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Abstract

We present Neural Marionette, an unsupervised approach that
discovers the skeletal structure from a dynamic sequence and
learns to generate diverse motions that are consistent with the
observed motion dynamics. Given a video stream of point
cloud observation of an articulated body under arbitrary mo-
tion, our approach discovers the unknown low-dimensional
skeletal relationship that can effectively represent the move-
ment. Then the discovered structure is utilized to encode the
motion priors of dynamic sequences in a latent structure,
which can be decoded to the relative joint rotations to rep-
resent the full skeletal motion. Our approach works without
any prior knowledge of the underlying motion or skeletal
structure, and we demonstrate that the discovered structure
is even comparable to the hand-labeled ground truth skeleton
in representing a 4D sequence of motion. The skeletal struc-
ture embeds the general semantics of possible motion space
that can generate motions for diverse scenarios. We verify that
the learned motion prior is generalizable to the multi-modal
sequence generation, interpolation of two poses, and motion
retargeting to a different skeletal structure.

Introduction
The skeletal structure of an articulated body (Ceccarelli
2004) has been widely deployed for robotics control (Veera-
paneni et al. 2020; Ha, Xu, and Song 2020) or character an-
imations (Xu et al. 2019b; Liu et al. 2019; Yang et al. 2020).
The low-dimensional motion structure can act as an impor-
tant cue to detect accurate movement and provide interac-
tion between a human and an intelligent agent in a complex
environment. Successful applications usually rely on strong
priors such as human body joints, hands, or faces (Zuffi and
Black 2015; Pavlakos et al. 2019; Zimmermann, Argus, and
Brox 2021; Schmidtke et al. 2021) incorporated with the
recent deep learning architecture. However, it is challeng-
ing to obtain the accurate structure of an unknown subject
from raw observation. Some works extract skeleton using
geometric priors, such as medial axis transform (Lin et al.
2021) or low-dimensional primitives (Paschalidou, Ulusoy,
and Geiger 2019; Paschalidou et al. 2021), while others dis-
cover the unknown motion prior for 4D tracking or mo-
tion prediction in temporally dense observation (Bozic et al.
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Figure 1: Overview of Neural Marionette. Our model learns
to discover adaptive skeleton from volumetric video, and
finds rules of motion by observing movements of skeletons.

2021; Li et al. 2021b; Lin et al. 2020). But they are not de-
signed to understand the motion semantics that can cover a
large variation of plausible motion of a subject with an un-
known skeletal structure.

In this paper, we propose Neural Marionette, a fully unsu-
pervised framework that discovers a semantically consistent
skeleton from a 3D motion sequence and learns the general
motion dynamics of the discovered structure, which is il-
lustrated in Figure 1. Our framework consists of two main
stages: a skeleton module that determines explicit skeleton
for motion, and a dynamics module that learns to propa-
gate the skeletons along the time axis. Given point cloud
sequence capturing the dynamic movement of an articulated
body, our proposed model first learns to detect a skeleton
tree without any prior knowledge of the topology. To de-
tect candidate nodes of a skeletal graph, we adapt the key-
point detectors, which have been demonstrated to be sim-
ple yet powerful in reasoning motions from video (Minderer
et al. 2019; Li et al. 2020; Suwajanakorn et al. 2018; Chen,
Abbeel, and Pathak 2021). Our work extends the unsuper-
vised keypoint detection and explicitly models the parent-
child relationship between the detected keypoints to build a
skeletal tree, which serves as a powerful prior of structure
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to represent the motion dynamics in the subsequent stage.
Given the discovered topological graph of the skeleton, the
dynamics module is formulated with recurrent neural net-
works to embed the sequence of motion into stochastic latent
variables. Specifically, the latent variable encodes the local
rotation of each joint rather than location, so that general
motion priors are effectively captured from different skele-
tons. The embedding is completely task-agnostic, and can
generate a sequence of skeletal motion for any downstream
tasks without further adaptation.

We demonstrate that our model can extract skeletons
of various topologies including full-body humans, robots,
hands, and animals. Then we evaluate the performance of
the skeletal structure in motion reconstruction. Interestingly,
we find that the structure discovered from our model some-
times outperforms the hand-labeled ground truth skeleton in
4D tracking. The learned dynamics is verified to generate
plausible motions for three different downstream tasks: mo-
tion generation, interpolation, and retargeting. To the best of
our knowledge, Neural Marionette is the first work to learn
skeleton and latent dynamics from sequential 3D data, which
does not exploit any categorical prior knowledge nor opti-
mize for a specific sequence to enhance performance.

Related Works
Understanding Motion
In this work, we focus on understanding the motion of the
articulated body which could be represented in terms of the
skeletal structure. Our approach jointly learns the motion
structure (skeleton) and the possible movement (motion dy-
namics), and each has been investigated in the literature. The
motion structure is a shared topology of the skeleton to rep-
resent a given class of bodies. If the target class is known, for
example human bodies, parametric 3D models (Anguelov
et al. 2005; Loper et al. 2015; Romero, Tzionas, and Black
2017; Zuffi et al. 2017) are acquired with a large amount
of human annotations. Parametric models exhibit success-
ful achievement in a variety of applications such as shape
reconstruction and pose estimation. When the structure is
unknown (Palafox et al. 2021), data-driven approaches can
excavate structure from observations (Xu et al. 2019a, 2020;
Lin et al. 2021) with self-supervised approaches that encour-
age consistent topology. However, the inferred structure of-
ten is prone to errors and consequently suffers from perfor-
mance degradation in motion analysis compared to sophisti-
cated templates learned from labeled data.

After the skeletal structure defines the body as a com-
bination of locally rigid parts, there exist a set of possible
joint configurations of the given skeleton to perform plau-
sible natural motion. Given the topology of skeleton, recent
studies utilize graph neural networks to learn the complex
motion patterns (Guo and Choi 2019; Mao et al. 2019; Liu
et al. 2020). However, they heavily rely on accurate skele-
ton, and the performance is usually demonstrated in human
body or production characters. To our knowledge, no previ-
ous works can discover the unknown skeletal structure and
its movement that can accurately generate a large class of
semantic motions.

Variational Recurrent Models
We train a generative model to represent a set of plausi-
ble motions of the given graphical structure. Variational au-
toencoder (VAE) (Kingma and Welling 2013) builds a latent
space of the data observation that follows the desired distri-
bution and demonstrates promising results in various gener-
ative tasks of computer vision (Eslami et al. 2016; Crawford
and Pineau 2019; Burgess et al. 2019; Engelcke et al. 2019).

The latent representation can be further extended to in-
clude the temporal context of sequential data like video
or speech by propagating hidden states through recur-
rent neural networks (RNN) (Srivastava, Mansimov, and
Salakhudinov 2015). Variational recurrent neural network
(VRNN) (Chung et al. 2015) is the recurrent version of VAE,
which models the dependency of latent variables between
neighboring timesteps. A number of works (Kosiorek et al.
2018; Minderer et al. 2019; Hajiramezanali et al. 2019; Veer-
apaneni et al. 2020; Lin et al. 2020) demonstrated promising
results of VRNN on tasks like video prediction and dynamic
link prediction. Our work also temporally extends the em-
bedding of skeletal motion using VRNN and can success-
fully generate the motion sequence of the discovered skele-
ton.

Background
Forward Kinematics
Our skeletal structure defines the motion with the forward
kinematics, which we introduce here. The position of a k-th
node for skeleton in a canonical pose µc,k provides offset
dk ∈ R3 from its parent

dk = µc,k − µc,parent(k). (1)

The length of the displacement ∥dk∥ represents the length of
the bone connecting the k-th node and its parent, and is pre-
served under any possible deformation. A new pose of the
skeleton is composed of a global translation of the root node
and a set of local rotations of each joint. Specifically, the
chain of forward kinematics represents the joint locations as

µk = µparent(k) +Rkdk where

Rk = R̃root · · · R̃parent(k)R̃k = Rparent(k)R̃k.
(2)

Here µk refers to the joint position in the current pose, and
R̃k ∈ R3×3 refers to the relative rotation with respect to
their parents in a local coordinate. In summary, forward
kinematics encodes a pose of a skeleton with a set of ro-
tation matrices, once the skeletal structure defines the node
positions at the rest pose and directed links of parent-child
relationship.

Variational Recurrent Neural Network
Variational recurrent neural network represents the obser-
vations of time steps xt with a VAE that is composed of
a prior distribution pθ(zt|ht) and a posterior distribution
qϕ(zt|xt, ht). zt is the latent variable that encodes the ob-
servation xt, and sampled for generation. In addition to the
ordinary VAE, both prior and posterior are conditioned on
the hidden state of RNN ht. The latent variable zt is trained
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Figure 2: System pipeline of Neural Marionette. Given a
voxelized sequence, skeleton module extracts skeleton, and
dynamics module learns motion dynamics from the ob-
served skeletal motion.

to maximize the likelihood of overall observation xt with
reconstructed input x̂t from the decoder φ by minimizing

Lvrnn =
1

T

∑
t

∥xt − x̂t∥22, where x̂t = φ(zt, ht). (3)

At the same time, pθ is encouraged to track qϕ with
the KL divergence term of Lkl to learn the distribution
that matches the observation with evidence lower bound
(ELBO) (Kingma and Welling 2013)

Lkl =
1

T

∑
t

DKL(qϕ(zt|xt, ht)∥pθ(zt|ht)). (4)

Neural Marionette
Neural Marionette is composed of two stages: skeleton mod-
ule that extracts the underlying skeleton, and dynamics mod-
ule that learns the motion dynamics associated with the dis-
covered skeleton. The overall process is described in Fig-
ure 2. Detailed structures and learning strategies of the two
modules are explained below.

Skeleton Module
Given a sequence of point cloud observations, the unstruc-
tured point cloud is first discretized into binary voxels in a
normalized grid vt ∈ RGx×Gy×Gz , t = 1, . . . , T such that
we can efficiently access the neighboring observation. The
skeleton module extracts the frames of keypoints from the
voxelized sequences and connects the neighboring keypoints
to build a shared skeleton structure for the dynamics mod-
ule. The consistent skeleton acts as a light-weight and very
efficient structural prior for extracting motion semantics of
complex deformation.

Keypoint Detector. The keypoint detector is an encoder-
decoder framework that maps the voxelized sequence vt into
the trajectory of K keypoints {{xk,t}K}T ∈ R4×K×T .
Each xk,t consists of a 3D location µk,t ∈ R3 and intensity
αk,t ∈ R. Because the embedding represents the physical
3D coordinates of the keypoints, and the motion extracted
with the keypoints becomes extremely interpretable in the
subsequent dynamics module.

The keypoint extractor is inspired from autoencoder-
based keypoint detectors on 2D video (Jakab et al. 2018;
Minderer et al. 2019) and extended to 3D. The encoder first
extracts grid features ct ∈ RD×G′

x×G′
y×G′

z with D channels
in a condensed resolution as

ct = ffeat(vt), (5)

and regresses K heatmaps mt ∈ RK×G′
x×G′

y×G′
z

mt = fheat(ct,
1

T

∑
t

vt). (6)

While the conventional keypoint detectors (Jakab et al.
2018; Minderer et al. 2019) do not explicitly share fea-
tures between different time steps, our keypoint detector
is augmented with the temporal mean of v1:T as shown in
Eq. (6), from which the network can observe the spatio-
temporal context. Each channel in mt represents a proba-
bilistic distribution of keypoint and we extract the keypoints
xk,t = (µk,t, αk,t) from it.

The decoder is trained to recover the original sequence vt
from the keypoints xt extracted from the encoder,

v̂t = fdec(gt, g1, c1, v1),

where gk,t = Ngrid(µk,t, σg) ∀k. (7)

Ngrid(µk,t, σg) is Gaussian distribution discretized in a
grid, with mean at µk,t and variance of hyper-parameter
σg . Basically, the keypoint is transformed into a synthetic
heatmap gt by convolving the Gaussian kernel around the
keypoint locations and reconstruct voxel difference vt − v1
with the decoding network fdec. Focusing on the difference
encourages the keypoints to capture dynamic area, where
vt − v1 is non-zero (Minderer et al. 2019).

The encoder-decoder network is trained to find the op-
timal keypoints that best describes the motion of occupied
voxels. Because the network encourages keypoints to cap-
ture the changing voxels, the keypoints might ignore static
region. We explicitly suggest to uniformly spread the key-
points within the point cloud Vt that represents 3D coordi-
nates pt of occupied voxels in vt with the volume fitting loss

Lvol =
1

T

∑
t

1

|Vt|
∑
pt∈Vt

min
k

∥pt − µk,t∥22, (8)

that minimizes the one-directional Chamfer Distance (Fan,
Su, and Guibas 2017) of Vt from keypoints xt.

The loss function to train the autoencoder includes addi-
tional terms from previous work, namely the reconstruction
loss, sparsity loss, and the separation loss. The reconstruc-
tion loss Lrecon is the basic loss for an autoencoder, where
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we want to best reconstruct the original voxel,

Lrecon =
1

T

∑
t

BCE(vt, v̂t). (9)

The proposed volume fitting loss complements the conven-
tional reconstruction loss by capturing the static body parts.
The remaining two loss terms are adapted from the state-of-
the-art keypoint detector (Minderer et al. 2019). The sparsity
loss Lsparse enforces sparsity of the heatmap,

Lsparse =
1

TK

∑
t

∑
k

∥mk,t∥, (10)

and the separation loss Lsep encourages different trajectories
between keypoints

Lsep =
1

TK(K − 1)

∑
t

∑
k

∑
k′ ̸=k

e−σs∥sk,t−sk′,t∥
2
2 , (11)

where sk,t = µk,t− 1
T

∑
t µk,t and σs is a hyper-parameter.

Affinity Estimation. Along with the keypoints, our skele-
ton module estimates the affinity A ∈ RK×K between key-
points in order to compose edges of the skeleton. We first
build decomposed affinity matrices {An ∈ RK×K}N that
focuses on N(N < K) nearest neighbors of keypoints that
can be combined to the final affinity matrix

aij = max
n

an,ij , aij ∈ A, an,ij ∈ An. (12)

Our affinity estimator builds on the prior work (Bozic
et al. 2021) that considers the position of the nodes as a
strong prior on connections. In addition to the previously
suggested losses that observe a single frame, we propose the
graph trajectory loss Ltraj that encourages connectivity akk′

between the keypoints moving in the similar path

Ltraj =
1

TK2

∑
t

∑
k

αk,t

∑
k′

akk′C(µk,t, µk′,t) (13)

given keypoint positions µk,t and intensities αk,t. C(·) is a
function that depends on the velocities µ̇ and accelerations
µ̈ of keypoints

C(µk,t, µk′,t) =
1

2
−1

4

(
⟨µ̇k,t, µ̇k′,t⟩
∥⟨µ̇k,t, µ̇k′,t⟩∥

+
⟨µ̈k,t, µ̈k′,t⟩
∥⟨µ̈k,t, µ̈k′,t⟩∥

)
.

(14)
Jointly with the proposed Ltraj , the affinity estimator

finds An that minimizes a loss function composed of fol-
lowing terms (Bozic et al. 2021): the graph local consistency
loss Llocal, the graph time consistency loss Ltime, and the
graph complexity loss Lcomplex, which are

Llocal =
1

TK2

∑
t

∑
k

αk,t

∑
k′

akk′ lt,kk′ (15)

Ltime =
1

TK2

∑
t

∑
k

αk,t

∑
k′

akk′(lt,kk′ − l̄t,kk′) (16)

Lcomplex =
∑
n

∑
n′ ̸=n

∥An ⊙An′∥F . (17)

Llocal and Ltime are designed to enforce the proximity
and the temporal invariance of the neighbors in Euclidean
space, while Lcomplex helps the neighbors of each keypoint
to be different by minimizing the Frobenius norm of the
Hadamard product of An and An′ .

Skeleton Extraction. The forward kinematics described
in Eq. (2) assumes a tree structure, which starts from the root
and progressively applies relative rotations on the joints of
bones. After the affinity matrix is found, we choose the min-
imal number of edges with high affinity values that create a
single connected component of keypoints. Then we find the
root from the connectivity information, choosing the key-
point that has the shortest distance to all the other keypoints.
Once the root is defined, we can traverse the tree and find
links of parent-child relationship which can apply the for-
ward kinematics of skeletal motion. The detailed algorithm
to build the parent-child graph from the global affinity ma-
trix is described in Sec. A.3 of the supplementary.

Dynamics Module
Using the extracted skeletal topology, the dynamics mod-
ule embeds the motion into the distribution in a latent space
via standard encoder structure of a variational recurrent neu-
ral network (VRNN) with Eq. (4). While the conventional
VRNN learns the latent variable zt that directly reconstructs
the keypoints x̂t, our method encodes the local rotations of
forward kinematics based on the skeletal topology.

Our decoder is implemented with the global pose decoder
φg , and the rotation decoder φr. The global pose decoder
φg decodes the translation of the root node µ̂root,t and the
intensities α̂k,t

µ̂root,t, { α̂k,t}K = φg(zt, ht), (18)

while the rotation decoder φr extracts the relative rotations

{R̃k,t}K = φr(zt, ht). (19)

The positions of keypoints µ̂k,t are recovered from the for-
ward kinematics process of Eq. (2), and full reconstructions
x̂t = {(µ̂k,t, α̂k,t)}K are trained to minimize Eq. (3).

We additionally propose a randomized method to miti-
gate the difficulty in defining the canonical relative rotation.
Training with the forward kinematics requires the canonical
pose of the given skeleton, which is unknown during our un-
supervised setting. The canonical pose is also referred to as
A-pose or T-pose, and is known a priori to define consistent
relative rotations from the observation of xt. Specifically,
the canonical pose defines dk in Eq. (1) and has to be shared
for all episodes of data with the same topology of skeleton.
We suggest to randomly fix the orientation of each offset
d̄k = dk

∥dk∥ ∈ R3 at the beginning of the training step. Then,
the complete offset dk is simply scaled from d̄k by the length
of a bone detected in the first frame,

dk = d̄k∥µk,1 − µparent(k),1∥2. (20)

The proposed randomized orientation is crucial to stabilize
the training of the motion dynamics. We validate the esti-
mated rotation in the motion retargeting task.

The dynamics module of Neural Marionette successfully
embeds the motion semantics with kinematics chain used in
animation or robot control, while it defines the loss in the
explicit physical space. We demonstrate that our dynamics
module effectively captures the distribution of motions that
can generate plausible motion for various tasks.
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Figure 3: Qualitative comparison of extracted skeletons.
Only the nodes whose intensities are above 0.2 are visual-
ized for our model. Note that every edge has a parent-child
relationship in ground truth and our model, while skeletons
from NDG and Point2Skeleton do not have any hierarchy.

Experiments
Our approach extracts the skeleton of unknown topology,
and we show the generalization with a wide variety of tar-
gets: D-FAUST (Bogo et al. 2017) and AIST++ (Li et al.
2021a) for humans, HanCo (Zimmermann et al. 2019; Zim-
mermann, Argus, and Brox 2021) for human hands, and An-
imals (Li et al. 2021b) for various animals. We also gener-
ated a sequence of a dynamic motion of a robot arm, Panda
with the physics-based robot simulator (Rohmer, Singh, and
Freese 2013). We randomly assigned episodes in dataset into
the train and test split such that the ratio of total number
of frames is roughly 9:1. For quantitative evaluations, we
extract a number of randomly cropped sequences for each
episode in the test set, and average the results to obtain the
final score of the corresponding episode.

Skeletons
We first examine the discovered skeleton topology with
AIST++, HanCo, and Panda dataset which contain the
ground truth skeleton models. We compare the quality
against two recent works that find skeletons from 3D obser-
vations in a fully unsupervised manner: Point2Skeleton (Lin
et al. 2021) and Neural Deformation Graph (NDG) (Bozic
et al. 2021). As Point2Skeleton is a model for extracting
topology in a single frame of point cloud, we additionally
augment the architecture with the spatio-temporal module
of CaSPR (Rempe et al. 2020) for fair comparison. With
the temporal extension, both Point2Skeleton and our model
can be optimized for the entire dataset to extract consistent
topology. On the other hand, NDG can only be optimized for

Models AIST++ HanCo Panda

Ours 0.804 (0.201) 0.944 (0.0946) 0.954 (0.0952)
P2S 0.755 (0.150) 0.847 (0.161) 0.937 (0.133)

Table 1: Semantic consistency score from AIST++, HanCo,
and Panda dataset. Values inside parenthesis denote standard
deviation for each keypoint.

Models AIST++ HanCo Panda

Ours 3.42 (0.924) 1.97 (0.0932) 1.71 (0.458)
GT 3.11 (1.03) 2.12 (0.0971) 1.77 (0.437)

Table 2: Chamfer distance(×104) between ground truth
(GT) and reconstructed point sets that are sampled from
voxel stream on 4D tracking. Values inside the parenthesis
denote the 95%-confidence interval.

a single episode. We also would like to note that NDG uses
a sequence of signed distance function grids and therefore
observes richer information than point cloud.

The recovered skeletons are compared against the ground
truth skeleton in Figure 3. While the unsupervised skele-
ton might not exactly coincide with the ground truth, we
can see that our joints are nicely spread within the vol-
ume and the links align with rigid parts of fingers or limbs.
The number of nodes used for our model and baselines are
24 for AIST++, 28 for HanCo, and 12 for Panda dataset.
Note that Neural Marionette finds the minimal skeletal graph
that connects high-intensity nodes to best represent the mo-
tion. This implies that it can readily be applied to sequences
with an unknown skeleton as long as the initial number of
nodes is sufficient. The flexibility is an essential advantage
of Neural Marionette to represent unknown motion, whereas
other approaches are restricted to the fixed number of nodes.
Our skeleton is deduced solely from the observation without
any prior information, and therefore can be applied to vari-
ous dynamic entities including humans, hands, animals, and
robots as depicted in Figure 1.

To measure the quality of the recovered skeleton, we in-
troduce semantic consistency score (SC-score). If the skele-
ton correctly reflects the deformation, the relative positions
of nodes should be consistent with respect to the ground
truth semantic labels even if the detailed topologies are dif-
ferent. SC-score simply indicates how consistent the closest
nodes in the ground truth are for each joint in the recovered
skeleton, which is represented as

SC =
1

J

∑
j

max
k

pj(k), (21)

where J is the number of nodes in the ground truth, and
pj(k) is the observed probability of k-th keypoint being the
nearest neighbor of j-th ground truth joint. Table 1 shows
that our skeleton outperforms Point2Skeleton (P2S) in every
dataset and therefore reflects the correct topology and rela-
tive motion. We exclude NDG for the calculation since NDG
needs to be separately optimized for every episode.
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Figure 4: Result of motion generation on AIST++ dataset
with five conditioned frames. Stochastic latent variables
from our model can generate multi-modal future frames,
which are more plausible than the results from VRNN.

In addition, we observed that the hand-labeled ground
truth skeletons are not necessarily optimized to represent
the motion. For the baseline that is supervised with ground
truth joints, we modified Lvol to minimize mean squared er-
ror between ground truth joints and the keypoints. Although
the same number of nodes are used, nodes from our model
show results comparable to, or sometimes even outperform
the ground truth in reconstructing the given 3D sequence
(Table 2). We can therefore conclude that our unsupervised
skeleton can effectively capture the low-dimensional dy-
namics of volumetric sequence, which is further verified
with various motion generation tasks.

Motion Generation
The learned dynamics of Neural Marionette can generate a
variety of plausible motion sequences. Given Tcond frames
of observation, we test how the dynamics module can pre-
dict Tgen frames of future sequences. We compare the qual-
ity of generated motion with the standard VRNN (Chung
et al. 2015; Minderer et al. 2019) using the same input skele-
ton. Neural Marionette uses the tree structure and deduces
the joint locations by learning the relative joint rotations,
whereas VRNN directly regresses to the positions of the
nodes. The qualitative comparison with AIST++ dataset is
presented in Figure 4, where Tcond is 5 and Tgen is 25. We
find that our method creates much more natural and diverse
motion compared to VRNN. We argue that the chain of for-

Figure 5: Result of motion interpolation on D-FAUST and
HanCo dataset. Quantitative evaluations in Motion Chamfer
Distance (M-CD) are plotted with 95%-confidence interval.

ward kinematics of the correct skeletal representation is sim-
ple yet crucial to correctly encoding the plausible motion se-
quence. The individual regression of VRNN, on the other
hand, results in inconsistent global positions and suffers
from detached or prolonged parts. More results are available
in Sec. D.2 of the supplementary material.

Motion Interpolation
We can also interpolate the starting and ending poses of
keyframes, given as xts and xte , respectively. For motion
interpolation, we generate motion as previous section with-
out additional optimization for the different task. We sample
latent variables zt from the posterior distribution qϕ of the
starting frame xts , and generate N frames by sampling from
prior distribution pθ. We sample multiple trajectories of se-
quences, and select the one that ends with the pose closest
to xte . We can adapt a similar baseline that learns positional
prior (VRNN). We also added two non-generative baselines
which either linearly interpolates the joints locations of the
two poses (Lerp) or spherically interpolates the local joint
rotations inferred from Neural Marionette (Slerp).

Figure 5 (top) visually shows that our dynamics module
more effectively interpolates the poses than baselines for
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Figure 6: Overall process of motion retargeting. (a) Neural
Marionette estimates the skeleton of an arbitrarily posed tar-
get shape, and (b) extracts skeletal motion from the source
observations. (c) Then, the motion of the source object is re-
targeted into the target object.

D-FAUST and HanCo dataset. Sequences generated with
our method better follow the ground truth motion with in-
teresting variations in between, whereas Lerp simply moves
straight to the target pose. The result with Slerp is similar to
Lerp, and additional visualizations for interpolation in both
datasets are contained in the supplementary material.

We suggest Motion Chamfer Distance (M-CD) using
the voxel differences for quantitative comparison of recon-
structed sequence, which is represented as

M-CD =
1

T − 1

T∑
t=2

CD(V +
t , V̂ +

t ) + CD(V −
t , V̂ −

t ) (22)

where V +
t and V −

t refer to sampled point clouds from the
positive and negative voxels of vt − vt−1, and CD refers
to the Chamfer Distance (Fan, Su, and Guibas 2017). When
comparing the motion sequences, simply comparing the col-
located occupancy can be biased toward the large overlap-
ping static region, especially when the moving part is small
with dense temporal sampling. This is because that the bi-
nary grid does not contain any correspondence information.
Instead, we find the difference volume better represents mo-
tion and use it to compare with the reconstructed sequence.

The plots in Figure 5 quantitatively compare the interpo-
lated motion against the ground truth. We can clearly see
that our dynamics module outperforms all of the baselines
in all of the datasets with various topologies and motions.
Compared to the simple interpolation of Lerp and Slerp, the
generative models of ours and VRNN performs significantly
better. The result indicates that learning the motion context
of joints is definitely crucial to generate plausible motion.

Also our encoding with forward kinematics performs supe-
rior to directly encoding positions of keypoints with VRNN.

Motion Retargeting
We also show that the motion extracted from Neural Mari-
onette can be transferred to a different shape with the same
skeleton topology as illustrated in Figure 6. Neural Mari-
onette encodes the relative 3D rotations of joints, enabling
explicit control of motion for a given skeleton tree. We ex-
tract the source motion with pretrained Neural Marionette
from AIST++ dataset and detect the skeleton in humanoids
in Mixamo dataset. We use standard linear blend skinning
(LBS) and distance-based skin weights to deform the given
shape, which is explained in detail in Sec. A.4 of the sup-
plementary. Note that the ground truth skeleton and the ini-
tial canonical pose of either datasets are not known, and the
poses in sequences are arbitrary. This is a highly challenging
scenario compared to the standard rigging procedure, where
a hand-crafted character is provided in a T-pose for adding
bones and skins for further processing.

Neural Marionette deforms the mesh with the full relative
transforms for forward kinematics creating natural motion.
In contrast, the conventional motion representations with
keypoints constrain only the locations of joints and therefore
can create weird local rotations for joints. The distortion in-
duced from rotation mismatch is prominent when the motion
is retargeted to textured characters as in Figure 7.

Figure 7: Comparison between motion retargeting results
with and without rotations.

Conclusions
In this work, we present Neural Marionette, an unsuper-
vised approach that captures low-dimensional motion dis-
tribution of a diverse class of unknown targets without prior
information. Neural Marionette learns the motion dynam-
ics and skeleton of a 3D model from a dynamic sequence
and generates plausible motion from the learned latent dis-
tribution. Our model is explicitly designed to apply the mo-
tion using forward kinematics equipped with a skeletal tree
and corresponding per-joint rotation. The direct relationship
in the physical 3D space makes the representation highly
interpretable. The learned distribution is readily applicable
for motion generation, interpolation, and retargeting with-
out any fine-tuning for the specific tasks. We believe that
our work can be further expanded to a variety of tasks, from
analyzing the movements of the unidentified target to gen-
erating plausible motions for many applications such as 3D
character animation or autonomous agent control.

92



References
Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers,
J.; and Davis, J. 2005. Scape: shape completion and anima-
tion of people. In ACM SIGGRAPH 2005 Papers, 408–416.
Bogo, F.; Romero, J.; Pons-Moll, G.; and Black, M. J. 2017.
Dynamic FAUST: Registering human bodies in motion. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 6233–6242.
Bozic, A.; Palafox, P.; Zollhofer, M.; Thies, J.; Dai, A.;
and Nießner, M. 2021. Neural Deformation Graphs for
Globally-consistent Non-rigid Reconstruction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1450–1459.
Burgess, C. P.; Matthey, L.; Watters, N.; Kabra, R.; Hig-
gins, I.; Botvinick, M.; and Lerchner, A. 2019. Monet: Un-
supervised scene decomposition and representation. arXiv
preprint arXiv:1901.11390.
Ceccarelli, M. 2004. International Symposium on History of
Machines and Mechanisms. Springer.
Chen, B.; Abbeel, P.; and Pathak, D. 2021. Unsupervised
Learning of Visual 3D Keypoints for Control. In ICML.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.;
and Bengio, Y. 2015. A recurrent latent variable model for
sequential data. Advances in neural information processing
systems, 28: 2980–2988.
Crawford, E.; and Pineau, J. 2019. Spatially invariant un-
supervised object detection with convolutional neural net-
works. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 3412–3420.
Engelcke, M.; Kosiorek, A. R.; Jones, O. P.; and Posner, I.
2019. Genesis: Generative scene inference and sampling
with object-centric latent representations. arXiv preprint
arXiv:1907.13052.
Eslami, S.; Heess, N.; Weber, T.; Tassa, Y.; Szepesvari, D.;
Hinton, G. E.; et al. 2016. Attend, infer, repeat: Fast scene
understanding with generative models. Advances in Neural
Information Processing Systems, 29: 3225–3233.
Fan, H.; Su, H.; and Guibas, L. J. 2017. A point set gen-
eration network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 605–613.
Guo, X.; and Choi, J. 2019. Human motion prediction via
learning local structure representations and temporal depen-
dencies. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 2580–2587.
Ha, H.; Xu, J.; and Song, S. 2020. Learning a de-
centralized multi-arm motion planner. arXiv preprint
arXiv:2011.02608.
Hajiramezanali, E.; Hasanzadeh, A.; Duffield, N.;
Narayanan, K. R.; Zhou, M.; and Qian, X. 2019. Vari-
ational graph recurrent neural networks. arXiv preprint
arXiv:1908.09710.
Jakab, T.; Gupta, A.; Bilen, H.; and Vedaldi, A. 2018. Unsu-
pervised learning of object landmarks through conditional
image generation. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Sys-
tems, 4020–4031.

Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.
Kosiorek, A. R.; Kim, H.; Posner, I.; and Teh, Y. W. 2018.
Sequential attend, infer, repeat: Generative modelling of
moving objects. arXiv preprint arXiv:1806.01794.
Li, R.; Yang, S.; Ross, D. A.; and Kanazawa, A. 2021a.
Learn to Dance with AIST++: Music Conditioned 3D Dance
Generation. arXiv preprint arXiv:2101.08779.
Li, Y.; Takehara, H.; Taketomi, T.; Zheng, B.; and Nießner,
M. 2021b. 4DComplete: Non-Rigid Motion Estima-
tion Beyond the Observable Surface. arXiv preprint
arXiv:2105.01905.
Li, Y.; Torralba, A.; Anandkumar, A.; Fox, D.; and Garg, A.
2020. Causal discovery in physical systems from videos.
Advances in Neural Information Processing Systems, 33.
Lin, C.; Li, C.; Liu, Y.; Chen, N.; Choi, Y.-K.; and Wang,
W. 2021. Point2Skeleton: Learning Skeletal Representations
from Point Clouds. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 4277–
4286.
Lin, Z.; Wu, Y.-F.; Peri, S.; Fu, B.; Jiang, J.; and Ahn, S.
2020. Improving generative imagination in object-centric
world models. In International Conference on Machine
Learning, 6140–6149. PMLR.
Liu, L.; Zheng, Y.; Tang, D.; Yuan, Y.; Fan, C.; and Zhou,
K. 2019. NeuroSkinning: Automatic skin binding for pro-
duction characters with deep graph networks. ACM Trans-
actions on Graphics (TOG), 38(4): 1–12.
Liu, Z.; Zhang, H.; Chen, Z.; Wang, Z.; and Ouyang,
W. 2020. Disentangling and unifying graph convolutions
for skeleton-based action recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 143–152.
Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; and
Black, M. J. 2015. SMPL: A skinned multi-person linear
model. ACM transactions on graphics (TOG), 34(6): 1–16.
Mao, W.; Liu, M.; Salzmann, M.; and Li, H. 2019. Learn-
ing trajectory dependencies for human motion prediction. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 9489–9497.
Minderer, M.; Sun, C.; Villegas, R.; Cole, F.; Murphy,
K.; and Lee, H. 2019. Unsupervised learning of ob-
ject structure and dynamics from videos. arXiv preprint
arXiv:1906.07889.
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