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Abstract

We propose an end-to-end image compression and analysis
model with Transformers, targeting to the cloud-based im-
age classification application. Instead of placing an existing
Transformer-based image classification model directly after
an image codec, we aim to redesign the Vision Transformer
(ViT) model to perform image classification from the com-
pressed features and facilitate image compression with the
long-term information from the Transformer. Specifically, we
first replace the patchify stem (i.e., image splitting and em-
bedding) of the ViT model with a lightweight image encoder
modelled by a convolutional neural network. The compressed
features generated by the image encoder are injected convolu-
tional inductive bias and are fed to the Transformer for image
classification bypassing image reconstruction. Meanwhile,
we propose a feature aggregation module to fuse the com-
pressed features with the selected intermediate features of the
Transformer, and feed the aggregated features to a deconvo-
lutional neural network for image reconstruction. The aggre-
gated features can obtain the long-term information from the
self-attention mechanism of the Transformer and improve the
compression performance. The rate-distortion-accuracy op-
timization problem is finally solved by a two-step training
strategy. Experimental results demonstrate the effectiveness
of the proposed model in both the image compression and the
classification tasks.

Introduction
Vision Transformer (ViT) (Dosovitskiy et al. 2021) and its
variations (Touvron et al. 2021; Wu et al. 2021; Yuan et al.
2021; Chen et al. 2021b; Liu et al. 2021), inherited from
Transformer architecture (Vaswani et al. 2017) in natural
language processing (NLP), have recently demonstrated out-
standing performance on a board range of image analysis
tasks, such as image classification (Dosovitskiy et al. 2021),
segmentation (Zheng et al. 2021) and object detection (Fang
et al. 2021). With the self-attention mechanism, these mod-
els are capable of capturing long-range dependencies in the
image data, but inevitably result in high computational cost.
In practice, Transformer-based models are usually deployed
in the cloud-based paradigm and executed remotely. For ex-
ample, massive image data is acquired by the frontend de-
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vices, such as mobile phones or surveillance cameras, and
transmitted to the cloud (i.e., data center) for further analy-
sis, sharing and storage. Image compression serves as a fun-
damental infrastructure for data communication between the
frontend and the cloud.

In the traditional paradigm of cloud-based applications,
image compression is considered independent of image
analysis, and adopts lossy image compression standards de-
signed for human vision, such as JPEG (Wallace 1992). In
particular, the raw images are first transformed to the fre-
quency domain with Discrete Cosine Transform (DCT). The
frequency coefficients are then quantized to discard high fre-
quencies that are less sensitive to human eyes. The quantized
coefficients are encoded to bitstreams with entropy encod-
ing and are transmitted to the cloud. On the cloud side, the
quantized coefficients are recovered from the received bit-
streams, which are then inversely transformed to reconstruct
images. The reconstruction distortions are minimized with
respect to Peak Signal-to-Noise Ratio (PSNR). However, if
the reconstructed images optimized by PSNR are fed into
the downstream image analysis tasks, which are tailored to
machine vision instead, the corresponding results may be in-
accurate, because the principle of machine vision is different
from human vision (Wang et al. 2020). Besides, the tradi-
tional image codecs are comprised of hand-crafted modules
with complex dependencies. It is difficult to optimize the
sophisticated compression frameworks together with subse-
quent machine analysis tasks.

Recently, learning-based image compression emerges as
an active research area in computer vision community. A
number of learning-based image codecs, such as (Toderici
et al. 2016; Theis et al. 2017; Li et al. 2018; Ballé et al.
2018; Minnen, Ballé, and Toderici 2018; Cheng et al. 2020;
Ma et al. 2020; Hu et al. 2021), have achieved compara-
ble or even better perceptual performance than traditional
image codecs for human vision. Besides, by replacing the
hand-crafted modules with deep neural networks (DNNs),
learning-based image compression can be integrated with
high-level tasks and end-to-end optimized for machine vi-
sion (Torfason et al. 2018; Chamain et al. 2021; Le et al.
2021). However, compared with image compression for hu-
man vision, image compression for machine vision is still in
its infancy, because it is challenging to achieve the best of
both worlds for low-level and high-level tasks.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

104



In this paper, we propose a novel paradigm that is friendly
for both human vision and machine vision, which integrates
learning-based image compression with Transformer-based
image analysis. The derived end-to-end image compression
and analysis model leads to the synergy effect of these two
tasks. Instead of placing an existing Transformer-based im-
age classification model directly after an image codec, we
redesign the ViT model to perform image classification from
the compressed features (Torfason et al. 2018) and facilitate
image compression with the long-term information from the
Transformer. Specifically, we replace the the patchify stem
(i.e., image splitting and embedding) of the ViT model with
a lightweight image encoder modelled by a convolutional
neural network (CNN). The compressed features generated
by the image encoder are injected convolutional inductive
bias and are more expressive than the features extracted by
the patchify stem from the decoded images. When trans-
mitted to the cloud, the compressed features are fed to the
Transformer for image classification bypassing image recon-
struction. We further propose a feature aggregation module
to fuse the compressed features with the selected interme-
diate features of the Transformer, and feed the aggregated
features to a deconvolutional neural network for image re-
construction. The aggregated features obtain the long-term
information from the Transformer and effectively improve
the compression performance. We interpret the correspond-
ing rate-distortion-accuracy optimization problem based on
variational auto-encoder (VAE) (Theis et al. 2017; Ballé
et al. 2018) and information bottleneck (IB) (Tishby, Pereira,
and Bialek 2000; Alemi et al. 2017), and finally solve it with
a two-step training strategy.

The main contributions are summarized as follows:
• We propose an end-to-end image compression and anal-

ysis model, which performs image classification from
the compressed features. We interpret the rate-distortion-
accuracy optimization problem based on VAE and IB.
• We design the network by integrating learning-based im-

age compression with ViT-based image analysis, which
leads to the synergy between the two tasks.
• In terms of rate-distortion, the proposed model achieves

PSNR performance close to BPG (Bellard 2014). In
terms of rate-accuracy, the proposed model outperforms
ResNet50 (He et al. 2016), DeiT-S (Touvron et al. 2021)
and Swin-T (Liu et al. 2021) classification from the de-
coded images, while significantly reduces the computa-
tional cost under equivalent number of parameters.

Related Work
Image Compression for Machine Vision. With the fast
progress of artificial intelligence, an increasing amount of
visual data is now not only viewed by humans but also ana-
lyzed by machines. Recently, image/video compression for
machine vision has drawn significant interests in the com-
puter vision community (Duan et al. 2020).

In order to optimize image compression with analysis,
(Choi and Han 2020; Luo et al. 2021) and (Chamain, Che-
ung, and Ding 2019) proposed to optimize the quantization
of the traditional codecs JPEG and JPEG2000 to improve

the performance of the following image classification. How-
ever, since the frameworks of traditional codecs are different
from fully optimizable DNN and only the quantization is in-
volved in the optimization, the improvement is limited. In
contrast, learning-based image compression is more suitable
to be jointly optimized with DNN-based image analysis. The
related works can be divided into two categories: 1) RGB in-
ference, such as (Chamain et al. 2021) and (Le et al. 2021),
performs image analysis from RGB reconstructed images
by placing image analysis methods directly after existing
image codecs. 2) Compressed inference, such as (Torfason
et al. 2018), performs image analysis directly from the com-
pressed features bypassing image reconstruction.

In this paper, we propose an end-to-end image compres-
sion and analysis model with Transformers, inspired by
(Torfason et al. 2018). Beyond (Torfason et al. 2018), we
interpret the rate-distortion-accuracy optimization problem
based on VAE and IB, and design the Transformer-based
model leading to the synergy between the two tasks.

Transformers in Computer Vision. Nowadays, Trans-
formers have shown their potential to be a viable alterna-
tive to CNNs in computer vision tasks. However, the ViT
model (Dosovitskiy et al. 2021) without any human-defined
inductive bias suffers from over-fitting when the training
data is limited, and thus needs sophisticated data augmen-
tation schemes (Touvron et al. 2021). In order to improve
the performance and the robustness of Transformers, several
works (Wu et al. 2021; Yuan et al. 2021; Chen et al. 2021b)
incorporated CNNs into Transformers.

In this paper, we propose to replace the patchify stem of
the ViT model with a CNN-based image encoder, which
can enable image analysis from the compressed features
and effectively improve the performance of image classi-
fication. The concurrent work (Xiao et al. 2021) also ob-
serves that early convolutions in Transformers can increase
the optimization stability and improve the Top-1 accuracy.
Our experimental results are consistent with the observation
of (Xiao et al. 2021).

Proposed Method
Problem Formulation
We aim to perform image analysis from the compressed fea-
tures. Given a raw image x and its label y, our goal is to
learn a compressed representation ẑ that facilitates both im-
age decoding (reconstruction) and analysis, as sketched in
Fig. 1. Since the compressed representation ẑ is extracted
from the image x while not accessing the label y, we as-
sume that x, y, ẑ form a Markov chain y↔ x↔ ẑ, leading
to p(ẑ|x,y) = p(ẑ|x).

Image Compression. We first formulate the lossy image
compression model without taking image analysis into con-
sideration. Following the standard framework of variational
auto-encoder based image compression (Theis et al. 2017;
Ballé et al. 2018), the latent representation z is transformed
from the raw image x by an encoder and is quantized to the
discrete-valued ẑ. Then, ẑ is losslessly compressed with en-
tropy encoding techniques (Witten, Neal, and Cleary 1987;
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Figure 1: The theoretical framework of the proposed end-to-
end image compression and analysis model.

Duda 2009) to form a bitstream. On the decoder side, ẑ is
recovered from the bitstream and inversely transformed to
a reconstructed image x̂. To optimize the performance of
the compression model, it can be approximated by the min-
imization of the expectation of Kullback-Leibler (KL) di-
vergence between the intractable true posterior p(ẑ|x) and a
parametric inference model q(ẑ|x) over the data distribution
p(x) (Ballé et al. 2018):

Ep(x)Dkl[q(ẑ|x)||p(ẑ|x)] = Ep(x)Eq(ẑ|x)[���
��:0

log q(ẑ|x)
− log p(x|ẑ)− log p(ẑ)] + const (1)

where Dkl[·||·] denotes KL divergence. Because the trans-
form from x to z is deterministic and the quantization
of z is relaxed by adding noise from uniform distribution
U(− 1

2 ,
1
2 ), we have q(ẑ|x) =

∏
i U(zi−

1
2 , zi+

1
2 ) and thus

the first term log q(ẑ|x) = 0. The second term of (1) is inter-
preted as the expected distortion between x and x̂, and the
third term is interpreted as the cost of encoding ẑ, leading to
the rate-distortion trade-off (Shannon 1948).

Image Analysis. We then turn to consider image analy-
sis. We propose to maximize the mutual information I(ẑ,y)
between the compressed representation ẑ and the label y,
inspired by information bottleneck (Tishby, Pereira, and
Bialek 2000; Alemi et al. 2017). The mutual information
I(ẑ,y) is the reduction in the uncertainty of y due to the
knowledge of ẑ:

I(ẑ,y) = H(y)−H(y|ẑ)

= H(y) +
∑
y,ẑ

p(y, ẑ) log p(y|ẑ) (2)

where H(·) denotes the entropy. Because the true poste-
rior p(y|ẑ) is also intractable, we propose a variational ap-
proximation q(y|ẑ), which is the decoder for image analy-
sis apart from the decoder for image reconstruction. Since
Dkl[p(y|ẑ)||q(y|ẑ)] ≥ 0, we have

∑
y p(y|ẑ) log p(y|ẑ) ≥∑

y p(y|ẑ) log q(y|ẑ) and thus

I(ẑ,y) ≥ H(y) +
∑
y,ẑ

p(y, ẑ) log q(y|ẑ) (3)

Because the entropy H(y) is independent of ẑ, we can
maximize

∑
y,ẑ p(y, ẑ) log q(y|ẑ) as a proxy for I(ẑ,y).

Based on the Markov chain assumption, we replace p(y, ẑ)
with

∑
x p(x,y, ẑ) =

∑
x p(x,y)p(ẑ|x), and can rewrite∑

y,ẑ p(y, ẑ) log q(y|ẑ) as

Ep(x,y)Ep(ẑ|x) log q(y|ẑ) (4)

Figure 2: The network architecture of the encoder. We set
N = 128 and M = 192 same as the low-rate setting of
(Ballé et al. 2018). The encoder replaces the patchify stem
of ViT and is relatively lightweight, which can be deployed
at the frontend. Q: Quantization. AE: Arithmetic Encoder.

With q(y|ẑ), we can generate the estimated label ŷ from ẑ.

Joint Optimization. With (1) and (4), we further formu-
late the joint optimization of both image compression and
analysis. Since p(ẑ|x) in (4) is intractable, we share the in-
ference model q(ẑ|x) in (1) as the approximation, and min-
imize the approximated negative (4) together with (1)1:

Ep(x,y){−αEq(ẑ|x) log q(y|ẑ) +Dkl[q(ẑ|x)||p(ẑ|x)]} (5)

where α is a trade-off parameter. Suppose that p(x|ẑ) is
given byN (x|x̂, (2β)−11), we can finally rewrite (5) to the
objective function:

Ep(x,y)Eq(ẑ|x)[−α log q(y|ẑ)+β‖x− x̂‖22− log p(ẑ)] (6)

The first term of (6) weighted by α can be interpreted as the
cross-entropy loss for image analysis, such as image classifi-
cation or segmentation, based on the types of label y. In this
work, we choose image classification as the target task. The
second term weighted by β is the mean square error (MSE)
distortion loss. The third term is the rate loss.

In contrast to the image compression models (Theis et al.
2017; Ballé et al. 2018), the compressed representation ẑ in
(6) is also optimized for image analysis tasks. The complex-
ity of ẑ in (6) is controlled by minimizing the cost of encod-
ing ẑ, rather than controlled by minimizing I(ẑ,x) in the
information bottleneck models (Tishby, Pereira, and Bialek
2000; Alemi et al. 2017).

Transformer-based Network Architecture
We realize the theoretical framework in Fig. 1 by proposing
an end-to-end image compression and analysis model with
Transformers. The proposed model can promote the synergy
between the two tasks.

Encoder. The network architecture of the proposed en-
coder is illustrated in Fig. 2. Similar to the setting of (Ballé
et al. 2018), we employ four stride-2 5 × 5 convolutional
layers to extract features with gradually reduced spatial
resolution from the input image x ∈ RH×W×3. We use
LeakyReLU as the activation function instead of using the
Generalized Divisive Normalization (GDN) (Ballé, Laparra,
and Simoncelli 2016), because GDN results in convergence

1Ep(x)Dkl[q(ẑ|x)||p(ẑ|x)] = Ep(x,y)Dkl[q(ẑ|x)||p(ẑ|x)]
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problem when training with the Transformer blocks in the
proposed model.

The resulting feature z ∈ RH
16×

W
16×M is then quantized

to the discrete-valued ẑ. We employ the hyper-prior mod-
ule (Ballé et al. 2018; Minnen, Ballé, and Toderici 2018) to
estimate p(ẑ|hẑ) for the entropy encoding of ẑ, where hẑ

denotes the hyper-prior of ẑ. We do not use the serial au-
toregressive module (Minnen, Ballé, and Toderici 2018), be-
cause its corresponding decoding time is too long on large-
scale image classification datasets.

From the perspective of Transformer architecture design,
the proposed encoder can be considered as the replacement
of the patchify stem, i.e., a stride-16 16 × 16 convolutional
layer, applied to the input image in the ViT model (Dosovit-
skiy et al. 2021). Several concurrent works (Wu et al. 2021;
Yuan et al. 2021; Chen et al. 2021b; Xiao et al. 2021) also
replace the patchify stem with a stack of convolutional lay-
ers, in order to improve the performance of image classi-
fication. In the experiments, we observe that the proposed
encoder is capable of extracting compressed features suit-
able for both image decoding reconstruction and classifica-
tion through joint optimization. Note that the proposed en-
coder is relatively lightweight, thus can be deployed at the
frontend, such as mobile phones or surveillance cameras.

Decoder-Classifier. The decoder receives the bitstream
from the encoder and adopts the shared hyper-prior mod-
ule p(ẑ|hẑ) to recover ẑ. For image classification, we di-
rectly feed ẑ to an inference network, instead of the common
subsequent approach—first reconstruct the decoded image x̂
and then conduct inference on x̂.

Specifically, we adopt the standard Transformer blocks
in the ViT model (Dosovitskiy et al. 2021) with the num-
ber of parameters equivalent to ResNet50 (He et al. 2016),
as shown in Fig. 3. We expand the channel dimension of
ẑ to C with a 1 × 1 convolutional layer, and reshape the
resulting feature ẑ0 ∈ RH

16×
W
16×C to a sequence ẑ0 ∈

R
HW
162
×C . To maintain the spatial information of the fea-

ture ẑ0, we add learnable position embeddings p to ẑ0 lead-
ing to z̃0 = ẑ0 + p. Following (Dosovitskiy et al. 2021),
we prepend a learnable class embedding c̃0, and feed the
sequence [c̃0; z̃0] ∈ R(HW

162
+1)×C to the Transformer con-

sisting of L Transformer blocks. The architecture of each
Transformer block is illustrated in Fig. 3. The computation
process can be formulated as

[c̃′i; z̃
′
i] = MSA(LN([c̃i−1; z̃i−1])) + [c̃i−1; z̃i−1] (7)

[c̃i; z̃i] = FFN(LN([c̃′i; z̃
′
i])) + [c̃′i; z̃

′
i] i = 1, . . . , L

where MSA(·) denotes the multi-head self-attention mod-
ule, FFN(·) denotes the feed forward network and LN(·) de-
notes the layer normalization (Ba, Kiros, and Hinton 2016),
respectively.

With the self-attention mechanism, the class embedding
c̃i interacts with the image feature z̃i, and the final output
c̃L is used to compute q(y|ẑ) for image classification:

q(y|ẑ) = Softmax(FFN(LN(c̃L))) (8)

where Softmax(·) denotes softmax operation. The FFN(·)

is the classifier head mapping the embedding dimension
from C to the number of classes.

Decoder-Reconstructor. Reconstructing image x̂ directly
from ẑ (or ẑ0) ignores the global spatial correlations among
the latent features. Recent image compression works (Qian
et al. 2021; Guo et al. 2021) demonstrate that leveraging
global context information during entropy coding can im-
prove the compression performance. Transformers naturally
capture the global spatial information among the latent fea-
tures, which can also benefits low-level tasks, such as image
processing (Chen et al. 2021a) and image generation (Jiang,
Chang, and Wang 2021). Motivated by these works, we aim
to extract the intermediate features z̃i’s of the Transformer
and incorporate them into image reconstruction.

Specifically, we select ẑ0 and [z̃1, z̃2, z̃3], and propose a
feature aggregation module to fuse these features, similar
to (Zheng et al. 2021). Selecting [z̃1, z̃2, z̃3] means that the
first three Transformer blocks are also involved in the im-
age reconstruction process. Since image reconstruction may
work independently of image classification, we avoid using
{z̃i(i > 3)} that involve too many Transformer blocks in the
image reconstruction, in order to reduce the computational
complexity. The feature aggregation module is illustrated in
Fig. 3. The computational process can be formulated as

ẑ′′0 = Conv01(ẑ0), z̃′′1 = Conv11(z̃1)

z̃′′2 = Conv21(z̃2), z̃′′3 = Conv31(z̃3) (9)

ẑf = Conv2([ẑ
′′
0 ; z̃

′′
1 ; z̃

′′
2 ; z̃

′′
3 ])

where Convi1(·) denotes a 1×1 convolutional layer reducing
the channel dimension of the input to C

4 . Conv2(·) is another
1 × 1 convolutional layer with C channels fusing the four
concatenated input features. ẑf is the fused feature.

Finally, we input the fused feature ẑf to four stride-2 5×5
deconvolutional layers gradually increasing the spatial reso-
lution, leading to the reconstructed RGB image x̂.

Training Strategy
We observe that the one-step training strategy, i.e., minimiz-
ing (6) to train the encoder and decoder from scratch, leads
to convergence problem in the experiments. Instead, we em-
ploy a two-step training strategy:
1) We pretrain the proposed model without considering the

quantization of z and the hyper-prior module of ẑ. We
remove the rate loss in (6) temporarily, and minimize the
cross-entropy loss together with the MSE loss. Because
the value of the cross-entropy loss is much smaller than
that of the MSE loss, we set α = 1 and β = 0.001 in (6)
to balance the contributions of the two losses.

2) We load the pretrained parameters and minimize (6) to
train the entire network including the quantization of z
and the hyper-prior module of ẑ. The α and β in (6) are
tuned with fixed α

β to achieve different bit rates.

Experiments
Experimental Settings
Datasets. We perform extensive experiments on the Ima-
geNet dataset (Deng et al. 2009) and iNaturalist19 (INat19)
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Figure 3: The network architecture of the decoder. We set C = 384, L = 12 and N = 128. The number of parameters
is equivalent to ResNet50 (He et al. 2016). The decoder is deployed on the cloud to classify or reconstruct images from the
received bitstreams. AD: Arithmetic Decoder.

dataset (Horn and Aodha 2019). ImageNet is well-known
image classification dataset containing 1000 object classes
with 1, 281, 167 training images and 50, 000 validation im-
ages. INat19 is a fine-grained classification dataset contain-
ing 1010 species of plants and animals with 265, 213 train-
ing images and 3030 validation images.

Pretraining w/o Compression. As aforementioned, we
pretrain the proposed model without the quantization of z
and the hyper-prior module of ẑ. We remove the rate loss,
and minimize the cross entropy loss together with the MSE
loss. We set α = 1 and β = 0.001, respectively. We set the
input size to 224×224 and adopt the same data augmentation
as DeiT (Touvron et al. 2021), except for the Exponential
Moving Average (EMA) (Polyak and Juditsky 1992), which
do not enhance the performance of the proposed model. The
input images are normalized with ImageNet default mean
and standard deviation, and are denormalized during im-
age reconstruction. We observe that random erasing (Zhong
et al. 2020), mixup (Zhang et al. 2017) and cutmix (Yun et al.
2019) designed for the training of image classification are
also compatible with the training of image reconstruction in
our experiments.

On the ImageNet dataset, we train the proposed network
from scratch. We use AdamW optimizer (Loshchilov and
Hutter 2019) for 300 epochs with minibatches of size 1024.
We set the initial learning rate to 0.001 and use a cosine
decay learning rate scheduler with 5 epochs warm-up.

On the INat19 dataset, we initialize the network with the
pretrained parameters on the ImageNet dataset. The classi-
fier head is adjusted to the class number of INat19. We use
AdamW optimizer for 100 epochs with minibatches of size
512. We set the initial learning rate to 0.0005 and use a co-
sine decay learning rate scheduler with 2 epochs warm-up.

Training w/ Compression. We load the pretrained param-
eters on the ImageNet and INat19 datasets, respectively. We
recover the quantization of z and the hyper-prior module of
ẑ. We fix α

β = 100 and set α ∈ {0.1, 0.3, 0.6}. We observe
that the hyper-prior module of ẑ is sensitive to data augmen-
tation, and thus we only employ RandomResizedCropAnd-
Interpolation and RandomHorizontalFlip during training.

On the ImageNet dataset, we load the corresponding pre-
trained parameters, and use Adam optimizer (Kingma and
Ba 2015) with a initial learning rate of 0.0001, following
(Ballé et al. 2018). We train the proposed network for 300
epochs with minibatches of size 1024, and use a cosine de-
cay learning rate scheduler with 5 epochs warm-up.

On the INat19 dataset, we load the corresponding pre-
trained parameters, and also use Adam optimizer with a ini-
tial learning rate of 0.0001. We train the proposed network
for 300 epochs with minibatches of size 512, and use a co-
sine decay learning rate scheduler with 2 epochs warm-up.

Experimental Results
Pretrained Model. Table 1(a) reports the experimental re-
sults of our pretrained model without compression on Ima-
geNet. We compare with the existing image classification
models including CNN-based models, such as ResNet50
(He et al. 2016) and RegNetY-4G (Radosavovic et al. 2020),
and Transformer-based models, such as ViT-B (Dosovitskiy
et al. 2021), DeiT-S (Touvron et al. 2021), CvT-13 (Wu et al.
2021), CeiT-S (Yuan et al. 2021), Visformer-S (Chen et al.
2021b), Swin-T (Liu et al. 2021) and ViTC-4GF (Xiao et al.
2021). We select the specific settings of the models with the
number of parameters closest to ResNet50.

Table 1(b) reports the experimental results of our pre-
trained model on INat19 dataset, compared with ResNet50,
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(a) Results on ImageNet Dataset
Model input

size
Params

(M)
Top-1
(%)

PSNR
(dB)

ResNet50 224 25.6 75.9 −
RegNetY-4G 224 20.6 80.0 −
ViT-B 224 86.5 77.9 −
DeiT-S 224 22.1 79.9 −
CvT-13 224 20.0 81.6 −
CeiT-S 224 24.2 82.0 −
Visformer-S 224 40.2 82.3 −
Swin-T 224 28.3 81.2 −
ViTC -4GF 224 17.8 81.4 −
Ours 224 25.6 81.7 31.7

(b) Results on INat19 Dataset
Model input

size
Params

(M)
Top-1
(%)

PSNR
(dB)

ResNet50 224 25.6 71.8 −
DeiT-S 224 22.1 76.2 −
Swin-T 224 28.3 77.9 −
Ours 224 25.6 78.0 31.5

Table 1: Results of our pretrained model without compres-
sion on the ImageNet/INat19 datasets, compared with the
existing image classification models.

DeiT-S and Swin-T. ResNet50 is finetuned based on (He
et al. 2016). DeiT-S and Swin-T are finetuned using the same
setting as our pretrained model.

From Table 1, our pretrained model can achieve compara-
ble or better Top-1 accuracies than the existing image clas-
sification models, which demonstrates the efficacy of the
image encoder for the Transformer-based image classifica-
tion. In terms of image reconstruction evaluated by PSNR,
our pretrained model achieves 31.7 dB and 31.5 dB, re-
spectively. All these results demonstrate that the pretrained
model can provide a satisfactory initialization for the follow-
ing training with compression.

Full Model. In Fig. 4, we report the rate-distortion and
rate-accuracy results of our full model on ImageNet and
INat19. We compare with the existing image codecs and the
image classification models applied to the decoded images.

We select the traditional image codecs including JPEG
(Wallace 1992), JPEG2000 (Skodras, Christopoulos, and
Ebrahimi 2001), BPG (Bellard 2014), and the learning-
based image codecs including bmshj (Ballé et al. 2018) and
mbt-m (Minnen, Ballé, and Toderici 2018). The mbt-m re-
moves the serial autoregressive module, avoiding long de-
coding time on the large-scale datasets. The sophisticated
learning-based image codecs with complex entropy models
and network architectures, such as (Hu, Yang, and Liu 2020;
Cheng et al. 2020; Qian et al. 2021; Guo et al. 2021), are too
time-consuming to be evaluated on the large-scale datasets,
despite their good compression performance.

We select the decoded images of the best performed tradi-
tional and learning-based image codecs in our experiments,
i.e., BPG and mbt-m, and adopt the image classification
models ResNet50, DeiT-S and Swin-T to compute the Top-1
accuracies in comparison with the proposed model. More-

(a) Rate-distortion and rate-accuracy results on ImageNet.

(b) Rate-distortion and rate-accuracy results on INat19.

Figure 4: Rate-distortion and rate-accuracy results of the
proposed model, compared with the existing image codecs
and the image classification methods applied to the recon-
structed RGB images. JFT means joint finetune.

over, we jointly finetune mbt-m together with ResNet50,
Deit-S and Swin-T by minimizing (6) with α

β = 100, same
as the proposed model.

In terms of the rate-distortion performance, the pro-
posed model significantly outperforms the traditional image
codecs JPEG and JPEG2000. It is comparable to BPG at
relatively low bit-rates but is surpassed by BPG at high bit-
rates. The proposed model outperforms the learning-based
image codecs bmshj and mbt-m. The rate-distortion perfor-
mance of the jointly finetuned mbt-m is similar to the origi-
nal mbt-m. The proposed model also outperforms the jointly
finetuned mbt-m.

In terms of the rate-accuracy performance, the proposed
model outperforms ResNet50, DeiT-S and Swin-T applied
to the decoded images of BPG and mbt-m, because the im-
age classification models trained on the original datasets
are not robust to the decoded images at low bit-rates. Al-
though Swin-T outperforms DeiT-S on the original datasets
(Table. 1), DeiT-S outperforms Swin-T on the decoded im-
ages at low bit-rates. After jointly finetuned, Swin-T sur-
passes DeiT-S on the decoded images at the corresponding
bit-rates. The proposed model also outperforms the jointly
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(a) JPEG (b) JPEG2000 (c) BPG

(d) mbt-m (e) mbt-m (JFT) (f) Ours

Figure 5: (a) JPEG+DeiT-S, 29.3dB, 0.60bpp, maraca (×).
(b) JPEG2000+DeiT-S, 29.17dB, 0.41bpp, can opener (×).
(c) BPG+DeiT-S, 29.41dB, 0.18bpp, can opener (×). (d)
mbt-m+DeiT-S, 29.79dB, 0.18bpp, can opener (×). (e)
mbt-m+Swin-T(JFT), 29.75dB, 0.19bpp, reel (×). (f) Ours,
29.52dB, 0.19bpp, teddy bear (X).

finetuned ResNet50, Swin-T and DeiT-S, because the image
reconstruction constrained by MSE loss damages the high-
frequency information effective for the image classification.
The proposed model bypasses the image reconstruction pro-
cess and directly do inference from the compressed features,
which can utilize these high-frequency information.

In Fig. 5, we show an illustrative example of the exper-
imental results. Under similar PSNRs, our model achieves
comparable or less bit-per-pixel (bpp) and the correct classi-
fication result, compared with the other methods.

Ablation Studies
Rate-Distortion-Accuracy Trade-off. When the bit-rates
of ẑ is constrained, minimizing (6) with different αβ leads to
bit allocation between image classification and reconstruc-
tion. We empirically set α

β ∈ {50, 100, 200} and test the
rate-distortion-accuracy trade-off as shown in Fig. 6. We can
observe that larger αβ leads to better Top-1 accuracy but sac-
rifices PSNR. In contrast, smaller α

β leads to better PSNR
but lower Top-1 accuracy.

Feature Aggregation. In Fig. 6, we compare with the pro-
posed model without the feature aggregation module, i.e.,
directly feeding ẑ0 to the deconvolutional neural network
for image reconstruction. Although the feature aggregation
module is only applied to the image reconstruction process,
it can benefit both the image classification and reconstruc-
tion through rate-distortion-accuracy optimization. The re-
duced bit-rates from the image reconstruction are potentially
allocated to the image classification, leading to the improve-
ment of both tasks. Although the improvement of Top-1 ac-
curacy is more obvious than PSNR in Fig. 6, the decrease

Figure 6: Ablation studies of rate-distortion-accuracy trade-
off and the feature aggregation (FA) module.

Figure 7: Ablation study of the computational cost.

of the cross entropy loss −α log q(y|ẑ) is actually similar to
that of the MSE loss β‖x− x̂‖22 in (6) in the experiments.

Computational Cost. In Fig. 7, we compare the computa-
tional cost of the proposed model with the concatenation of
the learning-based image codec mbt-m and the image clas-
sification methods including ResNet50, DeiT-S and Swin-T.
The architecture of the proposed encoder is similar to the
low-rate setting of mbt-m, thus their computational costs of
image encoding are similar. In terms of image reconstruc-
tion on the decoder side, our image reconstructor needs more
FLOPs than mbt-m due to the feature aggregation module. In
terms of image classification on the decoder side, our image
classifier directly performs inference from the compressed
features without the image reconstruction process, and thus
needs far less computational cost compared with the infer-
ence from reconstructed RGB images.

Conclusion
In this paper, we learn an end-to-end image compression and
analysis model with Transformers, targeting to the cloud-
based image classification application. At the frontend, a
CNN-based image encoder extracts compressed features
from raw images and transmits them to the cloud. On the
cloud, the compressed features injected convolutional induc-
tive bias are directly fed to the Transformer for image classi-
fication bypassing image reconstruction. Meanwhile, the in-
termediate features of the Transformer capturing global in-
formation are aggregated with the compressed features for
image reconstruction. Experimental results demonstrate the
effectiveness of the proposed model in both rate-distortion
and rate-accuracy performance.
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