschantz, Seth, and Buckley 2020)) our
agent’s instrumental term (in Equation 5) is akin to extrinsic
reward and our epistemic term is similar in spirit to intrinsic
“curiosity” (Oudeyer 2018; Burda et al. 2018a) (error-based
curiosity). Although our curiosity term is the total discrep-
ancy of the NGC generator, this term connects ANGC to the

curiosity-based mechanisms and exploration bonuses (Wu
and Tian 2016) used to facilitate efficient extraction of ro-
bust goal-state seeking policies. Furthermore, the generator
component of the ANGC agent connects our work with the
recently growing interest in model-based RL where world
models are integrated into the agent-environment interac-
tion process, e.g., plan2explore (Sekar et al. 2020), dreamer
(Hafner et al. 2019), etc. In a sense, one could view our
ANGC as a simple, neurobiologically-plausible instantia-
tion of these kinds of model-based RL approaches, offering
a means to train similar systems without backprop. Many
other bio-inspired algorithms, such as equilibrium propa-
gation (Scellier and Bengio 2017), do not scale easily to
RL problems due to expensive inference phases (whereas
NGC’s inference is faster – see Appendix for details).

In essence, the proposed ANGC framework prescribes the
joint interaction of the controller and generator modules de-
scribed above. At each time step, the agent, given observa-
tion ot ∈ RD×1 (which could contain continuous or dis-
crete variables), is to perform a discrete action at5 and re-
ceive from its environment the result of its action, i.e., ob-
servation ot+1 and possibly an external reward signal rept .
The controller is responsible for deciding which action to
take next while the generator actively attempts to guess the
(next) state of the agent’s environment. Upon taking an ac-
tion at, the generator’s prediction is corrected using the val-
ues within the sensory sample drawn from the environment,
allowing it to iteratively craft a compressed internal impres-
sion of the agent’s world. The inability of the generator to

5We focus on discrete actions in this study and leave general-
ization to continuous actions for future work.
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accurately predict the incoming sensory sample ot+1 pro-
vides the agent with a strong guide to its exploration of the
environment, reducing its (long-term) surprisal and improv-
ing the controller’s ability to extract an effective policy/plan.

The complete ANGC agent is specified in Algorithm 16

and depicted in Figure 2 (right). Note that Algorithm 1
implements the full simulation of ANGC’s inference and
synaptic adjustment over an E-episode long stream (each
episode is at most T steps long – where T could vary with
time). In addition to the target controller modification de-
scribed earlier, we integrate experience replay memory M
(O’Neill et al. 2010; Mnih et al. 2015) (implemented as a
ring buffer with mini-batches sampled, uniformly at random,
from stored transitions). This stabilizes the learning process
by removing correlations in the observation sequence.

Experiments
The performance of the ANGC agent is evaluated on three
control problems commonly used in reinforcement learning
(RL) and one simulation in robotic control. Specifically, we
compare ANGC to a random agent (where actions are taken
at each step uniformly at random), a deep Q-network (DQN)
(Mnih et al. 2015), the intrinsic curiosity module (ICM)
(Pathak et al. 2017), and another powerful intrinsic curios-
ity baseline known as random network distillation (RnD)
(Burda et al. 2018b) on: 1) the inverted pendulum (cartpole)
problem, 2) the mountain car problem 3) the lunar lander
problem, and 4) the robot reaching problem. Details related
to each control problem are provided in the Appendix.

ANGC Agent Setup: For all of the ANGC agents across
all trials, we used fixed configurations of meta-parameters
for each control task. We provide the key values cho-
sen (based on preliminary experimentation) for the meta-
parameters for all ANGC models in the Appendix.

For all ANGC agents, αe = αi = 1.0 was used as the im-
portance factors for both the epistemic and instrumental sig-
nals. Both the controller and generative model were trained
using a single, shared experience replay buffer with a maxi-
mum capacity ofNmem transitions from which mini-batches
of Nbatch transitions were sampled in order to compute pa-
rameter updates at any single time-step of each simulation.
Each agent also uses an epsilon(ε)-greedy policy where ε
was decayed at the end of each episode according to the rule:
ε← min(0.05, ε ∗ εdecay) (starting ε = 1 at a trial’s start).

In addition, we experiment with an ablated form of our
ANGC agent, i.e., Instr-ANGC, where the generator/for-
ward model has been removed. This means that the Instr-
ANGC only uses the extrinsic reward signal, allowing for a
closer examination of what happens if the normal backprop-
based neural model was just replaced with our NGC circuit.

Baseline Agent Setups: For the DQN, ICM, and RnD
agents, we initially start with 90% exploration and 10% ex-
ploitation (ε = 0.9 ) and eventually begin decaying until the
condition of 10% exploration is reached, i.e., 90% exploita-
tion (ε = 0.1). The discount factor was tuned in the range of

6E [`] means “retrieve the `th item in E ′′.

γ = [0.91, 0.99]. The linear rectifier was used as the activa-
tion function and Adam was used to update weight values,
except for ICM, where AdamW was found to yield more sta-
ble updates. For all models, each W ` was initialized accord-
ing to a centered Gaussian scaled by

√
2.0/(J`−1 + J`).

The replay buffer size, the learning rate, the hidden dimen-
sions, and number of layers were tuned – hidden layer sizes
were selected from the range of [32, 512] and the number of
layers was chosen from the set [1, 2, 3]. In the Appendix, we
provide best configurations used for each model.

Results: In Figures 3 and 4, we visualize the accumulated
reward as a function of the episode count (over the first 1000
episodes, see Appendix for expanded results), smoothing out
the curves by plotting the moving average reward as a func-
tion of the episode count, i.e., µt = 0.1rt + 0.9µt−1 . Re-
sults are averaged over 10 trials and the plots present both
the mean (darker color central curve) and standard deviation
(lighter color envelope). In each plot, a dash-dotted horizon-
tal line depicts the threshold for fully solving each task.

It is immediately apparent from our reward plots, across
all four benchmarks, that the ANGC agent is notably com-
petitive with backprop-based, intrinsic curiosity models
(ICM, RnD), extracting a better policy than models that
do not incorporate intelligent exploration (the DQN). This
highlights the value of our ANGC framework for design-
ing agents – for each of the benchmarks we investigate,
fewer episodes are required by ANGC agents to generalize
well and even ultimately solve a given control problem (as
indicated by their ability to reach each problem’s solution
threshold). Furthermore, ANGC offers stable performance
in general, where models like the RnD sometimes do not
(as on the mountain car problem), and is notably quite com-
petitive with ICM in general, even outperforming it on the
more complex robotic arm control task. We also note that the
DQN reaches its goal quickly in some cases but struggles to
maintain itself at the solution threshold, fluctuating around
that range (requiring more episodes to fully stabilize).

Crucially, observe that the ANGC agent is capable of
effectively tackling control problems involving extremely
sparse rewards (or nearly non-existent reward signals) as in-
dicated by its early strong performance on the mountain car
and robot reaching problems, which are arguably the hard-
est of the problems examined in this study. The ANGC’s
effectiveness on these problems is, we argue, largely due
to its own internally generated epistemic modulation factor
rept (this is empirically corroborated by the Instr-ANGC’s
worse performance than the full ANGC). In other words, the
ANGC agent explores states that surprise it most, meaning it
is most “curious” about states that yield the highest magni-
tude total discrepancy (or the greatest free energy). This fea-
ture presents a clean NGC implementation of the epistemic
term key to the active inference framework (Friston et al.
2017b) which, theoretically, is meant to encourage a more
principled, efficient form of environmental exploration. Fur-
thermore, this term, much akin to intrinsic curiosity models
(Pathak et al. 2017), would allow the agent to operate in set-
tings where even no external reward is available.

Note that the intent of this study was not to engage
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(a) Inverted pendulum. (b) Mountain car. (c) Lunar lander.

Figure 3: Reward curves for ANGC and baselines (DQN, ICM, RnD, and the ablated model Instr-ANGC). Mean and standard
deviation over 10 trials are plotted. Dash-dotted, horizontal (gray) lines depict the problem solution threshold.

Figure 4: The robot arm reaching problem results. Mean and standard deviation over 10 trials plotted.

in a performance contest given that there is a vast array
of problem-tuned, neural-based RL approaches that attain
state-of-the-art performance on many tasks. Instead, the in-
tent was to present a promising alternative to backprop-
based approaches and demonstrate that ANGC can acquire
good policies on control problems that DQN-based models
can. Since the results are promising and our framework has
proven to be compatible with commonly-used RL heuris-
tics such as experience replay and target network stability,
integrating other mechanisms would be a fruitful next step
to further improve performance. In the Appendix, we dis-
cuss the limitations of ANGC as well as its relationship with
free energy optimization, examine ANGC in the context of
related work in RL and planning as inference, and conduct
further analysis on the control problems presented above.

Conclusion

In this paper, we proposed active neural generative cod-
ing (ANGC), a framework for learning goal-directed agents
without backpropagation of errors (backprop). We demon-
strated, on four control problems, the effectiveness of our
approach for learning systems that are competitive with
backprop-based ones such as the deep Q-network and intrin-
sic curiosity variants. Notably, our framework demonstrates
the value of leveraging the neuro-biologically grounded
learning and inference mechanisms of neural generative
coding to dynamically adapt a generative model that pro-
vides epistemic signals to augment problem-specific extrin-
sic rewards. Furthermore, given its robustness, ANGC could
prove useful in more complex environments, e.g., the Atari
games, challenging robotics problems, offering an important
means of implementing longer-term planning-as-inference.
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