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Abstract

With the help of deep neural networks (DNNs), deep re-
inforcement learning (DRL) has achieved great success on
many complex tasks, from games to robotic control. Com-
pared to DNNs with partial brain-inspired structures and
functions, spiking neural networks (SNNs) consider more bi-
ological features, including spiking neurons with complex
dynamics and learning paradigms with biologically plausi-
ble plasticity principles. Inspired by the efficient computation
of cell assembly in the biological brain, whereby memory-
based coding is much more complex than readout, we pro-
pose a multiscale dynamic coding improved spiking actor
network (MDC-SAN) for reinforcement learning to achieve
effective decision-making. The population coding at the net-
work scale is integrated with the dynamic neurons coding
(containing 2nd-order neuronal dynamics) at the neuron scale
towards a powerful spatial-temporal state representation. Ex-
tensive experimental results show that our MDC-SAN per-
forms better than its counterpart deep actor network (based on
DNNs) on four continuous control tasks from OpenAI gym.
We think this is a significant attempt to improve SNNs from
the perspective of efficient coding towards effective decision-
making, just like that in biological networks.

Introduction
Reinforcement learning (RL) is staying at an increasingly
important position in the research area of machine learn-
ing (Kaelbling, Littman, and Moore 1996), where agents in-
teract with the environment in a trial-and-error manner and
learn an optimal policy by maximizing accumulated rewards
to reach excellent decision-making performance (Sutton and
Barto 2018). However, it is a general but challenging prob-
lem for all conventional RL algorithms to extract features
from complex state space efficiently. With deep neural net-
works (DNNs) as powerful function approximators, deep re-
inforcement learning (DRL) has resolved this problem to
some extent by directly learning a mapping from raw state
space to action space and has been well applied on various
applications, including recommendation systems (Zou et al.
2019; Warlop, Lazaric, and Mary 2018), games (Mnih et al.
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2015; Vinyals et al. 2019; Ruan et al. 2022), and robotic
control (Duan et al. 2016; Lillicrap et al. 2016), etc.

However, the powerful DRL is still far from efficient
reward-based learning in the biological brain, where spik-
ing neurons with more complex dynamics and learning
paradigms with biologically plausible plasticity principles
are integrated to generate complex cognitive functions. The
biological brain makes efficient computation possible by cell
assembly (Harris et al. 2003) which focuses more on spatial-
temporal coding for memory than readout for decision-
making. Compared to DNNs, SNNs have more significant
potential in simulating brain-inspired topology and func-
tions due to their complex dynamics. For instance, SNNs can
be seamlessly compatible with multiscale dynamic coding,
including network and neuron scales, towards a powerful
temporal information representation. The SNNs inherently
transmit and compute information with dynamic spikes dis-
tributed over time (Maass 1997). Further research on them
might help us open the black box of efficient information
coding of the brain (Painkras et al. 2013). Hence, we think
RL using SNNs may be better than using DNNs.

To this end, we propose a multiscale dynamic coding
improved spiking actor network (MDC-SAN) to simulate
the cell assembly in the biological brain, which contains a
complex spiking coding module for state representation but
a simple readout module for action inference. The coding
module combines population coding and dynamic neurons
(DNs) coding, making it more potent on state representation
at both network and neuron scales. Specifically, for a given
input state, we encode each dimension in individual neuron
populations with learnable receptive fields. Then the coded
analog information is directly delivered to the network as in-
put. Inside the network, we propose novel DNs to improve
SNNs for a better information representation during spatial-
temporal learning. The DNs contain 2nd-order dynamics of
membrane potentials supported by key dynamic parameters.
These parameters are self-learned from one of OpenAI gym
(Brockman et al. 2016) tasks (e.g., Ant-v3) first, and then ex-
tend to other similar tasks (e.g., HalfCheetah-v3, Walker2d-
v3, and Hopper-v3). After dynamic coding, we average the
accumulated spikes in a predefined time window to obtain
the average firing rate, further used to infer the output action
by a simple readout module.

For effective learning, the proposed MDC-SAN is trained
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in conjunction with deep critic networks using the Twin De-
layed Deep Deterministic policy gradient (TD3) algorithm
(Fujimoto, Hoof, and Meger 2018; Tang, Kumar, and Mich-
mizos 2020). We evaluate the trained MDC-SAN on four
standard OpenAI gym tasks (Brockman et al. 2016), includ-
ing Ant-v3, HalfCheetah-v3, Walker2d-v3, and Hopper-v3.
Experimental results demonstrate that multiscale dynamic
codings, including population coding and complex spatial-
temporal coding of DNs, are consistently beneficial to the
performance of the MDC-SAN. In addition, the proposed
MDC-SAN significantly outperforms its counterpart deep
actor network (DAN) on the above four tasks under the same
experimental configurations.

The main contributions of this paper can be summarized
as follows:

• We propose a MDC-SAN to simulate the cell assembly in
the biological brain for effective decision-making, which
contains a complicated coding module for state represen-
tation from network scale and neuron scale, and a simple
readout module for action inference.

• For the network scale, we apply population coding to in-
crease the representation capacity of the network, which
encodes each dimension of the input state in individual
neuron populations with learnable receptive fields. We
also have verified the advantages of population coding
and comprehensively compared the impact of various in-
put coding methods on performance.

• For the neuron scale, we construct novel DNs, which
contain 2nd-order neuronal dynamics for complex
spatial-temporal information coding. We also analyze
the membrane-potential dynamics of DNs and demon-
strate the performance advantage of DNs against stan-
dard leaky-integrate-and-fire (LIF) neurons.

• Under the same experimental configurations, our MDC-
SAN, which integrates population coding and DNs cod-
ing, achieves better performance than its counterpart
DAN in each task. To the best of our knowledge, our
work is the first to achieve state-of-the-art performance
on multiple continuous control tasks with SNNs.

Related Work
Integrating SNNs with RL Recently, the literature has
grown up around introducing SNNs into RL algorithms (Flo-
rian 2007; O’Brien and Srinivasa 2013; Yuan et al. 2019;
Doya 2000; Frémaux, Sprekeler, and Gerstner 2013). These
approaches are typically based on reward-modulated local
plasticity rules that perform well in simple control tasks but
commonly fail in complex robotic control tasks due to lim-
ited optimization capability.

To address the limitation, some approaches integrate
SNNs with DRL optimization. One of the approaches di-
rectly converts Deep Q-Networks (DQNs) (Mnih et al. 2015)
to SNNs and achieves competitive scores on Atari games
with discrete action space (Patel et al. 2019; Tan, Patel, and
Kozma 2021). However, these converted SNNs usually ex-
hibit inferior performance to DNNs with the same structure
(Rathi et al. 2019). Another approach is based on a hybrid

learning framework. It achieves success in the mapless nav-
igation task of a mobile robot, where the SAN is trained in
conjunction with deep critic networks using a DRL algo-
rithm (Tang, Kumar, and Michmizos 2020). We also want
to highlight this hybrid viewpoint during training and fur-
ther extend it with multiscale dynamic codings that have
played vital roles in the efficient information representation
of SNNs.

Information coding methods in SNNs There are two cat-
egories of the input coding scheme in SNNs, rate coding, and
temporal coding. Rate coding uses the firing rate of spike
trains in a time window to encode information, where input
real numbers are converted into spike trains with a frequency
proportional to the input value (Cheng et al. 2020a). Tempo-
ral coding encodes information with the relative timing of
individual spikes, where input values are usually converted
into spike trains with the precise time (Comsa et al. 2020;
Sboev et al. 2018). Besides that, population coding is special
in integrating these two types. For example, each neuron in
a population can generate spike trains with precise time and
also contain a relation with other neurons (e.g., Gaussian
receptive field) for better information encoding at a global
scale (Georgopoulos, Schwartz, and Kettner 1986).

For the neuron coding scheme in SNNs, there are various
types of spiking neurons (Tuckwell 1988). The integrate-
and-fire (IF) neuron is the simplest neuron type. It fires when
the membrane potential exceeds the firing threshold, and the
potential is then reset as a predefined resting membrane po-
tential (Rathi and Roy 2020). Another leaky integrate-and-
fire (LIF) neuron allows the membrane potential to keep
shrinking over time by introducing a leak factor (Gerstner
and Kistler 2002). They are commonly used as standard 1st-
order neurons. Moreover, the Izhikevich neuron with 2nd-
order equations of membrane potential is proposed, which
can better represent the complex neuron dynamics, but re-
quires some predefined hyper-parameters (Izhikevich 2003).

Methods
The overview of our MDC-SAN is presented in Figure
1, which contains an efficient coding module for spatial-
temporal state representation and a relatively simple readout
module for action inference. The MDC-SAN simulates the
cell assembly in the biological brain by incorporating both
population coding at the network scale and dynamic neu-
rons coding at the neuron scale. For the population coding,
each dimension of the input state is encoded with a group
of dynamic receptive fields first and then fed into the SAN.
For the dynamic neurons coding, the DNs inside of the SAN
contain 2nd-order dynamic membrane potentials with up to
two equilibrium points to describe complex neuronal dy-
namics. Finally, the average firing rate of the accumulated
spikes in a predefined time window is decoded into output
action with an additional group decoder.

Population Coding
For a input state s ∈ RN , it is encoded as an input It, t =
{1, 2, ..., T1} for each time step, where T1 is the time win-
dow of the SNNs.
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Figure 1: The overall architecture of proposed MDC-SAN.

Pure population coding Cpop We create a population of
neurons Pi to encode each dimension of state si, where each
neuron Pi,j in the population has a Gaussian receptive field
(µi,j , σi,j) with two learnable parameters of mean and stan-
dard deviation. The population coding Cpop is formulated
as:  APi,j = exp

−
(si−µi,j)

2

2σ2
i,j

AP =
[
AP1,1 , . . . , APi,j , . . . , APN,J

]
It = AP

, (1)

where i is index of the input state (i = 1, ..., N ), j is index
of neurons in a population (j = 1, ..., J ),AP is the stimula-
tion strength after population coding, used as network input
It directly.

There are other candidate input coding methods that com-
bine population coding and rate coding (including uniform
coding, Poisson coding, and deterministic coding). They
contain two phases (Tang et al. 2020): first the state s is
transformed into the stimulation strength AP by population
coding and then the computed AP is used to generate the
input It by rate coding. We formalize these methods as fol-
lows.

The population and uniform coding (Cpop+Cuni) We
generate random numbers Randk(t) from 0 to 1 evenly dis-
tributed, which has the same size as the input stimulation
strengthAP at every time step. Then we compare every gen-
erated random number with its corresponding input data. If
the generated random number is less than its input data, Ik,t
is set to 1. Otherwise, it is set to 0, formulated as:

Ik,t =

{
1, APk > Randk(t);

0, Otherwise.
, (2)

where k is the index of input stimulation strength (k =
1, ..., N ∗ J).

The population and Poisson coding (Cpop+Cpoi) Con-
sidering that the Poisson process can be considered as the

limit of a Bernoulli process, the input stimulation strength
AP containing probability can be used for drawing the bi-
nary random number. The Ik,t will draw a value 1 according
to the kth probability value APk given in AP , formulated
as:

P (Ik,t = 1) = Cr
RA

r
Pk

(1−APk)
R−r , (3)

The population and deterministic coding (Cpop+Cdet)
The input stimulation strength AP acts as the presynaptic
inputs to the postsynaptic neurons (Tang et al. 2020), for-
mulated as:

Vk,t = Vk,t−1 +APk (4)

Ik,t =

{
1 If(Vk,t > 1)
0 Else

, (5)

where Vk,t is reset as Vk,t − 1 when Ik,t = 1, Vk,t is pseudo
membrane voltage.

Dynamic Neurons
This section introduces the traditional 1st-order neurons
(e.g., LIF neurons) with a maximum of one equilibrium
point and then defines the improved 2nd-order DNs with up
to two equilibrium points. The procedure for constructing
DNs is also introduced in the following sections.

The traditional 1st-order neurons The traditional 1st-
order neurons in SNNs are the LIF neurons, which are the
simplest abstraction of the Hodgkin–Huxley model. To show
the essential equilibrium point characteristics of LIF neu-
rons, here we give a simple definition of LIF neurons as the
following description:

τ
dVi,t
dt

= −Vi,t + Int. (6)

where Vi,t is dynamic membrane potential for neuron i at
time t, Int is input represented as integrated post-synaptic
potential. The single equilibrium point can be calculated as
V ∗
i,t with input Int within period time of τ .

61



5

(a) (b)

(c) (d)

5

Figure 2: Dynamics of membrane potentials with different
equilibrium points.

.

The number of equilibrium points will be the key to dis-
tinguishing different neuronal dynamics levels. For example,
the dynamic field of Vi,t for LIF model is reaching the single
attractor V ∗

i,t = 5. When the firing threshold is bigger than
V ∗
i,t, the neuron will be mostly leaky (Fig. 2(a)), or else it

will be continuously firing (Fig. 2(b)).

The designed 2nd-order DNs The neurons with higher-
order dynamics mean that these neurons’ number of equi-
librium points will be more than one. Here we set it as 2
for simplicity. The 2nd-order neuronal dynamics is shown
as follows:

dVj,t
dt

= V 2
j,t − Vj,t − Uj,t + Ini,t, (7)

where V 2
j,t and Vj,t are membrane potentials with different

degrees of dynamics, Uj,t is a resistance item for simulating
hyper-polarization. The dynamic membrane potential Vj,t
will be attracted or non-stable at some points when we set
the ordinary differential equation as 0. Fig. 2 (c) and Fig. 2
(d) show a diagram depicting dynamic fields of membrane
potential with N = 2, where the period for reaching stable
points take around time τ . For simplicity, we formulate tra-
ditional mV or ms units as 1. Besides membrane potential,
some other implicit variables are also used for the descrip-
tion of 2nd-order dynamics, shown as follows:

dUj,t
dt = θvVj,t − θuUj,t

Vj,t = θr if(Vj,t > Vth)

Uj,t = Uj,t + θs if(spike)

, (8)

where equilibrium point of Vj,t is decided by both Uj,t and
input currents Int. The number and value of equilibrium
points will be dynamically affected by four parameters of θv
(conductivity of V ), θu (conductivity of U ), θr (reset mem-
brane potential), and θs (spike improvement of U ), which is
different from Izhikevich neurons (Izhikevich 2003) by only
focusing on higher-order dynamics.

Algorithm 1: Forward propagation in MDC-SAN
Initialize coding means µ and standard deviations σ
for all population encoders;

Randomly initialize synaptic weightW and biases b
for each SNN layer;

Load the best dynamic parameters of DNs
θ∗ = (θ∗v , θ

∗
u, θ

∗
r , θ

∗
s) (pre-learning from a task);

Randomly initialize decoding weight vectorsW d

and bias bd for each action dimension;
Initialize the current decay factor dc and firing
threshold Vth;
N−dimensional input state, s;
Inputs from populations generated by the input
coding module:AP ;

for t = 1, ..., T1 do
Inputs at timestep t:O(0)

t = It=AP ;
for l=1,...,L do

Update DNs in layer l at timestep t based on
spikes from layer l − 1:
C

(l)
t = dc ·C(l)

t−1 +W
(l)O

(l−1)
t + b(l);

V
(l)
t = V

(l)
t−1 · (1−O

(l)
t−1) +O

(l)
t−1 · θ∗r ;

U
(l)
t = U

(l)
t−1 +O

(l)
t−1 · θ∗s ;

Vdelta = V
(l)
t

2
− V (l)

t −U (l)
t +C

(l)
t ;

Udelta = θ∗v · V
(l)
t − θ∗u ·U

(l)
t ;

V
(l)
t = V

(l)
t + Vdelta;

U
(l)
t = U

(l)
t + Udelta;

O
(l)
t = (V

(l)
t > Vth);

end
end
Sum up the output spikes: sc =

∑T1

t=1O
(L)
t ;

Compute the average firing rate: fr = sc/T1;
Divide fr into M output
groups:{frm},m = 1, ...,M ;

Generate M -dimensional action a by a grouped
decoder: am =W d

m · frm + bdm,m = 1, ...,M ;

The procedure for constructing the DNs The construc-
tion of DNs is mainly based on identifying some key param-
eters in them. As θv,u,r,s, for example, each set of these four
dynamic parameters describes a dynamic state of a spiking
neuron. Hence, we want to obtain a set of optimal dynamic
parameters.

We randomly initialize the dynamic parameters (θv,u,r,s)
of each neuron in the network. Together with synaptic
weights, these dynamic parameters will be tuned on one of
the tasks with the TD3 algorithm. After learning, where most
of the learnable variables have reached stable points, these
parameters will be plotted and clustered with the k-means
method to get the best center of θv,u,r,s parameters. The four
key parameters corresponding to the best center will be fur-
ther used as the fixed configuration of all dynamic neurons
for all tasks.
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The Simple Readout Module
The spikes at the output layer are summed up in a predefined
time window to compute the average firing rate first. Then,
the output action a is returned as the weighted sum of the
computed average firing rate by a grouped decoder. More
details can be found in the forward propagation of MDC-
SAN (Algorithm 1).

The Learning of MDC-SAN with TD3
The MDC-SAN is trained in conjunction with deep critic
networks (i.e., a multi-layer fully-connected network) using
the TD3 algorithm (Fujimoto, Hoof, and Meger 2018; Tang,
Kumar, and Michmizos 2020). During training, the MDC-
SAN infers an action a from a given state s to represent
the policy, and a deep critic network estimates the associ-
ated action-value Q(s, a) to guide the MDC-SAN to learn
a better policy. We evaluate the trained MDC-SAN on a suit
of continuous control benchmarks and compare its perfor-
mance with its counterpart DAN (i.e., a multi-layer fully-
connected network) under the same settings. The specific
training procedure of the TD3 algorithm can be found in
(Fujimoto, Hoof, and Meger 2018).

Tuning MDC-SAN with Approximate BP
It is a challenge to tune parameters well in a network at multi
scales, e.g., synaptic weights at different layers, parameters
in population encoder, and group decoder. Many candidate
methods for tuning multi-layer SNNs have been proposed,
including approximate BP (Cheng et al. 2020b; Zenke and
Ganguli 2018), equilibrium balancing (Shi, Zhang, and Zeng
2020; Zhang, Tielin and Zeng, Yi and Shi, Mengting and
Zhao, Dongcheng 2018), Hopfield-like tuning (Zhang et al.
2016), and biologically plausible plasticity rules (Zeng,
Zhang, and Xu 2017).

Here, we select the approximate BP for its efficiency and
flexibility. The key feature of the approximate BP is re-
placing the non-differential parts of spiking neurons during
BP to a predefined gradient number, shown as equation (9),
where we use the rectangular function equation to approxi-
mate the gradient of a spike.

z(V ) =

{
1 if |V − Vth| < w

0 otherwise
, (9)

where z is the pseudo-gradient, V is membrane voltage, Vth
is the firing threshold and w is the threshold window for
passing the gradient.

Experiments
To evaluate our model, we measured its performance on
four continuous control tasks from the OpenAI gym (Fig.
3) (Brockman et al. 2016).

Implement Details
Due to recent concerns in reproducibility (Henderson et al.
2018), all our experiments were reported over 10 ran-
dom seeds of the network initialization and gym simulator.
Each task was run for 1 million steps and evaluated every

(a) (b) (c) (d)

Figure 3: Four OpenAI gym tasks: (a) Ant-v3: make a
four-legged creature walk forward as fast as possible, (b)
HalfCheetah-v3: make a 2D cheetah robot run as fast as
possible, (c) Walker2d-v3: make a 2D bipedal robot walk
forward as fast as possible, and (d) Hopper-v3: make a 2D
one-legged robot hop forward as fast as possible.

10k steps, where each evaluation reported the average re-
ward over 10 episodes without exploration noise, and each
episode lasted for a maximum of 1000 execution steps.

We compared our MDC-SAN against DAN and Pop-DAN
(integrated population coding with DAN; it had the same
amount of parameters as MDC-SAN for a fair comparison).
DAN, Pop-DAN, and our MDC-SAN were all trained in
conjunction with deep critic networks of the same structure
using TD3 algorithm (Fujimoto, Hoof, and Meger 2018).
We evaluated the trained DAN, Pop-DAN, and MDC-SAN
on four continuous control tasks (Fig. 3) under the same
settings and compared their performance (rewards gained).
Pop-DAN and MDC-SAN used the same hyper-parameters
as the DAN unless explicitly stated. The hyperparameter
configurations of these models were as follows:

Integrate DAN with TD3 Actor network was (256, relu,
256, relu, action dim M , tanh); critic network was (256,
relu, 256, relu, 1, linear); actor learning rate was 10−3;
critic learning rate was 10−3; reward discount factor was
γ = 0.99; soft target update factor was η = 0.005; maxi-
mum length of replay buffer was T = 106; Gaussian explo-
ration noise was σ = 0.1, σ̃ = 0.2; noise clip was c = 0.5;
mini-batch size was n = 100; and policy delay factor was
d = 2;

Integrate Pop-DAN with TD3 Actor network was (Pop-
ulation Encoder, 256, relu, 256, relu, Group Decoder, action
dim M , tanh); input population size for single state dimen-
sion was J = 10; input coding used population coding (Cpop

for all tasks);

Integrate MDC-SAN with TD3 MDC-SAN used (Pop-
ulation Encoder, 256, DNs, 256, DNs, Group Decoder, ac-
tion dim M , tanh), where the current decay factor and firing
threshold of DNs were both 0.5; input population size for
single state dimension was J = 10; MDC-SAN learning
rate was 10−4; input coding used population coding (Cpop

for all tasks).

Pre-learning of The Dynamic Parameters in DNs
We selected Ant-v3 as the basic source task to pre-learn
the dynamic parameters of DNs inside the MDC-SAN. All
MDC-SAN parameters, including synaptic weights and dy-
namic parameters, were tuned with approximate BP. The
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Figure 4: Comparison of average rewards for different models. (a) Performance of DAN, Pop-DAN, and MDC-SAN during
training on the Ant-V3 gym task. (b, c, d) Performances of these three models on HalfCheetah-v3, Walker2d-v3, and Hopper-
v3, respectively, where our proposed MDC-SAN performed best. The shaded region represents half a standard deviation of the
average evaluation over 10 seeds, and the curves are smoothed for clarity.
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Ant-v3 HalfCheetah-v3 Walker2d-v3 Hopper-v3(a) (b) (c) (d)

Training steps (×10k) Training steps (×10k) Training steps (×10k) Training steps (×10k)

Cpoi
Cpop+Cdet
Cpop+Cuni
Cpop+Cpoi
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Figure 5: Comprehensive comparison of the impact of various input coding methods, where the SAN using Cpop achieved the
best performance.

learning curve (not shown) was continuously increased and
converged after around 1 million training steps.

After learning, all dynamic parameters related to DNs
were clustered to ensure the optimal parameter configura-
tion by selecting their clustering center. As shown in Fig.
6(a, b), we obtained a clustering center of parameters θv,u,r,s
(the red stars). Here we set k = 1 in k-means for simplic-
ity. The best dynamic parameters of DNs were θ∗v=-0.172
(conductivity of membrane potential), θ∗u=0.529 (conductiv-
ity of hidden state U ), θ∗r=0.021 (reset membrane potential),
and θ∗s=0.132 (spike effect to U ). These parameters were de-
noted as θ∗ and further used as the fixed configuration of all
dynamic neurons for all tasks in the following experiments.
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Figure 6: The clustering of the candidate dynamic parame-
ters θv,u,r,s after learning on Ant-v3. (a) The parameters of
θv and θu learned from Ant-v3. The single center of the clus-
ter was measured by the standard k-means algorithm with
k=1 (labeled as a red star). (b) Similar to that of (a) but for
candidate parameters of θr and θs.

Actor Network Ant HalfCheetah Walker2d Hopper

DAN 4671 10020 4139 3396
Pop-DAN 5146 10206 4361 3201

MDC-SAN 5628 11657 5566 3636

Table 1: Max average rewards over 10 random seeds for
DAN, Pop-DAN and MDC-SAN. Bold numbers are maxi-
mal values.

Benchmarking MDC-SAN against DAN
We compared the performance of our MDC-SAN with DAN
and Pop-DAN. As Fig. 4 and Table 1 show, our model
achieved the best performance across all four tasks, showing
the effectiveness of our proposed MDC-SAN for continuous
control tasks. In addition, Pop-DAN had no obvious advan-
tage over DAN on the four tasks. Further analysis in Fig. 5
showed that SAN with population coding achieved signif-
icant performance improvements compared to that without
population coding. SAN seems to be more compatible with
population coding than DAN.

Further Discussion of Different Input Codings
We comprehensively compared the impact of various input
coding methods on performance while keeping the neuronal
coding method fixed to DNs. As Fig. 5 shows, performance
of the rate coding method alone (Cpoi, encode the input
state with Poisson coding directly) was far inferior to pop-
ulation coding-based methods (Cpop + Cuni, Cpop + Cpoi,
Cpop + Cdet, and Cpop) on all four tasks. This might be be-
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Figure 7: The DNs consistently performed better than LIF neurons on all four tasks.

cause the rate coding methods have an inherent limitation
on the representation capacity of individual neurons. And
population coding can better separate different states in a
higher-dimension manner to produce better input represen-
tation. As for the population coding-based methods, Cpop

achieved the best performance on all tasks. And the other
three population coding-based methods had little difference
in performance. Hence, it seemed to be more efficient to di-
rectly use the analog value of the state after population cod-
ing as the network input, without further using rate coding
to encode analog value into spike trains.

The Neuronal Analysis in MDC-SAN
We further tested the constructed DNs on all four tasks and
compared them with the LIF neurons while keeping the in-
put coding method fixed to pure population coding (Cpop).
As shown in Fig. 7, the DNs achieved better performance
than LIF neurons on all tested tasks, including the source
task (where the dynamic parameters of DNs were learned,
i.e., Ant-v3) and other similar tasks (i.e., HalfCheetah-v3,
Walker2d-v3, and Hopper-v3). This result verified the gen-
eralization capabilities of DNs, i.e., the dynamic parameters
of DNs learned from a task could be generalized to other
similar tasks.

One possible reason for the performance difference be-
tween LIF neurons and DNs was that the DNs contained a
higher-order dynamics of membrane potentials, a more com-
plex configuration of conductivity (both θv and θu) and re-
set potential (θr). Hence, the model using DNs showed a
higher complexity at spatial-temporal information process-
ing, which might contribute to the higher performance. An
additional simulation of these two types of neurons was
given, shown in Fig. 8, including the neuronal dynamics for
different explicit (e.g., membrane potential V and stimulated
input I) and implicit variables (e.g., resistance item U ).

For the standard LIF neuron in Fig. 8(a), the membrane
potential was positively proportional to the neuron input. For
example, for the sin-like input with the value range from -1
to 1, the dynamic V was dynamically integrated until reach-
ing the firing threshold Vth only with a strong positive stim-
ulus, or else decay accordingly with weak-positive or nega-
tive stimulus. Unlike LIF neurons, the DNs showed a higher
complexity with an additional implicit U , making the dy-
namical changing of equilibrium points different. The slight
differences of U would cause a significant update of V ac-
cording to the definition of DNs, especially when the pa-
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Figure 8: Membrane potential of DNs and LIF. The red lines
represent dynamic membrane potential V , green lines are
dynamic resistance item U , blue lines are simulated input,
and yellow lines are the values of equilibrium points for
membrane potentials.

rameter θu is small in Equation (8). Hence, the DNs would
show similar firing patterns with the strong positive stimulus
and exhibit a sparse firing with the weak-positive or negative
stimulus, instead of stopping firing like LIF neurons. This
result showed a better dynamic representation of DNs than
LIF neurons.

Conclusion

Efficient coding at multi scales is essential for the next-
step decision-making in biological neural networks. This pa-
per incorporates spatial population-coding at the input layer
and temporal DN-coding at hidden layers as an integrative
spiking actor network (MDC-SAN), reaching a better per-
formance on the four benchmark Open-AI gym tasks than
its counterpart DAN. Unlike generally used LIF neurons
in SAN, the more complex DNs have shown a more vital
ability on temporally non-linear information processing and
achieved higher performance. In addition, population coding
has also demonstrated an advantage in spatial information
coding.

In the future, more biologically plausible principles can
be borrowed from biological networks and applied to SAN
towards lower energy cost, more vital adaptability, and
higher robust computation. These interactions between neu-
roscience and artificial intelligence have much in store for
the future.
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