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Abstract

Despite the advances in multi-person pose estimation, state-
of-the-art techniques only deliver the human pose structure.
Yet, they do not leverage the keypoints of human pose to de-
liver whole-body shape information for human instance seg-
mentation. This paper presents PosePlusSeg, a joint model
designed for both human pose estimation and instance seg-
mentation. For pose estimation, PosePlusSeg first takes a
bottom-up approach to detect the soft and hard keypoints of
individuals by producing a strong keypoint heat map, then
improves the keypoint detection confidence score by produc-
ing a body heat map. For instance segmentation, PosePlusSeg
generates a mask offset where keypoint is defined as a cen-
troid for the pixels in the embedding space, enabling instance-
level segmentation for the human class. Finally, we propose
a new pose and instance segmentation algorithm that en-
ables PosePlusSeg to determine the joint structure of the
human pose and instance segmentation. Experiments using
the COCO challenging dataset demonstrate that PosePlusSeg
copes better with challenging scenarios, like occlusions, en-
tangled limbs, and overlapped people. PosePlusSeg outper-
forms state-of-the-art detection-based approaches achieving
a 0.728 mAP for human pose estimation and a 0.445 mAP
for instance segmentation. Code has been made available at
https://github.com/RaiseLab/PosePlusSeg.

Introduction

Human pose estimation and body segmentation are ma-
jor cornerstones in many computer vision applications
such as activity recognition, video surveillance, human-
computer interaction, etc. These applications require the
two-dimensional (2D) positioning of human joints and their
body shape structure to identify individuals and their ac-
tivities. Existing pose estimation models (Chen et al. 2018;
Fang et al. 2017; Sun et al. 2019) focuses on delivering the
human pose structure, but they do not leverage the human
pose structure to infer the whole-body shape information.
The three primary challenges in inferring the pose and body
shape of multiple people, especially those who are socially
engaged, call for an effective model. First, an image can
have an undefined number of individuals that can appear at
any location and distance. Second, human-to-human inter-
actions induce complex spatial interference due to contacts,
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obstructions, and articulations of the limbs, making it diffi-
cult to associate body parts. Third, the computational cost
and complexity tends to increase with the number of peo-
ple in the image. Proposals for pose estimation (Chen et al.
2018; Fang et al. 2017; Huang, Gong, and Tao 2017; Li et al.
2019) aim to tackle these challenges by taking a top-down
approach to first detect a person in the image and then esti-
mate the human pose. However, these top-down approaches
require the pose estimator to run iteratively for each detected
person, thus degrading model efficiency. Moreover, estab-
lishing segmentation head using a top-down approach can
further increase the computational cost. Recent studies (He
et al. 2017; Papandreou et al. 2018) suggest that joint esti-
mation of human pose and body segmentation can produce
state-of-the-art results using a large-scale pose and segmen-
tation dataset (e.g., COCO (Lin et al. 2014)). However, ex-
isting approaches used human poses to refine the pixel-wise
clustering for segmentation and thus could not perform well
on the segmentation task (Papandreou et al. 2018). Further,
existing models incur overhead due to the extra computation
of a person detector (He et al. 2017) and suffer scalability
issues for instance segmentation (Zhang et al. 2019), which
makes them unsuited for populated scenarios.

In this paper, we propose PosePlusSeg, a novel bottom-
up pose estimation and instance segmentation model specif-
ically designed for joint human pose estimation and instance
segmentation. PosePlusSeg employs a bottom-up approach
to first detect keypoints, and then connects those keypoints
to form several instances of human pose. This approach de-
tects the human body without a bounding box concept thus
enabling effective pose estimation, along with instance seg-
mentation, without incurring the runtime complexity of the
top-down approach.

PosePlusSeg tackles joint human pose estimation and in-
stance segmentation via two pipelines: (i) a pose estima-
tion pipeline and (ii) an instance segmentation pipeline. The
pose estimation pipeline generates a strong keypoint heat
map that estimates the relative displacement between each
pair of keypoint and improves the precision of long-range,
occluded, and proximate keypoints (Figure 1b). Using the
strong keypoint heat map, a body heat map is produced to
identify the human body and improve the keypoint detection
confidence score (Figure 1¢). Once the keypoints are identi-
fied, then a pose estimation algorithm is used to connect the
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Figure 1: PosePlusSeg produces (b) a strong keypoints heat
map (SKHM) for detecting keypoints of individuals and
(c) a body heat map (BHM) for identifying the human
body position to generate (d) human pose estimation (PE).
PosePlusSeg also produces (e) a mask offset (MO) for find-
ing the embedding space for each individual to generate
(f) a segmentation mask (SM) to determine the human es-
timated shape structure and (g) an instance segmentation
mask (ISM) to segment each individual separately and the
final (h) human pose and instance segmentation (PIS) is pro-
duced from both the PE and ISM.

keypoints into human instances to make the pose structure
(Figure 1d).

The segmentation pipeline generates a mask offset that
defines the embedding space to associate pixels with the
right instance centroid to predict the shape of each individ-
ual (Figure 1e). The mask offset helps to generate a segmen-
tation mask to present the human body 2D shape structure
(Figure 1f). Once all the labeled pixels are defined for each
instance, then an instance segmentation algorithm is used to
generate an instance segmentation mask (Figure 1g). Finally,
we present a new pose estimation and instance segmentation
algorithm to produce the joint structure of the human pose
and its corresponding instance segmentation (Figure 1h).

We evaluate the performance of PosePlusSeg using the
COCO dataset (Lin et al. 2014). PosePlusSeg outperforms
existing joint pose and segmentation techniques demonstrat-
ing 0.728 mean average precision (mAP) for human pose es-
timation and 0.445 mAP for instance segmentation. In sum-
mary, we make the following contributions:

* We introduce the strong keypoint heat map to detect both
soft and hard keypoints to accurately estimate human
pose, and the body heat map for locating the individuals
and increasing the keypoint confidence scoring;

e We introduce a mask offset which defines the keypoint
as a center of attraction for the pixels in the embedding
space to identify the human body shape structure;

* We utilize a refine network to produce refined keypoints
and instance segmentation mask, and introduce a new
pose and instance segmentation algorithm to visualize
the joint human pose and instance segmentation;

* Our in-depth experiments demonstrate PosePlusSeg is an
effective method to perform joint human pose and in-
stance segmentation.

70

Related Work

Multi and Single Person Pose Estimation There are two
approaches for human pose estimation; top-down (Girshick
2015; Igbal and Gall 2016; Chen et al. 2018; Fang et al.
2017; Huang, Gong, and Tao 2017; Szegedy et al. 2015;
Li et al. 2019) and bottom-up (Insafutdinov et al. 2016;
Pishchulin et al. 2016; Cao et al. 2017). The top-down ap-
proach identifies keypoints surrounded by a bounding box
detector. The bottom-up method first detects human key-
points, and then combine the adjacent keypoints to generate
a pose. The Regional Multi-Person Pose Estimation (Fang
et al. 2017) is a top-down approach to extract a high-quality
single-person region from inaccurate bounding boxes but
takes a long execution time. DeeperCut (Insafutdinov et al.
2016) is a ResNet-based bottom-up approach to improve the
body part detectors by generating effective proposals. How-
ever, it is computational constant to formulate the associ-
ation between keypoints using the integer linear scheme.
A partitioning and labeling formulation of a set of body-
part hypotheses were proposed with CNN-based part detec-
tors (Pishchulin et al. 2016). Such a formulation is a non-
deterministic polynomial (NP) hard problem and requires
significant computational power.

Instance Segmentation There are two primary ap-
proaches for instance segmentation: (1) single-stage (Dai
et al. 2016; Long, Shelhamer, and Darrell 2015; Bolya et al.
2019) and (2) multi-stage (He et al. 2017; Ren et al. 2015).
The single-stage approach first create intermediate and dis-
tributed feature maps based on the entire image, then as-
sembles the extracted features for each instance to form the
final mask. The InstanceFCN (Dai et al. 2016) uses fully
convolutional networks to create several instance-sensitive
scoring maps and applies the assembly module to the output
instance. It requires repooling and other non-trivial compu-
tations (e.g., mask voting), making the real-time processing
infeasible. YOLACT (Bolya et al. 2019) generates a set of
prototype masks, then uses coefficient per instance mask to
produce the instance-level segmentation. This way, the pro-
totype masks make YOLACT’s computation cost constant.
Multi-stage instance segmentation follows the detect-then-
segment paradigm. In this approach, first, it performs bound-
ing box detection and then the pixels are classified to obtain
the final mask in the bounding box region. Mask R-CNN
(He et al. 2017) is based on the multi-stage instance seg-
mentation that extends Faster R-CNN (Ren et al. 2015) by
adding a branch of predicting segmentation mask for each
Region of Interest (Rol). The method presented by (Liu et al.
2018) improves the accuracy of Mask R-CNN by enriching
the Feature Pyramid Network (FPN) features.

Human Pose Estimation and Instance Segmentation
Mask R-CNN (He et al. 2017) proposed the human pose
estimation along with instance segmentation. However, this
method suffers from the extra computation overheads of a
person detector. Pose2Seg (Zhang et al. 2019) proposed hu-
man pose-based instance segmentation. This method sepa-
rates instances based on the human pose, rather than by re-
gion proposals. However, it takes previously generated poses
as input instead of a normal image. The PersonLab (Pa-
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Figure 2: PosePlusSeg consists of two main pipelines: (i) pose estimation pipeline uses strong keypoint heat map and body heat
map to predict the human estimated pose, and (ii) instance segmentation pipeline uses segmentation mask and mask offset to

define instance-level segmentation.

pandreou et al. 2018) approach is used to detect individual
keypoints and use greedy decoding process to group key-
points into person instances. This method also reports a part-
induced geometric embedding descriptor for human class in-
stance segmentation but fails to perform instance segmenta-
tion for scenes with highly-entangled instances.

PosePlusSeg Overview

PosePlusSeg consists of (i) Pose Estimation Pipeline (ii)
Instance Segmentation Pipeline Figure 2. The input image
is feed into the backbone CNN to learn the feature maps of
each human instance, then the learned feature maps are feed
into their corresponding pipelines.

(i) Pose estimation pipeline generates the SKHM based on
the keypoints feature maps and present it as a human skele-
ton structure. It also produce BHM utilizing the keypoints
proposals to detect the position of each individual, to im-
prove the keypoint confidence score. The output of the pose
estimation pipeline feeds into the pose estimation module
for the final human pose estimation.

(i) Instance segmentation pipeline takes mask feature
maps for each labeled human instance and generates MO.
The MO defines the association between the pixels in the
embedding space to predict the 2D shape of the individuals.
The output of the instance segmentation pipeline feeds into
the instance segmentation module to generate the ISM.

The system employs a refine network one for each
pipeline in order to refine the keypoints and mask.
PosePlusSeg uses the information generated from both
pipelines as inputs to the pose and instance segmentation
module to generate the final human pose and instance seg-
mentation.
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Figure 3: Example of body heat map.

Pose Estimation Pipeline

Body Heat Map Unlike traditional bounding box hu-
man detection (Zhou and Yuan 2017, 2018), PosePlusSeg
presents a new idea of human body detection through the
Body Heat Map (BHM). Along with human body detection,
the BHM also helps to enhance the predicted keypoint con-
fidence score. An example of the BHM is shown in Figure
3. To produce the BHM, we sequentially calculate a disk
of pixels D = 2w R where radius R=32 pixels for all pre-
dicted keypoints Py belonging to each individual / summa-
rized in Equation 1. Py, is a group of pixels that represent
human body keypoints. While producing the BHM, we uti-
lize all the pixels belonging to each keypoint disk to cover
the whole human body. We reduce the intensity of each pixel
in the image except those belonging to the disk surrounded
by a keypoint. To maintain the bright resolution, we multiply
alpha o = 0.4 to each keypoint disk.

I= Z Pi.(), where P, = 27 R. 1)
k=1

During the inference, the BHM algorithm detects the human
body with high confidence and also increases the keypoint
confidence score.

Strong Keypoint Heat Map The pose estimation pipeline
perform two tasks: first, PosePlusSeg generates a Strong
Keypoint Heat Map (SKHM) is illustrated in Figure 4, which
is a building base for the pose estimation. In this stage, each



Figure 4: Example of strong keypoints heat map.

individual keypoint is detected. Second, each detected key-
point is refined through the refine network.

Suppose p; represents the 2D keypoint position in the im-
age, where ¢ = {1,..., N} are mapped to the positions of
the pixels. A keypoint disk Dr(q) = {p : ||p—¢|| < R}
of radius R focused at point g. Also, consider ¢;,; be the
2D position of the k" keypoint of the ;j* person instance,
where j={1,...,I} and I is the number of person instances
in the image. For each known keypoint type k={1,...M} a
binary classification approach is used as follows: For ev-
ery predicted keypoint pixel K;, such that K;=1 if the pixel
€ Dp, for each person instance j, otherwise K; = 0. Thus,
for every keypoint, we have independent dense binary clas-
sification tasks. The radius of the SKHM disk is set to R
= 32 pixels. We predict a disk around a specific keypoint
of any person in the image. For this, we empirically obtain
the R value and set it to 32. The value R is constant for
all experiments reported in this paper. In order to equally
consider all person instances, we choose a disk radius that
does not scale according to the instance size. While training
the network, the SKHM loss is computed based on the an-
notated image positions. It then back-propagates across the
entire image, excluding the range that includes individuals
who are not fully annotated with keypoints (e.g., crowded
areas and small individual segments).

During the model training process, a group of raw pixels
in the SKHM disk feeds into the refine network, the pre-
diction loss is penalized by the L; loss function, averaging
and back-propagating the error only at the pixel positions
p € Dpg with the ground truth keypoint position. We re-
duce the error in the keypoint disk (radius R = 32 pixels) by
normalizing them and making a dynamic range that is com-
patible with the heat map classification loss.

Pose Generator PosePlusSeg utilizes a pose generator al-
gorithm to collect all keypoints and turn them into individual
instances. Initially, a queue store all the keypoints along with
the keypoint positions p;. However, two or more keypoints
can be discovered for one keypoint (x and y coordinates).
These points are used as building blocks to detect instances.
At each iteration, if the position p; of the current detection
point is inside a disk Dg(g; 1) of a previously detected per-
son instance j, then the algorithm skips such point because
it is already recognized. It usually occurs when two key-
points overlap or partially touch. For this matter, we utilize
non-maximum suppression. Then a new detection instance
j' starts with the k-th keypoint at location g, j, = p;, and de-
livers it to the new point. We then follow the pose kinematic
graph to greedily join pairs of adjoined keypoints.

Most approaches for pose estimation are based on the
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torso or nose keypoints, which sometimes fail to estimate
an individual pose when they are not clearly visible in the
image. In contrast, our pose generator algorithm does not
serve any keypoint preferentially. But, starts from the most
confident detection, such as the nose, and connects all of the
keypoints one by one. Moreover, it manages rigorous situa-
tions where a significant part of the individual is not visible.

Instance Segmentation Pipeline

Mask Offset Human instance segmentation is a pixel-
level classification challenge, i.e., how to connect pixels with
the right instance /. We define the mask offset (MO) at each
image position z; inside the segmentation mask of an anno-
tated person instance j with 2-D mask pixel positions y;,x
where k = 1,..., M, which point from image position z;
to the position of the k' keypoint of the corresponding in-
stance [;. At each image position x; of a semantically identi-
fied human instance, the embedding vector e(x; ) reflects our
local approximation of the absolute location of each mask
pixel of an individual to whom it corresponds, i.e., it rep-
resents the person’s expected shape structure. To this end,
for each pixel, we learn the MO, illustrated in (Figure 5a),
which points to the centroid (right shoulder).Here, we take
advantage of the keypoint localization to use them as a cen-
ter of attraction for each instance mask pixel. We also define
the MO edge boundary to bound the MO pixel vectors in the
embedding space. The purpose of the instance segmentation
is to cluster a group of pixels P = {po, p1,p2,...,p;} and
its 2-dimensional embedding vectors e(p;), into a set of in-
stances Z = {So, 51,952, ...,.5;} to provide a shape along
with pose. Pixels are assigned to their corresponding cen-

troid: 1
Cr = N Z Di-

piGSj

2

This is attained by defining mask offset vector v; for each
known pixel p;, so that the resulting embedding e; = p; +v;
points from its respective instance centroid. We penalize MO
loss by an L loss function throughout model training, aver-
aging and back-propagating the loss at the only image posi-
tion x; that corresponds to an instance of a specific individ-

ual entity:
n
L= |lvi— o],
i=0

where ¥; = Cj — p; for p; € S;. In order to cluster the
pixels to their centroid, first, it is important to specify the
positions of the instance centroids and second to assign pix-
els to a particular instance centroid. We utilize a density-
based clustering algorithm to first locate a set of centroids as
a center of attraction. Having obtained an array of centroids
C = {Cy,C1,...,Ck}, we next to add pixels to a particular
instance based on a minimum distance-to-centroid metric:

“4)

Instance Segmentation Generator Similar to the pose
estimation pipeline, the instance segmentation pipeline per-
forms two tasks. First Segmentation Mask (SM) is gener-
ated for each individual employing the backbone network.

3)

e; € Sj: k= argmingl|le; — C||.
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Figure 5: (a) Shows mask offsets where the right shoulder is defined as a center of attraction. (b) Describes the refine network.
(c) Depicts an example pose estimation and instance segmentation.

Second, the segmentation mask is refined through the re-
fine network. Each SM provides raw pixels matrix corre-
sponding to each individual, and ignore the background, and
other classes. We follow the embedding-based method for
this task, similar to (Newell, Huang, and Deng 2017; Fathi
et al. 2017; De Brabandere, Neven, and Van Gool 2017).
At each pixel position z;, we compute an embedding vector
e(x;), and cluster them to obtain the final object instance.

To obtain the final Instance Segmentation Mask (ISM):
(i) We find the image positions x; belonging to an individ-
ual, i.e., pixels with a high probability to lie in the ground
truth mask region. A high probability indicates that the pixel
embedding e; is near to the centroid of an instance and is
likely to correspond to that particular instance, However a
low probability implies that the pixel is more likely belong
to the background or another instance. More precisely, if the
probability p(e;) > 0.5, then that pixel at location z; will be
assigned to instance /. (ii) We equate each pixel p; with each
observed individual instance I; that satisfies the embedding
distance metric, as given in Equation 4. The relative distance
threshold as t = 0.25 in all proclaimed experiments. To eval-
uate the COCO segmentation task and obtain the average ac-
curacy output figures, we use the same instance-level score
provided by the previous pose estimation stage.

Refine Network

(Figure 5b) shows a refine network using a 1x1 convolu-
tional filter with a stride of 1. It generates a dense vector
of raw pixels z,, and computes the probability z,,, for each
pixel belong to at least one person in the image:

ew'LP(wn)
T4 ev e

We established two refine networks for both the pose esti-
mation and instance segmentation pipelines. The predicted
keypoints generated by the backbone network for pose esti-
mation produces the SKHM disk, which is further fed to the
refine network for refining. Where, in the case of Instance
Segmentation, the predicted mask pixels pass to the refine
network. The main aim of the refine network is to refine the
predicted keypoints and mask to improve the precision. The
input vector of pixels x,, is multiplied by random weights w
and bias b is added. The sum function is applied to combine

P(z,, = 1l|z,) = Q)
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all of the weights and biases. The sigmoid activation func-
tion is used to find the predicted probability for each pixel
belongs to an instance.

We compute and back-propagate the average loss of all
the regions in the image that have been annotated. We use
the L; loss function to minimize the distance between the
estimated and ground-truth coordinates. The loss function
Ly is defined as follows:

1 & .
Lyey = N 7;1 |z — Znll, (6)

where z,, is the ground truth mask or keypoint pixel coor-
dinates and &, indicate the predicted coordinates. The final
refined pixels are fed into their corresponding modules to
generate the output visually.

Pose and Instance Segmentation

We introduce a new PIS algorithm that takes the refine pixels
produced by the refine network and present them visually,
as illustrated in (Figure 5c). As shown in Figure 2, the PIS
module takes the pose and instance segmentation informa-
tion from both pipelines and use them for pose and instance
segmentation. Initially, the algorithm identifies all the key-
points and their 2D coordinates and stores them in a prior-
ity queue. However, in some cases, more than one keypoint
can be identified for a single keypoint position p;. This oc-
curs when the two keypoints are overlapped or entangled.
We handle such issues by leveraging non-maximum sup-
pression. Next, a new instance j’ starts with the k*" keypoint
detected at image position x; considers point.

Simultaneously, the PIS performs instance segmentation
for all detected human instances. The system identifies pix-
els positions z; belonging to an instance, i.e., those pixels
with a high probability to lie in the embedding space e;.
Then, these pixels are assigned to the relevant instance if
the pixel embedding is close to the instance centroid CY.
More specifically, If the pixel probability p(s;) > 0.5, then
that pixel at position x; is assigned to the relevant human in-
stance. However, if the pixel value is less than the threshold
value 0.5, then it is more likely to belong to another instance
or background. We process both the pose estimation and in-
stance segmentation tasks independently to prevent perfor-
mance degradation and maintain a high score.



Experiments

We evaluate the performance of PosePlusSeg model on the
standard COCO keypoint dataset. Our model is trained end-
to-end using the COCOPersons training set. Experiments
and ablation studies are conducted on the COCO test and
minival set.

Training Setup We use the CNN backbone networks
ResNet-101 (RN101) and ResNet-152 (RN152) (He et al.
2016) for training and testing. The hyperparameters for
training are: learning rate = 0.1 x e~*, image size = 401 x
401, and batch size = 2 implemented on one NVIDIA
GeForce GTX 1080 Ti. We conduct synchronous training
for 500 epochs with stochastic gradient descent using Ten-
sorFlow 1.13.

Experimental Results Table 1 compares PosePlusSeg
with 5 SOTA methods on the COCO minival dataset: 8-stage
Hourglass (Newell, Yang, and Deng 2016), CPN (Chen et al.
2018), SimpleBaseline (Xiao, Wu, and Wei 2018), CMU-
Pose with refinement (Cao et al. 2017), and PersonlLab
(Papandreou et al. 2018); The first three methods are the
top-down approaches while the last two methods are the
bottom-up methods. Compared with top-down approaches
PosePlusSeg achieves 10.8%, 2.3%, and 3.3% gains, re-
spectively. However, compared with bottom-up approaches
PosePlusSeg gains an increment of 21.9%, and 11.8%.

Models Backbone] AP AP°" AP ™5 APM AP”
Top-down:

Hourglass 8-stage 0.671 - - - -
CPN RN50 [0.727 - - - -
SimpleBaseline RN152 |0.720 0.893 0.798 0.687 0.789
Bottom-up:

CMU-Pose - 0.610 0.849 0.675 0.563 0.693
PersonLab RN152 |0.665 0.862 0.719 0.623 0.732

osePlusSeg (ours . . . . .
PosePlusSeg (ours)] RN152 |0.744 0.894 0.748 0.675 0.811

Table 1: Performance comparison on the COCO keypoint
minival set.

Table 2 compares the performance on the COCO key-
point test dataset demonstrating that PosePlusSeg outper-
forms bottom-up approaches, CMU-Pose (Cao et al. 2017),
Associative Embedding (Newell, Huang, and Deng 2017),
PersonLab (Papandreou et al. 2018), and MultiPoseNet
(Kocabas, Karagoz, and Akbas 2018). Specifically, the
PosePlusSeg yields a mAP of 0.728 on the ResNet-152 base
architecture. The test results also show that the performance
of PosePlusSeg surpasses that of top-down approaches, i.e.,
Mask-RCNN (He et al. 2017), G-RMI (Papandreou et al.
2017), Integral Pose Regression (Sun et al. 2018), and CPN
(Chen et al. 2018).

Table 3 and Table 4 present the results of the COCO Seg-
mentation minival and test sets. PosePlusSeg demonstrates
a mAP of 0.563 on the minival set, and improves the AP by
0.145 compared to PersonLab (Papandreou et al. 2018) and
by a 0.008 AP compared to Pose2Seg (Zhang et al. 2019).
Moreover, on the test set, PosePlusSeg achieves a mAP of
0.445 and improves the AP by 0.074 over Mask-RCNN (He
et al. 2017) and by 0.028 over PersonLab.
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Models Backbone] AP AP-°C AP 7 AP™ APT
Top-down:

Mask-RCNN RNS50-fpn|0.631 0.873 0.687 0.5780.714
G-RMI COCO-only RN101 ]0.649 0.855 0.713 0.623 0.700
Integral Pose Regress | RN101 [0.678 0.882 0.748 0.639 0.740
G-RMI + extra data RN101 ]0.685 0.871 0.755 0.658 0.733
CPN RN50 ]0.721 0.914 0.800 0.6870.772
Bottom-up:

CMU-Pose - 80.849 0.675 0.5710.682

0.61
Ass. Emb. (m-scale) |Hourglass|0.630 0.857 0.689 0.5800.704
Ass. Emb. (mscale,ref)|Hourglass|0.655 0.868 0.723 0.606 0.726
PersonLab (s-scale) RNI52 [0.665 0.880 0.726 0.624 0.723
PersonLab (m-scale) | RN152 [0.687 0.890 0.754 0.6410.755
MultiPoseNet - 0.696 0.863 0.766 0.6500.763

RNTOT [0.706 0.865 0.768 0.6550.774
RN152 |0.728 0.884 0.787 0.6780.794

PosePlusSeg (ours)
PosePlusSeg (ours)

Table 2: Performance on the COCO keypoint fest set. The
AP at IOU=.5:.05:.95, AP? at IOU=.05 (Pascal VOC met-
ric), AP73 at IOU=.75 (strict metric), APM corresponds to
the AP for medium objects: 32? <area <96, and AP" corre-
sponds to the AP for large objects: area >967. S-scale refers
to single-scale, m-scale to multi-scale, and ref to refinement.

AP AP0 AP ™ APM APT
0.382 0.661 0.397 0.4760.592
0.387 0.667 0.406 0.483 0.595
0.414 0.684 0.447 0.492 0.621
0.418 0.688 0.455 0.497 0.621
0.498 0.670

Models

PersonLab (s-scale)
PersonLab (s-scale)
PersonLab (m-scale)
PersonLab (m-scale)
Pose2Seg

osePlusSeg (ours
PosePlusSeg (ours)

Backbone
RNTO0T
RN152
RN101
RN152

RNS50-fpn|0.555 - -

RN152 [0.563 0.701 0.557 0.509 0.683

Table 3: Performance comparison on the COCO Segmenta-
tion (human category) minival set.

Backbone| AP AP°C AP 7° APM APT
RNextI01]0.371 0.600 0.394 0.399 0.535
RN101 [0.377 0.659 0.394 0.480 0.595
RN152 [0.385 0.668 0.404 0.488 0.602
RN101 [0.411 0.686 0.445 0.496 0.626
RN152 [0.417 0.691 0.453 0.502 0.630

RNTOT ]0.432°0.699 0.469 0.5150.648
RN152 ]0.445 0.794 0.471 0.524 0.651

Models
Mask-RCNN
PersonLab (s-scale)
PersonLab (s-scale)
PersonLab (m-scale)
PersonlLab (m-scale)

PosePlusSeg (ours)
PosePlusSeg (ours)

Table 4: Performance comparison on the COCO Segmenta-
tion (human category) fest set.

Impact of the SKHM on Keypoint Detection Now, we
run a set of ablations to qualitatively analyze the impact of
each component of PosePlusSeg. We first compare SKHM
with different keypoint detection algorithms that rely on
keypoint heatmaps for keypoint detection. Table 5 presents
the performance of the SKHM with the SOTA bottom-up ap-
proaches: CMU-Pose (Cao et al. 2017), MultiPoseNet (Ko-
cabas, Karagoz, and Akbas 2018), and PersonLab (Papan-
dreou et al. 2018). We noted that the SKHM out-performs
in all categories by introducing a keypoint disk around key-
points. Using ResNet152 as a backbone network, the SKHM
shows a spike increase in the AP, except for MultiPoseNet
(Kocabas, Karagoz, and Akbas 2018), which has a lead of
0.002 in AP 75 due to a specially designed Pose Residual
Network (PRN). The SKHM also leads in keypoint detec-
tion for AP™¢4%™ and AP'"9¢ humans instances.



Models AP AP AP APY AP
CMU-Pose } ; } ) )
MultiPoseNet 0.643 0.882 0.750 0596 0.739
PersonLab 0.665 0.862 0.719 0.623 0.732
PosePlusSeg:

RN101 (SKHM) | 0.717 0873 0.726 0.648 0.776
RN152 (SKHM) | 0.744 0894 0.748 0.675 0.811

Table 5: Keypoint detection comparison between

PosePlusSeg’s SKHM and keypoint heatmap approaches on
the COCO minival set.

Impact of the BHM on the Keypoint Confidence Score
We examine the effect of BHM on the keypoint confidence
score. Table 6 shows the 17 keypoint detection confidence
scores generated by the keypoint disks of radius R = 8, 16,
and 32. The keypoint confidence detection score for a bigger
disk (R=32) is high because it provides a larger radius to the
classifier to reach the ground-truth value.

Left R=8 [R=16 [ R=32[Right R=8 TR=16[R=32
Nose 0.77510.804 [ 0.830 | - - - -

Eye 0.678 | 0.726 | 0.756 | Eye 0.662 | 0.698 | 0.738
Ear 0.676 | 0.701 | 0.721 | Ear 0.634|0.676 | 0.719
Shoulder | 0.618 | 0.643 | 0.653 | Shoulder | 0.617 | 0.643 | 0.662
Elbow | 0.548 | 0.604 | 0.625 | Elbow |0.559]0.582]0.599
Wrist 0.5830.618 | 0.636 | Wrist 0.526 | 0.553 | 0.608
Hip 0.52110.558 | 0.586 | Hip 0.553]0.583|0.613
Knee 0.618 | 0.648 | 0.674 | Knee 0.647|0.677 | 0.692
Ankle 0.671|0.683 | 0.729 | Ankle 0.638 ] 0.654 | 0.707

Table 6: Average keypoint detection confidence scoring
based on different keypoint disk radius R values.

Impact of the BHM on the SKHM We examine the
effect of the BHM on SKHM in terms of the quality
of the keypoint confidence detection. For this, we built a
version of PosePlusSeg with the BHM disabled. Table 7
shows the keypoint mAP generated from the SKHM and the
SKHM+BHM using the ResNet101 and ResNet152 back-
bone networks. We see that the SKHM along with the BHM
improves model keypoint AP by 1.6% and 0.5% while us-
ing the ResNet101 and ResNet152 backbones, respectively.
The average increases of each keypoint confidence detection
score using the BHM are listed in Table 8.

Model AP AP AP 7 APM APE
PosePlusSeg:

RN101 (SKHM) 0.717 0.873 0.726 0.648 0.776
RN152 (SKHM) 0.744 0.894 0.748 0.675 0.811
RN101 (SKHM+BHM) | 0.729 0.877 0.734 0.658 0.794
RN152 (SKHM+BHM) | 0.748 0.893 0.751 0.675 0.816

Table 7: Impact of using the BHM with the SKHM.

Impact of the Mask Offset on Human Segmentation
We experiment the Mask Offset that plays an important role
in the task of human instance segmentation by defining cen-
troids as a center of attraction for embedded pixels. We com-
pare PosePlusSeg’s Mask Offset with PersonLab (Papan-
dreou et al. 2018) and Pose2Seg (Zhang et al. 2019) hu-
man segmentation models. Table 9 shows the mask offset of
an instance segmentation pipeline achieves a high accuracy
trade-off relative to PersonLab and Pose2Seg.

75

Left w/o BHM [ w BHM [ Right w/o BHM [ w BHM
Nose 0.655 0.830 |- - -
Eye 0.631 0.756 | Eye 0.635 0.738
Ear 0.608 0.721 |Ear 0.606 0.719
Shoulder | 0.583 0.653 | Shoulder | 0.562 0.662
Elbow 0.523 0.625 | Elbow 0.487 0.599
Wrist 0.506 0.636 | Wrist 0.514 0.608
Hip 0.458 0.586 | Hip 0.476 0.613
Knee 0.551 0.674 | Knee 0.583 0.692
Ankle 0.598 0.729 | Ankle 0.621 0.707

Table 8: Average keypoint detection confidence score with
and without the BHM.

Models AP _APS AP ° APM APT
PersonLab . . . . .
Pose2Seg 0.555 - - 0.498 0.670
PosePlusSeg:

RN101 (mask offset) | 0.556 0.699 0.546 0.499 0.673
RN152 (mask offset) | 0.563 0.701 0.557 0.509 0.683

Table 9: Mask offset performance on the COCO Segmenta-
tion (human category) minival set.

Runtime Performance and Number of Parameters Fi-
nally, we compare runtime performance with SOTA ap-
proaches to quantitatively analyze the model efficiency as
shown in Table 10. We also compare GFLOPs and number
of parameters in Table 11. Results demonstrate PosePlusSeg
enables real-joint pose estimation and instance segmentation
with less computation and parameters.

Models ac
ask R-
Pose2Seg

one as untime

RNTOI Boxes&Seg.&Pose200ms (5fps) M40
RNS50-fpn Inst. Sgeg. 50ms (ZOfBS) TitanX
PosePlusSeg | RN152 Pose 56ms (17fps) 1080Ti
PosePlusSeg | RN152 Inst. Seg. 59ms (16fps) 1080Ti
PosePlusSeg | RN152 Pose&Seg. 68ms (14fps) 1080Ti
PosePlusSeg | RN152 Pose 28ms (34fps) RTX
PosePlusSeg | RN152 Inst. Seg. 29ms (32§s) RTX
PosePlusSeg | RN152 Pose&Seg.  34ms (28fps) RTX

Table 10: Comparison of runtime performance.

Models Backbone Input Size FLOPs #Para mAP
Hourglass 8-stage  256x192 143G 25.IM 0.669
CPN RN50 256x192  6.20G 27.0M 0.686
CPN* RN50  384x288 6.20G 27.0M 0.694
SimpleBaseline | RN152  256x192 15.7G_ 68.6M 0.720
PosePlusSeg RN50  256x192 4.04G 25.5M 0.695
PosePlusSeg RN101  256x192 7.69G 44.5M 0.717
PosePlusSeg RN152  256x192 11.34G 60.1IM 0.744

Table 11: Comparison of GFLOPs and parameters.

Conclusion

We propose a bottom-up approach to tackle the task of
joint human pose estimation and instance segmentation.
PosePlusSeg generates a strong keypoint heat map and body
heat map to accurately predict individual keypoints. In addi-
tion, a mask offset is used to define the association between
the pixels belonging to an instance to present the human
body instance segmentation. Our in-depth evaluation using
the COCO keypoint challenging dataset demonstrates the ef-
fectiveness of PosePlusSeg for joint human pose estimation
and instance segmentation.
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