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Abstract
Despite significant advancements of deep learning-based
forgery detectors for distinguishing manipulated deepfake
images, most detection approaches suffer from moderate to
significant performance degradation with low-quality com-
pressed deepfake images. Because of the limited informa-
tion in low-quality images, detecting low-quality deepfake
remains an important challenge. In this work, we apply
frequency domain learning and optimal transport theory in
knowledge distillation (KD) to specifically improve the de-
tection of low-quality compressed deepfake images. We ex-
plore transfer learning capability in KD to enable a student
network to learn discriminative features from low-quality im-
ages effectively. In particular, we propose the Attention-based
Deepfake detection Distiller (ADD), which consists of two
novel distillations: 1) frequency attention distillation that ef-
fectively retrieves the removed high-frequency components
in the student network, and 2) multi-view attention distil-
lation that creates multiple attention vectors by slicing the
teacher’s and student’s tensors under different views to trans-
fer the teacher tensor’s distribution to the student more effi-
ciently. Our extensive experimental results demonstrate that
our approach outperforms state-of-the-art baselines in detect-
ing low-quality compressed deepfake images.

Introduction
Recently, facial manipulation techniques using deep learn-
ing methods such as deepfakes have drawn considerable
attention (Rossler et al. 2019; Pidhorskyi, Adjeroh, and
Doretto 2020; Richardson et al. 2020; Nitzan et al. 2020).
Moreover, deepfakes have become more realistic and so-
phisticated, making it difficult to be distinguished by human
eyes (Siarohin et al. 2020). And it has become much eas-
ier to generate such realistic deepfakes than before. Hence,
such advancements and convenience enable even novices to
easily create highly realistic fake faces for simple entertain-
ment. However, these fake images raise serious security, pri-
vacy, and social concerns, as they can be abused for ma-
licious purposes, such as impersonation (Catherine 2019),
revenge pornography (Cole 2018) , and fake news propaga-
tion (Quandt et al. 2019).

To address such problems arising from deepfakes, there
have been immense research efforts in developing effec-
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tive deepfake detectors (Dzanic, Shah, and Witherden 2019;
Rossler et al. 2019; Wang et al. 2019; Li and Lyu 2018;
Khayatkhoei and Elgammal 2020; Zhang, Karaman, and
Chang 2019). Most approaches utilize the deep learning-
based approaches, where generally they perform well if
there are a large amount of high-resolution training data.
However, the performances of these approaches drop dra-
matically (by up to 18% (Dzanic, Shah, and Witherden
2019; Rossler et al. 2019)) for compressed low-resolution
images due to lack of available pixel information to suf-
ficiently distinguish fake images from real ones. In other
words, because of the compression, subtle differences and
artifacts such as sharp edges in hairs and lips that can be
possibly leveraged for differentiating deepfakes can also be
removed. Therefore, there still remains an important chal-
lenge to effectively detect low-quality compressed deep-
fakes, which frequently occur on social media and mobile
platforms in bandwidth-challenging and storage-limited en-
vironments.

In this work, we propose the Attention-based Deepfake
detection Distiller (ADD). Our primary goal is to detect low-
quality (LQ) deepfakes, which are less explored in most pre-
vious studies but plays a pivotal role in real-world scenar-
ios. First, we assume there are high-quality (HQ) images
are readily available, similar to the settings in other stud-
ies (Rossler et al. 2019; Wang et al. 2019; Li and Lyu 2018;
Khayatkhoei and Elgammal 2020; Zhang, Karaman, and
Chang 2019; Dzanic, Shah, and Witherden 2019). And, we
use knowledge distillation (KD) as an overarching backbone
architecture to detect low-quality deepfakes. While most of
the existing knowledge distillation methods aim to reduce
the student size for model compression applications or im-
prove the performance of lightweight deep learning models
(Hinton, Vinyals, and Dean 2015; Tian, Krishnan, and Isola
2019; Huang and Wang 2017; Passalis and Tefas 2018), we
hypothesize that a student can learn lost distinctive features
of low-quality compressed images from a teacher that is pre-
trained on high-quality images for deepfake detection. We
first lay out the following two major challenges associated
with detecting the LQ compressed deepfakes, and provide
the intuitions of our approaches to overcome these issues:

1) Loss of high-frequency information. As discussed,
while lossy image compression algorithms make changes vi-
sually unnoticeable to humans, they can significantly reduce
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DNNs’ deepfake detection capability by removing the fine-
grained artifacts in high-frequency components. To investi-
gate this phenomenon more concretely, we revisit Frequency
Principal (F-Principal) (Xu, Zhang, and Xiao 2019), which
describes the learning behavior of general DNNs in the fre-
quency domain. F-Principal states that general DNNs tend
to learn dominant low-frequency components first and then
capture high-frequency components during the training pro-
cess (Xu, Zhang, and Xiao 2019). For example, to illustrate
this issue, Fig. 1 is provided to indicates that most of the
lost information during compression is from high-frequency
components. As a consequence, general DNNs shift their at-
tention in later training epochs to high-frequency compo-
nents, which now represent intrinsic characteristics of ob-
jects in each individual image rather than discriminative
features. This learning process increases the variance of
DNNs’ decision boundaries and induces overfitting, thereby
degrading the detection performance. A trivial approach to
tackle the overfitting is applying the early stopping method;
however, fine-grained artifacts of deepfakes can be sub-
sequently omitted, especially when they are highly com-
pressed. To overcome this issue, we propose the novel fre-
quency attention distiller, which guides the student to ef-
fectively recover the removed high-frequency components
in low-quality compressed images from the teacher during
training.

2) Loss of correlated information. In addition, under
heavy compression, crucial features and pixel correlations
that not only capture the intra-class variations, but also char-
acterize the inter-class differences are also degraded. In par-
ticular, these correlations are essential for CNNs’ ability to
learn the features at the local filters, but they are signif-
icantly removed in the compressed input images. Recent
studies (Wang et al. 2018; Hu et al. 2018) have empirically
demonstrated that training DNNs that are able to capture this
correlated information can successfully improve their per-
formances. Therefore, in this work, we focus on improving
the lost correlations by proposing a novel multi-view atten-
tion, inspired by the work of Bonneel et al. (Bonneel et al.
2015), and contrastive distillation (Tian, Krishnan, and Isola
2019). The element-wise discrepancy between the teacher’s
and student’s tensors that ignores the relationship within lo-
cal regions of pixels, or channel-wise attention that only
considers a single dimension of backbone features. On the
other hand, our proposed method ensures that our model at-
tends to output tensors from multiple views (slices) using
Sliced Wasserstein distance (SWD) (Bonneel et al. 2015).
Therefore, our multi-view attention distiller guides the stu-
dent to mimic its teacher more efficiently through a geomet-
rically meaningful metric based on SWD. In summary, we
present our overall Attention-based Deepfake detection Dis-
tiller (ADD), which consists of two novel distillations (See
Fig. 2): 1) frequency attention distillation that effectively re-
trieves the removed high-frequency components in the stu-
dent network, and 2) multi-view attention distillation that
creates multiple attention vectors by slicing the teacher’s and
student’s tensors under different views to transfer the teacher
tensor’s distribution to the student more efficiently. Our con-
tributions are summarized as follows:

Figure 1: Degradation of high-frequency components af-
ter compression of real and fake videos. Sample fake face
frames are taken from the NeuralTextures dataset in Face-
Forensics++ (Rossler et al. 2019). Left column: Sample
faces from raw videos. Middle column: Sample faces from
c40-compressed videos. Right column: Normalized spec-
trum differences in the frequency domain after applying Dis-
crete Fourier Transform (DFT) to raw and compressed im-
ages. The concentrated differences at the center are the high-
est frequency components.

• We propose the novel frequency attention distillation,
which effectively enables the student to retrieve high-
frequency information from the teacher.

• We develop the novel multi-view attention distillation
with contrastive distillation for the student to efficiently
mimic the teacher while maintaining pixel correlations
from the teacher to the student through SWD.

• We demonstrate that our approach outperforms well-
known baselines, including attention-based distillation
methods, on different low-quality compressed deepfake
datasets.

Related Work
Deepfake Detection. Deepfake detection has recently
drawn significant attention, as it is related to protecting per-
sonal privacy. Therefore, there has been a large number of
research works to identify such deepfakes (Rossler et al.
2019; Li et al. 2020, 2019; Jeon et al. 2020; Rahmouni et al.
2017; Wang et al. 2019; Li and Lyu 2018). Li et al. (Li
et al. 2020) tried to expose the blending boundaries of gen-
erated faces and showed the effectiveness of their method,
when applied for unseen face manipulation techniques. Self-
training with L2-starting point regularization was introduced
by Jeon et al. (Jeon et al. 2020) to detect newly gener-
ated images. However, the majority of prior works are lim-
ited to high-quality (HQ) synthetic images, which are rather
straightforward to detect by constructing binary classifiers
with a large amount of HQ images.

Knowledge Distillation (KD). Firstly introduced by
Hinton et al. (Hinton, Vinyals, and Dean 2015), KD is a
training technique that transfers acquired knowledge from a
pre-trained teacher model to a student model for model com-
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Figure 2: Illustration of our proposed Attention-based Deepfake detection Distiller (ADD) distillation framework. First, a low-
quality compressed image and its corresponding raw image are used as an input to the student and pre-trained teacher model,
respectively. The student model is trained with two novel distillers: 1) frequency attention distiller and 2) multi-view attention
distiller. The frequency attention distiller creates a weighted loss, which focuses more on the degraded high-frequency com-
ponents. The multi-view attention distiller slices student’s and teacher’s tensors by different random views to spawn multiple
attention vectors. Green arrows indicate the flows of gradient decent updates to train the student’s parameters.

pression applications. However, many existing works (Yim
et al. 2017; Tian, Krishnan, and Isola 2019; Huang and Wang
2017; Passalis and Tefas 2018) applied different types of dis-
tillation methods to conventional datasets, e.g., ImageNet,
PASCAL VOC 2007, and CIFAR100, but not for deepfake
datasets. On the other hand, Zhu et al. (Zhu et al. 2019)
used FitNets (Romero et al. 2014) to train a student model
that is able to detect low-resolution images, which is simi-
lar to our method in that the teacher and the student learn to
detect high and low-quality images, respectively. However,
their approach coerces the student to mimic the penultimate
layer’s distribution from the teacher, while it does not pos-
sess rich features at the lower layers.

In order to encourage the student model to mimic
the teacher more effectively, Zagoruyko and Komodakis
(Zagoruyko and Komodakis 2016) proposed the activation-
based attention transfer, similar to FitNets, but their ap-
proach achieves better performance by creating spatial at-
tention maps. Our multi-view attention method inherits from
this approach but carries more generalization ability by not
only exploiting spatial attention (in width and height dimen-
sion), but also introducing attention features from random
dimensions using Radon transform (Helgason 2010). Thus,
our approach pushes the student’s backbone features closer
to the teacher’s.

In addition, inspired by InfoNCE loss (Oord, Li, and
Vinyals 2018), Tian et al. (Tian, Krishnan, and Isola 2019)
proposed contrastive representation distillation (CRD),
which formulates the contrastive learning framework and

motivates the student network to drive samples from posi-
tive pairs closer, and push away those from negative pairs.
Although CRD achieves superior performance to those of
previous approaches, it requires a large memory buffer to
save embedding features of each sample. This is restrictive
when training size and embedding space become larger. In-
stead, we directly sample positive and negative images in
the same mini-batch and apply the contrastive loss to em-
bedded features, similar to the Siamese network (Bromley
et al. 1994).

Frequency Domain Learning. In the field of media
forensics, several approaches (Jiang et al. 2020; Khay-
atkhoei and Elgammal 2020; Dzanic, Shah, and Witherden
2019) showed that discrepancies of high-frequency’s Fourier
spectrum are effective clues to distinguish CNN-based gen-
erated images. Frank et al. (Frank et al. 2020) and and
Zhang et al. (Zhang, Karaman, and Chang 2019) utilized the
checkerboard artifacts (Odena, Dumoulin, and Olah 2016)
of the frequency spectrum caused by up-sampling com-
ponents of generative neural networks (GAN) as effective
features in detecting GAN-based fake images. Neverthe-
less, their detection performances were greatly degraded
when the training synthesized images are compressed, be-
coming low-quality. Quian et al. proposed an effective
frequency-based forgery detection method, named F 3Net,
which decomposes an input image to many frequency com-
ponents, collaborating with local frequency statistics on a
two-streams network. The F 3Net, however, doubles the
number of parameters from its backbone.
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Wasserstein Distance. Induced by the optimal transport
theory, Wasserstein distance (WD) (Villani 2008), and its
variations have been explored in training DNNs to learn
a particular distribution thanks to Wasserstein’s underlying
geometrically meaningful distance property. In fact, WD-
based applications cover a wide range of fields, such as to
improve generative models (Arjovsky, Chintala, and Bottou
2017; Deshpande, Zhang, and Schwing 2018), learn the dis-
tribution of latent space in autoencoders (Kolouri et al. 2018;
Xu et al. 2020), and match features in domain adaptation
tasks (Lee et al. 2019).In this work, we utilize the Wasser-
stein metric to provide the student geometrically meaningful
guidance to efficiently mimic the teacher’s tensor distribu-
tion. Thus, the student can learn the true tensor distribution,
even though its input features are partially degraded through
high compression.

Our Approach
Our Attention-based Deepfake detection Distiller (ADD)
is consisted of the following two novel distillations (See
Fig. 2): 1) frequency attention distillation and 2) multi-view
attention distillation.

Frequency Attention Distillation
Let fS and fT be the student and the pre-trained teacher net-
work. By forwarding a low-quality compressed input image
and its corresponding raw image through fS and fT , respec-
tively, we obtain features AS and AT ∈ RC×W×H from
its backbone network, which have C channels, the width
of W , and the height of H . To create frequency representa-
tions, Discrete Fourier Transform (DFT) F : RC×W×H →
CC×W×H is applied to each channel as follows:

FAS/T (c, u, v) =
W∑
x=1

H∑
y=1

AS/T (c, x, y) · e−i2π(uxW + vy
H ),

(1)
where c, x and y denote the cth, xth and yth slice in the chan-
nel, the width and height dimension of AS and AT , respec-
tively. Here, for convenience, we use the notation FAS/T to
denote that the function is independently applied for both
student’s and teacher’s backbone features. Then, the value
at (u, v) on each single feature-map FAS/T (c, :, :) indicates
the coefficient of a basic frequency component. The differ-
ence between a pair of corresponding coefficients from the
teacher and the student represents the “absence” of that stu-
dent’s frequency component. Next, let d : C2 → R+ be a
metric that assesses the distance between two input complex
numbers and supports stochastic gradient descent. Then, the
frequency loss between the teacher and student can be de-
fined as follows:

LFR =
C∑
c=1

W∑
u=1

H∑
v=1

w(u, v)·d
(
FAS (c, u, v),FAT (c, u, v)

)
,

(2)
where w(u, v) is an attention weight at (u, v). In this work,
we utilize the exponential of the difference across channels
between the teacher and student as the weight in the follow-

Figure 3: Illustration of our frequency attention distiller. The
F function is applied to each channel of the input tensor.
Distance metric d calculates the discrepancy of the corre-
sponding coefficients of each frequency component from
the teacher and the student. Finally, the attention map is
obtained by averaging the element-wise differences across
channels.

ing way:

w(u, v) = exp
(
γFR·

1

C

C∑
c=1

d(FAS (c, u, v),FAT (c, u, v))
)
,

(3)
where γFR is a positive hyper-parameter that governs the
exponential cumulative loss, as the student’s removed fre-
quency increases. This design of attention weights ensures
that the model focuses more on the losing high-frequency,
and makes Eq. 2 partly similar to focal loss (Lin et al. 2017).
Figure 3 visually illustrates our frequency loss.

Multi-view Attention Distillation
Sliced Wasserstein Distance. The p-Wasserstein distance
between two probability measures µ and ν (Villani 2008)
with their corresponding probability density functions Pµ
and Pν in a probability space (Ω,P(Ω)) and Ω ⊂ Rd, is
defined as follows:

Wp(Pµ, Pν) =
(

inf
π∈Π(µ,ν)

∫
Ω×Ω

ψ(x, y)pdπ(x, y)
)1/p

,

(4)
where Π(µ, ν) is a set of all transportation plans π, which
has the marginal densities Pµ and Pν , respectively, and
ψ : Ω × Ω → R+ is a transportation cost function. Equa-
tion 4 searches for an optimal transportation plan between
µ and ν, which is also known as Kantorovitch formulation
(Kantorovitch 1958). In the case of one-dimensional prob-
ability space, i.e., Ω ⊂ R, the closed-form solution of the
p-Wasserstein distance is:

Wp(Pµ, Pν) =
(∫ 1

0

ψ
(
F−1
µ (κ), F−1

ν (κ)
)p
dκ
)1/p

, (5)

where Fµ and Fν are the cumulative distribution functions
of Pµ and Pν , respectively.

A variation of Wasserstein distance, inspired by the above
closed-form solution, is Sliced Wasserstein distance (SWD)
that deploys multiple projections from a high dimensional
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distribution to various one-dimensional marginal distribu-
tions and calculates the optimal transportation cost for
each projection. In order to construct these one-dimensional
marginal distributions, we use the Radon transform (Helga-
son 2010), which is defined as follows:

RPµ(t, θ) =

∫
Ω

µ(x)δ(t− 〈θ, x〉)dx, ∀θ ∈ Sd−1, ∀t ∈ R,

(6)
where δ denotes the Diract delta function, 〈·, ·〉 is the Eu-
clidean inner-product, and Sd−1 ⊂ Rd is the d-dimensional
unit sphere. Thus, we denote Rθµ as a 1-D marginal dis-
tribution of µ under the projection on θ. The Sliced 1-
Wasserstein distance is defined as follows:

SW1(Pµ, Pν) =

∫
Sd−1

W1(Rθµ,Rθν)dθ. (7)

Now, we can calculate the Sliced Wasserstein distance by
optimizing a series of 1-D transportation problems, which
have the closed-form solution that can be computed in
O(Nlog(N)) (Rabin et al. 2011). In particular, by sorting
Rθµ andRθν in ascending order using two permutation op-
erators τ1 and τ2, respectively, the SWD can be approxi-
mated as follows:

SWD(Pµ, Pν) ≈
K∑
k=1

N∑
i=1

ψ(Rθkµτ1[i],Rθkντ2[i]), (8)

where K is the number of uniform random samples θ using
Monte Carlo method to approximate the integration of θ over
the unit sphere Sd−1 in Eq. 7.

Multi-view Attention Distillation. Let PA be the square
of A after being normalized by the Frobenius norm, i.e.,
PA = A◦2

‖A‖2F
, where ◦ denotes the Hadamard power (Bocci,

Carlini, and Kileel 2016). Consequently, we are now able to
consider PA as a discrete probability density function over
Ω = RC×W×H ⊂ R3, where PA(c, x, y) indicates the den-
sity value at the slice cth, xth and yth of the channel, the
width and height dimension, respectively. To avoid replicat-
ing the element-wise differences, we additionally need to bin
the projected vectors into g groups before applying distilla-
tion. One important property of our multi-view attention is
that different values of θ provide different attention views
(slices) of AS and AT . For instance, with θ = (1, 0, 0), we
achieve the channel-wise attention that was introduced by
Chen et al. (Chen et al. 2017). Or, we can produce an at-
tention vector in the width and height dimension, when θ
becomes close to (0, 1, 0) and (0, 0, 1), respectively. With
this general property, a student can pay full attention to
its teacher’s tensor distribution instead of some pre-defined
constant attention views.

Figure 4 pictorially illustrates our overall multi-view at-
tention distillation, and we summarize our multi-view atten-
tion in Algorithm in the supplementary materials. In order to
encourage the semantic similarity of samples’ representation
from the same class and discourage that of those from dif-
ferent classes, we further apply the contrastive loss for each
instance, which inspired by the CRD distillation framework
of Tian et al. (Tian, Krishnan, and Isola 2019) . Thus, our

Figure 4: Detailed illustration of our multi-view attention
distillation. Two backbone features of the teacher (top) and
the student (bottom). After normalization, obtained features
are projected on a random sample θi, then two attention vec-
tors, vθiT and vθiS , are obtained by sorting the projection im-
ages and binning them into g groups. Multiple values of θ
provides us multiple attention views on the two tensors.

overall multi-view attention loss is defined as follows:

LMV =γMV × SWD(PAS ,PAT )+

ηMV ×
[
SWD(PAS , PA+

T
)+

max(∆− SWD
(
PAS , PA−T

), 0
)]
,

(9)

where A+
T and A−T are the random instance’s representation

that belong to the same and the opposite class of AS at the
teacher, respectively. And ∆ is a margin that manages the
discrepancy of negative pairs and γMV , and ηMV are scaling
hyper-parameters.

Overall Loss Function

The overall distillation loss in our KD framework is formu-
lated as follows:

LDistill(AS , AT ) = α · LFR︸ ︷︷ ︸
frequency attention

+ β · LMV︸ ︷︷ ︸
multi-view attention

, (10)

where α and β are hyper-parameters to balance the contri-
bution of frequency attention distiller and multi-view atten-
tion distiller, respectively. Our attention loss is parameter-
free and is independent from model architecture design, and
it can be directly added to any detector model’s conven-
tional loss (e.g., cross-entropy loss). Also, the frequency at-
tention requires computational complexity in O

(
CWH ·

(log(W ) + log(H))
)

for one backbone feature, where
O
(
WH · (log(W ) + log(H))

)
is the complexity of 2-D

Fast Fourier Transform applied for one channel. On the other
hand, the average-case complexity of multi-view attention is
O
(
KN · log(N)

)
, where O

(
N · log(N)

)
is the complexity

of 1-D closed-form solution as mentioned above, K is the
number of random samples θ, and N is the number of ele-
ments in one backbone feature, i.e., N = CWH . Our end-
to-end Attention-based Deepfake detection Distiller (ADD)
pipeline is presented in Fig. 2.
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Experiment
Datasets
Our proposed method is evaluated on five different pop-
ular deepfake benchmark datasets: NeuralTextures (Thies,
Zollhöfer, and Nießner 2019) (NT), Deepfakes (Commu-
nity 2017), Face2Face (Thies et al. 2016) (F2F), FaceSwap
(Community 2016) (FS), and FaceShifter (Li et al. 2019)
(FSr). Every dataset has 1,000 videos generated from 1,000
real human face videos by Rössler et al. (Rossler et al. 2019).
These videos are compressed into two versions: medium
compression (c23) and high compression (c40), using the
H.264 codec with a constant rate quantization parameter of
23, and 40, respectively. Each dataset is randomly divided
into training, validation, and test set consisting of 720, 140,
and 140 videos, respectively. We randomly select 64 frames
from each video and obtain 92,160, 17,920, and 17,920 im-
ages for training, validation, and test set, respectively. Then,
we utilize the Dblib (King 2009) to detect the largest face
in every single frame and resize them to a square image of
128× 128 pixels.

Experiment Settings
In our experiments, we use Adam optimizer with β1 = 0.9,
β2 = 0.999 and ε = 10−8. The learning rate is 2 × 10−4,
which follows one cycle learning rate schedule (Smith and
Topin 2019) with a mini-batch size of 144. In every epoch,
the model is validated 10 times to save the best parameters
using validation accuracy. Early stopping is applied, when
the validation performance does not improve after 10 con-
secutive times. We use ResNet50 (He et al. 2016) as our
backbone to implement our proposed distillation framework.
In Eq. 2, we define d as the square of the modulus of the
difference between two complex number, i.e., d(c1, c2) =
|c1 − c2|2, which satisfies the properties of a general dis-
tance metric: non-negative, symmetric, identity, and triangle
inequality.

The number of binning groups g is equal to a half of the
number of channels of AS . Our hyper-parameters settings
{γFR = 1, γMV = 100, ηMV = 50,∆ = 0.012, α = 1, }
are kept the same, while β is fine-tuned on each dataset in the
range of 16 to 23 through the experiments. The experiments
are conducted on two TITAN RTX 24GB GPUs with Intel
Xeon Gold 6230R CPU @ 2.10GHz.

Results
Our experimental results are presented in Table 1. We use
Accuracy score (ACC) and Recall at 1 (R@1), which are
described in detail in the supplementary materials . We com-
pare our ADD method, with both distillation and non-
distillation baselines. For a fair comparison between differ-
ent methods, the same low resolution is used at 128 × 128
pixels as mentioned above is used throughout the experi-
ments.

Non-distillation Methods. We reproduce two highest-
score deepfake detection benchmark methods: 1) the method
proposed by Rössler et al. (Rossler et al. 2019), which used
Xception model, and 2) the approach by Dogonadze et al.
(Dogonadze, Obernosterer, and Hou 2020), which employed

Inception ResNet V1 pre-trained on the VGGFace2 dataset
(Cao et al. 2018). These are the two best performing publicly
available deepfake detection methods1. Additionally, we use
the F 3Net, which is a frequency-based deepfake detection
introduced by Quian et al. (Qian et al. 2020) for evaluation.
The F 3Net is deployed on two streams of XceptionNet as
described in the paper. Finally, ResNet50 (He et al. 2016)
is also included as a baseline to compare with distillation
methods.

Distillation Baseline Methods. As there has not been
much research that deploys KD for deepfake detection, we
further integrate other three well-known distillation archi-
tectures in the ResNet50 backbone to perform comparisons,
including: FitNet (Romero et al. 2014), Attention Trans-
fer (Zagoruyko and Komodakis 2016) (AT) and Non-local
(Wang et al. 2018) (NL). Each of these methods is fine-tuned
on the validation set to achieve its best performance.

First, comparing ours with the non-distillation baselines,
we can observe that our method improves the detection ac-
curacy from 1% to 6% across all five datasets for both com-
pression data types. On average, our approach outperforms
the other three distillation methods, and is superior on the
highest compressed (c40) datasets. The model with FitNet
loss, though it has a small improvement, does not have com-
petitive results due to retaining insufficient frequency infor-
mation. The attention module and non-local module also
provide compelling results. However, they do not surpass
our methods because of the lower attention dimension and
frequency information shortage.

Ablation Study and Discussions
Effects of Attention Modules. We investigate the quanti-
tative impact of the frequency attention and multi-view at-
tention on the final performance. In the past, the Neural-
Textures (NT) dataset has shown to be the most difficult to
differentiate by both human eyes and DNN (Rossler et al.
2019). Hence, we conduct our ablation study on the c40
highly NT compressed dataset. The results are presented
in Table 2. We can observe that frequency attention im-
proves about 6.76% of the accuracy. Multi-view attention
with contrastive loss provides a slightly better result than
that of without contrastive at 68.14% and 67.01%, respec-
tively. Finally, combining the frequency attention and multi-
view attention distillation with contrastive loss significantly
improves the accuracy up to 68.53%. The results of our ab-
lation study demonstrate that each proposed attention dis-
tiller has a different contribution to the student’s ability to
mimic the teacher, and they are compatible when integrated
together to achieve the best performance.

Sensitivity of Attention Weights (α and β). We conduct
an experiment on the sensitivity of the frequency attention
weight α and multi-view attention weight β on the five dif-
ferent datasets. The detailed results are presented in the sup-
plementary materials. The result shows that by changing the
value of α and β, the performance of our method contin-
uously outperform the baseline results, indicating that our
approach is less sensitive to both α and β.

1http://kaldir.vc.in.tum.de/faceforensics benchmark/
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Datasets Models
Medium comp-

ression (c23)
High comp-
ression (c40)

ACC R@1 ACC R@1
N

eu
ra

lT
ex

tu
re

s

Rössler et al. 76.36 57.24 56.75 51.88
Dogonadze et al. 78.03 77.13 61.12 48.01
F 3Net 77.91 77.39 61.95 32.35
ResNet50 86.25 82.75 60.27 53.06

FitNet - ResNet50 86.26 84.83 66.01 57.28
AT - ResNet50 85.21 84.99 62.61 43.50
NL - ResNet50 88.26 86.95 65.65 46.82
ADD - ResNet50 (ours) 88.48 87.53 68.53 58.42

D
ee

pF
ak

es

Rössler et al. 97.42 96.96 92.43 82.39
Dogonadze et al. 94.67 94.39 93.97 93.52
F 3Net 96.26 95.84 93.06 93.00
ResNet50 96.34 95.90 92.89 91.18

FitNet - ResNet50 97.28 97.78 93.68 93.34
AT - ResNet50 97.37 98.72 95.11 94.35
NL - ResNet50 98.42 98.21 93.09 94.35
ADD - ResNet50 (ours) 98.67 98.09 95.50 94.59

Fa
ce

2F
ac

e

Rössler et al. 91.83 91.02 80.21 77.42
Dogonadze et al. 89.34 88.73 83.44 81.00
F 3Net 95.52 95.40 81.48 79.31
ResNet50 95.60 94.77 83.94 79.88

FitNet - ResNet50 95.91 96.16 83.48 78.99
AT - ResNet50 96.80 96.84 83.55 78.72
NL - ResNet50 96.44 96.64 83.69 82.04
ADD - ResNet50 (ours) 96.82 97.14 85.42 83.54

Fa
ce

Sw
ap

Rössler et al. 95.49 95.36 88.09 87.67
Dogonadze et al. 93.33 92.78 90.02 89.10
F 3Net 95.74 95.65 89.58 88.90
ResNet50 92.46 90.85 88.91 86.52

FitNet - ResNet50 97.29 96.29 89.16 90.13
AT - ResNet50 97.66 97.27 89.75 90.41
NL - ResNet50 97.34 96.95 91.86 90.78
ADD - ResNet50 (ours) 97.85 97.34 92.49 92.13

Fa
ce

Sh
if

te
r

Rössler et al. 93.04 93.16 89.20 87.12
Dogonadze et al. 89.80 89.36 82.03 79.96
F 3Net 95.10 95.02 89.13 88.69
ResNet50 94.89 93.88 89.56 88.48

FitNet - ResNet50 96.63 95.95 90.16 89.36
AT - ResNet50 96.32 96.76 88.28 89.45
NL - ResNet50 96.24 95.28 90.04 87.71
ADD - ResNet50 (ours) 96.60 95.84 91.64 90.27

Table 1: Experimental results of our proposed method and
other seven different baseline approaches on five different
deepfake datasets. The best results are highlighted in bold.

Experiment with Other Backbones. Table 3 shows the
results with three other backbones: ResNet18 and ResNet34
(He et al. 2016), and EfficientNet-B0 (Tan and Le 2019).
We set up the hyper-parameters of the four DNNs as the
same for ResNet50, except γFR is changed to 1e−3 for
EfficientNet-B0. Our distilled model improves the detection
accuracy of all five datasets in different compression qual-
ity, up to 7%, 5.8%, and 7.1% with ResNet18, ResNet34,
and EfficientNet-B0 backbone compared to their baselines,
respectively.

Grad-CAM (Selvaraju et al. 2017). Using Grad-CAM,

Model ACC(%)
ResNet (baseline) 60.27
Our ResNet (FR) 67.03
Our ResNet (MV w/o contrastive) 67.01
Our ResNet (MV w/ contrastive) 68.14
Our ResNet (FR+MV) 68.53

Table 2: The effect of each single attention module on the
final results experimented on NeuralTextures dataset.

ResNet18 ResNet34 EfficientNet-B0
ADD 7 X 7 X 7 X

N
T c23 81.8 84.3 82.6 84.3 81.2 83.5

c40 67.3 67.5 58.4 63.5 60.5 67.6

D
F c23 97.5 97.7 92.0 97.8 96.5 97.5

c40 89.2 94.7 93.4 94.6 90.0 92.5

F2
F c23 94.2 95.7 94.2 94.9 94.1 96.7

c40 85.0 85.3 83.2 83.4 77.4 80.3

FS

c23 90.2 96.0 92.4 96.8 92.6 95.3
c40 84.5 91.5 88.6 90.6 83.4 87.5

FS
r c23 93.2 97.0 95.6 97.8 93.8 95.1

c40 89.2 92.2 89.3 91.5 84.0 85.2

Table 3: Classification accuracy (%) of ResNet18, ResNet34
and EfficientNet-B0 baseline and their integration with our
ADD training framework.

we provide visual explanations regarding the merits of train-
ing a LQ deepfake detector with our ADD framework. The
gallery of Grad-CAM visualization is included in the sup-
plementary material. First, our ADD is able to correct the
facial artifacts’ attention of the LQ detector to resemble its
teacher trained on raw datasets. Second, the ADD vigor-
ously instructs the student model to neglect the background
noises and activate the facial areas as its teacher does when
encountering facial images in complex backgrounds. Mean-
while, the baseline model which is solely trained on LQ
datasets steadily makes wrong predictions with high confi-
dence by activating non-facial areas and is deceived by com-
plex backgrounds.

Conclusion
In this paper, we proposed a novel Attention-based Deep-
fake detection Distillations (ADD), exploring frequency at-
tention distillation and multi-view attention distillation in a
KD framework to detect highly compressed deepfakes. The
frequency attention helps the student to retrieve and focus
more on high-frequency components from the teacher. The
multi-view attention, inspired by Sliced Wasserstein dis-
tance, pushes the student’s output tensor distribution toward
the teacher’s, maintaining correlated pixel features between
tensor elements from multiple views (slices). Our experi-
ments demonstrate that our proposed method is highly effec-
tive and achieves competitive results in most cases when de-
tecting extremely challenging highly compressed challeng-
ing LQ deepfakes.
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