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Abstract
With the increasing demands for understanding the internal
behaviors of deep networks, Explainable AI (XAI) has been
made remarkable progress in interpreting the model’s deci-
sion. A family of attribution techniques has been proposed,
highlighting whether the input pixels are responsible for the
model’s prediction. However, the existing attribution methods
suffer from the lack of rule guidance and require further hu-
man interpretations. In this paper, we construct the ’if-then’
logic rules that are sufficiently precise locally. Moreover, a
novel rule-guided method, dynamic ablation (DA), is pro-
posed to find a minimal bound sufficient in an input image
to justify the network’s prediction and aggregate iteratively to
reach a complete attribution. Both qualitative and quantitative
experiments are conducted to evaluate the proposed DA. We
demonstrate the advantages of our method in providing clear
and explicit explanations that are also easy for human experts
to understand. Besides, through the attribution on a series of
trained networks with different architectures, we show that
more complex networks require less information to make a
specific prediction.

Introduction
Deep Neural models like Convolutional Neural Networks
(CNNs) have achieved the state-of-the-art performance in
different computer vision tasks. However, it is difficult to ex-
plain their predictions due to the lack of interpretability. A
critical issue called attribution is to explain why classifica-
tion CNNs predict what they predict (Selvaraju et al. 2017).

The attribution result is usually represented as a saliency
map, i.e., a heatmap that highlights the input pixels that are
the evidence for and against the classification outputs (Mon-
tavon, Samek, and Müller 2018). Suppose we have a model
that predicts some kinds of lesions from an image of the
organ (e.g., X-ray image or nuclear magnetic resonance im-
age). The attribution maps identify the importance of each
pixel to the prediction. Consequently, we not only get the
diagnosis result but also know which part of the image that
the model considers to be essential to the result. We can de-
bug the model with the intervention of a professional doctor
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Figure 1: Guided by the constructed logic rules, our DA
finds the minimal and sufficient part of the input to justify
the classification. The clear part of the middle image (repre-
sented by Ppos) provides the explanation as ‘If the part Ppos
of the input x present, then x is classified as class Boston
bull’. The area of Ppos is minimized by the DA algorithm
iteratively, and the attribution map is generated at the same
time (the rightmost image).

through the attribution maps. Attribution techniques could
also assist the doctor to make a pathological diagnosis and
improve diagnostic accuracy.

The existing methods of visual attribution can be broadly
categorized into gradient-based (Simonyan, Vedaldi, and
Zisserman 2014; Zeiler and Fergus 2014; Springenberg et al.
2014; Smilkov et al. 2017), perturbation-based (Petsiuk,
Das, and Saenko 2018; Fong, Patrick, and Vedaldi 2019),
and CAM-based methods (Selvaraju et al. 2017; Muham-
mad and Yeasin 2020; Wang et al. 2020; Fu et al. 2020).
Gradient-based methods backpropagate the gradient of a tar-
get class to the input layer to highlight the image region that
highly influences the prediction. In contrast, CAM-based
methods highlight objects by resorting to the activation of
feature maps. However, Adebayo et al. (Adebayo et al. 2018)
found that a series of gradient-based and CAM-based at-
tribution methods are insensitive to randomizing labels or
model parameters. Thus, they cannot possibly explain mech-
anisms that depend on the relationship between instances
and labels, such as an edge detector. As gradients are com-
puted just as a direction of the increase on the loss function,
pixels that cause high activation or with large gradients may
not be sufficient enough to represent the ‘necessary part’
for the model to make predictions. Although these methods
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are useful for the family of weakly supervised tasks, we ar-
gue that they are not explicit for interpreting deep models.
Furthermore, some of the evaluation metrics (e.g., Pointing
Game (Zhang et al. 2018)) of attribution methods are based
on ‘whether the attribution map is consistent with human
understanding’ (i.e., the pixels on the object is more impor-
tant). To explain the model itself, we explore the necessary
conditions (e.g., parts of the input image) that are sufficient
to yield a specified prediction, rather than encouraging to get
the attribution that people envisioned.

Zhang et al. (Zhang et al. 2020) recognize four major
types of explanations, logic rules, hidden semantics, attri-
bution, and explanations by examples listed in order of de-
creasing explanatory power. Logic rules provide the most
explicit and clearest explanations (Zhang et al. 2020) while
attribution provides the best visualization. In this work, we
use the basic form of a logic rule ‘if P, then Q’ to guide the
attribution, where P is called the antecedent (e.g., a combi-
nation of several input features), and Q is called the conse-
quent (e.g., prediction of a network). We construct logic rule
to find what should be minimally and sufficiently present
to justify its classification and analogously what should be
minimally absent to confuse the classifier. In short, the ex-
planation takes the form ‘If the parts p1, ..., pk of the input x
are present (or absent), then x is classified as class y (or not
y)’. Similar logic rules are proposed in (Dhurandhar et al.
2018).

To obtain P (i.e., p1, ..., pk) as well as the attribution map,
we proposed a novel rule-guided algorithm called dynamic
ablation (DA). We use several circles (called dynamic circle)
to locate p1, ..., pk, and the total area of the circles is itera-
tively shrunk to ensure the consequent Q is satisfied (i.e., the
network still makes the same prediction as it on the original
input x). At each iteration, dynamic circles are encouraged
to be smaller, and those that meet the rule are retained; other-
wise, they are discarded. Such rule-guided explanations are
lucid and easily understandable by humans. Furthermore,
we attribute several trained networks with different archi-
tectures and find it interesting that more complex networks
need less information to make a specific prediction.

Related Work
In this section, we mainly introduce prior works of logic
rules and attribution.

Rule-Form Explanations
Logic rules are commonly acknowledged to be interpretable
and have a long history of research. Most of the rule extrac-
tion methods provide global explanations as they only ex-
tract a single rule set or decision tree from the target model.
Some of them make use of the network-specific informa-
tion which are called decompositional approaches in previ-
ous literature (Craven and Shavlik 1994). Decompositional
approaches generate rules by observing the connections in a
network. One of the earliest methods is the KT algorithm (Fu
1991), which divides the input attributes into two groups,
pos-atts (short for positive attributes) and neg-atts, accord-
ing to the signs of their corresponding weights.

There are only a few methods producing local rule-form
explanations for complex models. The explanation rules can
be if-then, M-of-N, or some other forms such as the propo-
sitional rule, first-order rule, or fuzzy rule. Dhurandhar et
al. (Dhurandhar et al. 2018) construct a local rule that pro-
vides contrastive explanations justifying the classification of
an input. Wang et al. (Wang et al. 2018) came up with an-
other local interpretability method that identifies critical data
routing paths (CDRPs) of the network. However, these rule-
form explanations suffer from a lack of intuitive visualiza-
tion and may not be human-understandable.

Attribution Methods
Neural network attribution techniques can be broadly sepa-
rated into three categories, gradient-based methods, CAM-
based methods, and perturbation-based methods.

Gradient-Based Methods. In general, calculating the
gradient of a model’s output to the input features or the
hidden neurons is the basis of this type of explanation
method. Saliency maps proposed by Simonyan et al. (Si-
monyan, Vedaldi, and Zisserman 2014) use gradients to vi-
sualize relevant regions for a given class. As the generating
saliency maps are usually noisy with vanilla gradients, sub-
sequent methods (Springenberg et al. 2014; Montavon et al.
2017; Sundararajan, Taly, and Yan 2017; Nam, Lee et al.
2020; Zeiler and Fergus 2014; Smilkov et al. 2017) were
developed to produce better visual heatmaps by modifying
the gradient-based algorithms. However, gradients are com-
puted just as a direction of the increase on the loss function,
pixels with large gradients may not be sufficient enough to
justify the model’s predictions.

CAM-Based Methods. An extensive research effort (Sel-
varaju et al. 2017; Wang et al. 2020; Ramaswamy et al.
2020) has been put to blend high-level features extracted
by CNNs in a unique explanation map based on the Class
Activation Mapping (CAM) method (Zhou et al. 2016).
Gradient-Weighted CAM (Grad-CAM) (Selvaraju et al.
2017) is a generalization of CAM that can target any layer
and introduces the gradient information to CAM, which
causes underestimation of sensitivity information due to gra-
dient issues. Ablation-CAM (Ramaswamy et al. 2020) and
Score-CAM (Wang et al. 2020) have been developed to over-
come these drawbacks. Despite the strength of the CAM-
based methods in capturing the features extracted in CNNs,
the lack of localization information in the coarse high-level
feature maps limits such methods’ performance by produc-
ing blurry explanations (Sattarzadeh et al. 2020).

Perturbation-Based Methods. The perturbation-based
approaches directly analyze the variations of the decision
when distorting the input of the network. Few of these
approaches, like RISE (Petsiuk, Das, and Saenko 2018),
proposed random perturbation techniques to yield strong
approximations of explanations. In Extremal Perturbation
(EP) (Fong, Patrick, and Vedaldi 2019), an optimization
problem is formulated to optimize a smooth perturbation
mask maximizing the model’s output confidence score. The
problem with these methods is that they require exhaustive
input modifications and suffer from a lack of rule guidance.
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The Proposed Method
This section introduces the contrastive rules we construct
and details the proposed rule-guided attribution method dy-
namic ablation (DA). First, we suggest minimal-positive rule
and minimal-negative rule to provide contrastive explana-
tions justifying the classification of an input by a black-box
classifier. It is led to a `0 minimization problem and we per-
form input sampling with the proposed dynamic circles to
solve such tasks. Finally, we optimize the time and space
complexity of the method with superpixel technology.

Minimal-Positive Rule
A basic form of a logic rule is ‘If P , then Q’, where P is
called the antecedent, and Q is called the consequent. For
positive-rule:

Ppos: parts of the input x are present,
Qpos: x is classified as class y,

thus the explanation takes the form as ‘if the parts p1, ..., pk
of the input x are present, then x is classified as a specific
class y’ (Pos-R for short). And our attribution method finds
the minimal areas of p1, ..., pk, where k is the number of
attributed parts.

For any input example x : Ω→ Rc and model Φ, we find
an interpretable mask m assigning to each position u ∈ Ω
a value m(u) = {0, 1} to conform to Pos-R, where Ω is an
h × w discrete lattice. The aim is to find such m under the
constraint that m ⊗ x meets Qpos and has the fewest ones
(i.e., sparsest solution). For each pixel u ∈ Ω, m(u) = 1
means that the pixel strongly contributes to the classification
and m(u) = 0 that it does not. The task leads to solving the
following constrained `0 minimization problem:

min
m:F (m⊗x,Qpos)=True

‖m‖0. (1)

In problem (1), F is a Boolean function used to check
whether m⊗x meets Qpos (i.e., Φ(m⊗x) = y). It returns
True when it is satisfied, otherwise returns False. The pix-
els for which m(u) = 1 are preserved, whereas the others
are blacked out. It is worth mentioning that F (x, Qpos) =
True is satisfied as a premise in problem (1), because the
class y in Qpos is the prediction of the model Φ on original
input x.

Minimal-Negative Rule
For the minimal-negative rule, we are interested in the parts
of the input that most vulnerable to disturbance. It is defined
as:

Pneg: parts of the input x are absent,
Qneg: x is not classified as class y,

thus the explanation takes the form as ‘if the parts p1, ..., pk
of the input x are absent, then x is not classified as a spe-
cific class y’ (Neg-R for short). Analogously, our attribution
method finds the minimal areas of p1, ..., pk to confuse the
classifier, and k is the number of attributed parts.

For any input example x : Ω → Rc and model Φ, in
contrast, we aim to find mask m under the constraint that
(J−m)⊗x meetsQneg and has the fewest ones. In which,

Figure 2: An illustration of DA guided by the rule Pos-R. As
the model only sees the clear parts inside the circles, the im-
ages on the upper left side of the red curve are classified as
a correct class ‘ukulele’, and the lower right images are not
classified correctly. The background with different colors in-
dicates the solution space of dynamic circles with different
areas. We shrink the circles iteratively and retain the solu-
tions that meet Pos-R (green arrows); otherwise, we make a
new try (red arrows).

J represents a matrix of the same shape as m where each
element equals 1. We formulate finding such mask m as the
following constrained `0 minimization problem:

min
m:F ((J−m)⊗x,Qneg)=True

‖m‖0. (2)

In problem (2), the definition of the function F is the same
as which in problem (1). Contrary to the problem (1), the
pixels for which m(u) = 1 are blacked out, whereas the
others are preserved.

Dynamic Ablation
This subsection details the proposed rule-guided attribution
algorithm. The optimization algorithm is based on random
sampling from Ω, and the idea is inspired by the method of
Decision-Based Attack (Brendel, Rauber, and Bethge 2018).
They start with Gaussian noise and perform random sam-
pling to reduce the noise close to the original image contin-
uously to generate the adversarial sample. The combination
of the source direction (pointing to the original image) and a
random direction which is used as the sampling direction for
each step, is theoretically proved effectively to minimize the
`2 norm of noise. As the problem (1) and (2) are essential `0
minimization problems, we redefine the source direction as
well as the random direction in our proposed algorithm.

We first initialize m to J as a start point and then itera-
tively reduce the elements of 1 in m according to the model
decision. In each step, we change a small number of ele-
ments 1 to 0 in m and check whether the rule Pos-R (or
Neg-R) is met. We retain the solution if it meets the rule;
otherwise, we make a new try.

We propose to use k dynamic circles to search for
p1, ..., pk in the rule Pos-R or Neg-R. Each circle c can be
defined as a triple (cx, cy, cr), where (cx, cy) indicates the
coordinate of its center and cr indicates its radius. In this
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Algorithm 1: Dynamic Ablation
Input: I , Φ
Output: m, cam

1: Initialize x,y, r randomly
2: Sbound ← I.h · I.w
3: m← J , cam← 0
4: for itr = 0→ itr number do
5: x′ ← x + random(−I.h, I.h) · αstep
6: y′ ← y + random(−I.w, I.w) · αstep
7: r′ ← r + random(−

√
Sbound

π ,
√

Sbound

π ) · αstep
8: r′ ← 1√∑k

i=1 r′2
i

r′ · Sbound

π

9: m′ ← GenerateMask(x′, y′, r′)
10: if Φ(m′ ⊗ I) = Φ(I) then
11: x← x′

12: y ← y′

13: r ← r′

14: m←m′

15: cam← cam + m
16: Sbound ← Sbound · fc
17: end if
18: end for
19: cam← Normalize(cam)
20: return m, cam

way, we can obtain a unique mask m through a dynamic
circle set C :

mx,y =

{
1, Dis ((x, y), (cx, cy)) ≤ cr, ∀c ∈ C
0, Dis ((x, y), (cx, cy)) > cr, ∀c ∈ C. (3)

The function Dis in (3) is to calculate the two-
dimensional Euclidean distance of two points. We convert
the dimension of the optimization target from the original
h×w to the circle-based 3×k. The dimensionality reduction
greatly improves the optimization efficiency and reduces the
optimization difficulty.

Implementation Details. We use three k-dimensional
vectors x,y, r to represent the k circles in C, and they walk
randomly in the nearby range in each iteration under the
control of the step rate. The randomly walking represents
the random direction in the sampling. Furthermore, we iter-
atively reduce the sum area of the circles Sbound by multi-
plying a shrinkage factor fc, and then normalize r so that
π
∑k
i=1 r

2
i = Sbound holds. The area reducing represents

the source direction in the sampling. Mask m is generated
corresponding to the circle set C according to (3). For the
masks that meet the rule in the iterative process, we add
them up and normalize them to get the attribution map. The
attribution maps we generated are displayed in the form of
heat-maps in Sec. . Refer to the Alg. 1 for more algorithm
details.

In Alg. 1, I.h and I.w represent the height and width
of the input image I . The function GenerateMask is exe-
cuted according (3), which is used to generate the 0/1-mask
m. And αstep represents the step rate mentioned above.
Through the iteration, the sum area of the circles is ablated
step by step, see Fig. 2 for a more intuitive description.

Complexity Optimization
It can be seen that for each iteration, the computational com-
plexity of DA to implement sampling on an image with n
pixels is O(n). To make DA more efficient, we perform a
superpixel segmentation algorithm to divide the original im-
age into superpixels as preprocessing. Such algorithms are to
divide an image into several fragments without intersecting,
and each superpixel can be seen as a ‘big pixel’ in the down-
stream methods. Superpixels significantly reduce the num-
ber of original image pixels; thus, the computational com-
plexity is also reduced to the same order as the numbers of
superpixels.

We take the well-known SLIC (Achanta et al. 2012) algo-
rithm to do superpixel segmentation in this work. Accord-
ing to the coordinates, we take the mean value of the pixels
within each superpixel as the center coordinate of it. The su-
perpixels whose center fall within any dynamic circles will
be selected as a part of the attribution area. Consequently, we
only traverse the superpixels in each iteration. The number
of original pixels h × w can be much larger than the num-
ber of superpixels (hundreds of times). Therefore, the com-
putation of associated optimization algorithms DA can be
saved considerably. A runtime test was conducted to evalu-
ate the computational complexity improvement by superpix-
els, the results are shown in Table. 2. It can be seen that the
superpixel preprocessing can help to decrease the runtime
by many orders of magnitude.

Experiment
Both qualitative and quantitative experiments are conducted
respectively to evaluate the performance of different attri-
bution methods. First, we qualitatively evaluate our method
via visualization on ImageNet (Russakovsky et al. 2015) in
Sec . Guided by the rule Pos-R and Neg-R, two ways of at-
tribution are provided by our method. Second, we measure
the attribution performance of different methods by insert-
ing some parts of the input image with different sizes and
calculate the classification accuracy. Compared with prior
methods, the DA shows excellent performance advantages.

Furthermore, we design a novel experiment to compare
the minimal necessary parts to justify different deep models.
Experiments show that more complex networks need less in-
formation to make a specific prediction. Finally, an ablation
study is carried to analyze the superpixel preprocessing ef-
fect on the running time.

Experimental Setup
In our experiments, we use pre-trained VGG16 (Simonyan
and Zisserman 2015) and ResNet50 (He et al. 2016)
networks from the PyTorch model zoo as base models.
Publicly available object classification datasets, namely,
ILSVRC2012 (Russakovsky et al. 2015) val and CI-
FAR100 (Krizhevsky, Nair, and Hinton 2009) are used as
input images. We set the iteration number as 500, superpixel
number as 500. The hyperparameters αstep, fc, and k in our
method are set to 0.2, 0.95, and 4, respectively. More anal-
ysis of such hyperparameters is shown in the ablation study
section.
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Figure 3: Qualitative comparison between various attribution methods applied to a pretrained ResNet-50 (He et al. 2016). From
left to right: original image, ours guided by Pos-R, ours guided by Neg-R, Gradient (Simonyan, Vedaldi, and Zisserman 2014),
Guided (Springenberg et al. 2014), GradCAM (Selvaraju et al. 2017), RISE (Petsiuk, Das, and Saenko 2018), EP (Fong, Patrick,
and Vedaldi 2019).

Qualitative Assessment
This section provides the results of qualitative experiments
of DA guided by two proposed rules Pos-R, Neg-R. Images
are selected from ImageNet2012 (Russakovsky et al. 2015),
and the ResNet50 (He et al. 2016) is used as the base model
in the experiment. The visual attribution maps are displayed
in the form of heat maps in Fig. 3, i.e., the red parts indicate
the most important areas.

Guided by the rule Pos-R, we aim to find the minimally
sufficient parts of the image to justify the model’s prediction
(column 2 in Fig. 3). As our attribution process is restricted
by the rule Pos-R, the network always makes the same pre-
diction as it on the original input, resulting our maps provide
the most explicit and clearest explanations. For example, the
image in the fourth row is classified as ‘miniskirt’. Our map
(column 2) shows that the base model pays special atten-
tion to leg features, not the miniskirt itself. It points out that
the deep network based model’s reasoning logic has a cer-
tain deviation from humans. However, other methods (Si-
monyan, Vedaldi, and Zisserman 2014; Springenberg et al.
2014; Selvaraju et al. 2017; Petsiuk, Das, and Saenko 2018;
Fong, Patrick, and Vedaldi 2019) cannot reflect this devia-
tion because of the lack of rules.

Contrarily, we aim to find the minimally sufficient parts
of the image to disturb the model’s prediction guided by the
rule Neg-R (third column in Fig. 3). As shown in the re-
sults, the maps guided by the contrastive rules Pos-R and
Neg-R roughly highlight the same parts. It shows that the
class-discriminative parts (Pos-R) and the parts are easily to

disturb (Neg-R) in such images are close. For the image on
the second row, our method shows that both the mouth and
legs features are necessary to justify the classification (Pos-
R), while we just need to black out the legs area to make the
model misclassify (Neg-R).

Minimum Attribution Ratio
In this section, we propose the concept of Minimum Attribu-
tion Ratio (MAR). For an input image x and a classification
model Φ, we aim to find the sparsest m that meets criterion
Φ(m ⊗ x) = Φ(x). The proportion of ones contained in
the optimal m is defined as the Minimum Attribution Ratio
(MAR). As our attribution process is always been restricted
by the rule Pos-R, the final mask we found exactly repre-
sents the optimal m. Through Fig. 3, it can be seen that for
the same model Φ, the MAR corresponding to different in-
put images are different. Comparably, experiments in this
section show that for a specific input image, the MAR corre-
sponding to the different models are also different. Further-
more, we find that more complex networks need less infor-
mation to make a specific prediction.

We choose five well-known model architectures
‘AlexNet (Krizhevsky, Sutskever, and Hinton 2017),
ResNet18 (He et al. 2016), ResNet50 (He et al. 2016),
VGG11 (Simonyan and Zisserman 2015), VGG16 (Si-
monyan and Zisserman 2015)’ for classification tasks, and
pretrain them on ImageNet2012. Then, we screen out 500
images that can be correctly classified by these five models
from ImageNet2012 as the test set. We use the proposed
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Figure 4: Visualization of attribution maps applied to different base models. From left to right: original image, AlexNet,
ResNet18, ResNet50, VGG11, VGG16. The red part in each attribution map is the most critical area to justify the model’s
prediction.

Network AlexNet ResNet18 ResNet50 VGG11 VGG16

MAR 11.68% 5.31% 3.50% 4.56% 4.02%

Table 1: MAR corresponding to different model architec-
tures. It shows that more complex networks need less infor-
mation to make a specific prediction.

dynamic ablation algorithm to attribute the images of the
generated test set with different base models.

With the model Φ, a test sample image x, the dynamic
ablation algorithm finds the mask m containing the least el-
ements of 1. We calculate the ratio of the total number of 1
to the entire mask size h×w to get MAR. For all images in
the test set, we average the MAR of all images as the final
result of the model Φ. As shown in Table. 1, AlexNet as the
simplest model architecture yields the largest MAR value.
In the comparison of the two ResNet based architectures,
ResNet18 needs more image information than ResNet50 to
make decisions. Analogously, in the two VGG architectures,
VGG11 has a larger MAR value than the deeper model
VGG16. Overall, ResNet50 has the smallest MAR value
3.50% among these five models. In other words, on average,
only 3.50% of the pixel information of each test image needs
to be provided to ResNet50 for making a correct decision.

In addition, we generate visualization results for this part
of the experiment. Fig. 4 shows the attribution maps of dif-
ferent models for three selected images. The more complex
model architectures produce smaller red areas in the attribu-
tion maps. This is consistent with the results of the quantita-
tive experiment in Table. 1.
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Figure 5: Quantitative results on attribution maps. The figure
on the left side shows the results on CIFAR100/VGG16, and
the right one shows the results on ImageNet2012/ResNet50.
For all the methods, the corresponding classification accu-
racies are improving as the value of the insertion ratio in-
creases. It is worth mentioning that when the insertion ratio
≥ 30%, the classification accuracy of our results on Ima-
geNet2012 even exceeds the initial accuracy of 82.2%.

Quantitative Evaluation

Motivated by (Fong and Vedaldi 2017), we use the idea of
insertion game to measure the performance of several attri-
bution methods quantitatively. We first use these methods to
generate attribution maps for each image in the constructed
test set. We sort the pixels of each test image according to the
importance provided by the attribution map. We take the first
p of input pixels as the insertion area (that is, keep them un-
changed), while the other pixels are blacked out. This forms
a new test set that has been modified. We then use the base
model to retest the classification accuracy on the modified
test set. Higher classification accuracy indicates the better
performance of the corresponding attribution method.
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sp num = 50 sp num = 100 sp num = 500 sp num = 1000 Original

k = 1 0.162 / 20.17 0.165 / 20.24 0.108 / 23.55 0.133 / 25.06 0.117 / 1301.21
k = 2 0.162 / 20.67 0.125 / 20.83 0.100 / 23.56 0.124 / 26.96 0.106 / 1309.48
k = 4 0.158 / 20.74 0.111 / 21.10 0.094 / 23.80 0.124 / 28.74 0.125 / 1586.11
k = 8 0.162 / 21.40 0.176 / 21.43 0.130 / 24.63 0.127 / 29.08 0.137 / 1614.29
k = 16 0.172 / 23.32 0.266 / 23.89 0.170 / 29.16 0.153 / 35.69 0.183 / 2723.76

Table 2: Results of the MAR/runtime on DA with different values of k and sp num. The runtimes are shown in seconds. The
rightmost column shows the results of DA without superpixel preprocessing. It shows that when sp num = 500, superpixel
preprocessing can not only improve the performance but also greatly decrease the running time.

We test attribution methods on two well-known datasets:
CIFAR100 (Krizhevsky, Nair, and Hinton 2009) and Ima-
geNet2012 (Russakovsky et al. 2015). We randomly select
1000 images from CIFAR100 and 500 images from Ima-
geNet2012 as test samples. We use the pretrained VGG16
model as the base model for CIFAR100 and ResNet50 for
ImageNet2012. On the original test set without any changes,
the classification accuracy is CIFAR100/VGG16 - 68.9%
and ImageNet2012/ResNet50 - 82.2%.

We test the attribution performance of different methods
by setting different p values. The experimental results are
shown in Fig. 5. The abscissa represents the proportion of
different insertion areas (i.e., p), and the ordinate represents
the classification accuracy on the modified test set. As our at-
tribution process is always guided by the logic rules (i.e., the
base model makes the correct prediction), the performance
of our method is consequently higher than other methods,
especially when p is small. The GradCAM (Selvaraju et al.
2017) shows good performance in ImageNet2012, but it is
worse in CIFAR100. As our DA is guided by the logic rules
and only the samples which yield correct prediction are re-
tained, resulting the DA has superior performance on both
datasets.

Complexity Evaluation. In addition to performance eval-
uations, a runtime test is carried out to compare the complex-
ity of the methods, timing how long it took for each method
to generate an explanation map. We use a GeForce GTX TI-
TAN X GPU with 12GB of memory and the ResNet-50 as
the base model in this experiment. We randomly select 500
images from ImageNet2012, and the reported runtimes were
averaged over 500 trials. The gradient-based or CAM-based
methods Grad-CAM (Selvaraju et al. 2017), Gradient (Si-
monyan, Vedaldi, and Zisserman 2014), and Guided (Sprin-
genberg et al. 2014) are the fastest methods which achieve
the runtime 25.4, 38.1, and 107.2 milliseconds, respectively.
On the other hand, RISE (Petsiuk, Das, and Saenko 2018)
and EP (Fong, Patrick, and Vedaldi 2019) recorded pretty
longer runtimes, 35.9 and 85.7 seconds, since they both per-
form iterations many times. In comparison with RISE (Pet-
siuk, Das, and Saenko 2018) and EP (Fong, Patrick, and
Vedaldi 2019), DA runs in 23.8 seconds. It is worth men-
tioning that the superpixel processing we proposed reduces
the search space and greatly improves the time efficiency,
which is shown in Table. 2. The original methods in the
rightmost column without superpixel optimization requires
103 second-level arithmetic processing, and through super-
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Figure 6: The figures show MAR curves with different val-
ues of αstep and fc. The blue curve is guided by the rule
Pos-R and the red one is guided by Neg-R. It can be seen that
MAR takes the minimum near αstep = 0.2 and fc = 0.95.

pixel optimization, the time efficiency is improved by nearly
a hundred times.

Ablation Study. To analyze the effect of hyperparame-
ters on DA’s performance, an ablation study is carried. We
use pretrained ResNet50 as the base model and randomly
select 200 images from ImageNet2012 as input samples. By
changing the αstep and fc from 0 to 1 with 0.01 increment
in each step, the mean MAR of the test images change ac-
cordingly. See Fig. 6 for more details. While the number of
dynamic circles and superpixels k and sp num also affect
DA’s performance, we show the differences of MAR and
runtimes (shown in seconds) by setting different values of
k, sp num in Table. 2.

Conclusion

In this work, we propose the attribution method called dy-
namic ablation (DA) and construct two types of logic rules
Pos-R and Neg-R, to guide the proposed method. We aim to
find a minimal bound sufficient in an input image to justify
the network’s prediction and aggregate iteratively to reach
a complete attribution. Different from the existing methods,
the rule guided explanation does not need further human in-
terpretations. Our method outperforms the previous attribu-
tion methods in providing explicit and clear explanations.
Furthermore, we proposed the evaluation metric MAR and
find that more complex networks need less information to
make a specific prediction. Future work involves exploring
the application of the proposed method in interpreting the
meaning of hidden neurons or layers.
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