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Abstract

Recently, deep learning has been proven to be a promis-
ing approach in standard dynamic range (SDR) image com-
pression. However, due to the wide luminance distribution
of high dynamic range (HDR) images and the lack of large
standard datasets, developing a deep model for HDR image
compression is much more challenging. To tackle this issue,
we view HDR data as distributional shifts of SDR data and
the HDR image compression can be modeled as an out-of-
distribution generalization (OoD) problem. Herein, we pro-
pose a novel out-of-distribution (OoD) HDR image com-
pression framework (OoDHDR-codec). It learns the general
representation across HDR and SDR environments, and al-
lows the model to be trained effectively using a large set
of SDR datasets supplemented with much fewer HDR sam-
ples. Specifically, OoDHDR-codec consists of two branches
to process the data from two environments. The SDR branch
is a standard black-box network. For the HDR branch, we de-
velop a hybrid system that models luminance masking and
tone mapping with white-box modules and performs content
compression with black-box neural networks. To improve the
generalization from SDR training data on HDR data, we in-
troduce an invariance regularization term to learn the com-
mon representation for both SDR and HDR compression. Ex-
tensive experimental results show that the OoDHDR codec
achieves strong competitive in-distribution performance and
state-of-the-art OoD performance. To the best of our knowl-
edge, our proposed approach is the first work to model HDR
compression as OoD generalization problems and our OoD
generalization algorithmic framework can be applied to any
deep compression model in addition to the network archi-
tectural choice demonstrated in the paper. Code available at
https://github.com/caolinfeng/OoDHDR-codec.

Introduction
High dynamic range (HDR) technology, originated in the
1970s (Mann and Ali 2016), is leading a visual revolution
at present. Compared with standard dynamic range (SDR)
images, HDR technology has a larger dynamic range ra-
tio between the maximum and minimum luminance, which
greatly broadens the boundaries of the displayable color
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Figure 1: (a) Comparison between SDR and HDR images
of “pedestrian overpass” from HDRI HAVEN1. (b) Visual-
ization of results with approximately 0.43 bpp. Visual Dif-
ference Predictor for HDR images (HDR-VDP) (Mantiuk
et al. 2011) predicts the distortions are visible to the human
observer or not, where the higher the value, the better the
image quality (Better viewed on screen).

gamut and allows to preserve more information of the real
scenes. As an example shown in Figure 1(a), the SDR image
(left column) losses most of the details at high luminance
region, while the tone-mapped HDR image (right column)
presents the scene containing extreme sunlight and shade,
providing a more lifelike visual experience. Undoubtedly,
the maturity and popularity of HDR technology can greatly
enrich the interactive experience of traditional multimedia.

Although several HDR encoding formats including Ra-
diance RGBE (.hdr) (Ward 1991), OpenEXR (.exr) (Kainz,
Bogart, and Stanczyk 2009), LogLuv TIFF (.tiff) (Larson
1998), etc. have been proposed to facilitate the application
of HDR technology, it still faces many challenges for preva-
lence. In addition to the hardware cost, significantly higher
storage and transmission bandwidth costs also prevent HDR
from being widely used in streaming media (e.g., YouTube)
and social media (e.g., TikTok, Twitter) platforms. Thus, it is
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Figure 2: Distribution shifts among SDR and HDR data.
Gray area indicates the upper and lower limits of data distri-
bution (log10 of value)

urgent and essential to develop efficient solutions for HDR
image compression.

The deep neural network (DNN) is thought to be a
promising method to implement the compression, of which
the parameters are globally optimized instead of being de-
signed in a hand-crafted way. However, the implementation
of learning-based HDR compression especially in an end-
to-end manner is rather challenging. Different from SDR
with massive public resources available, HDR technology
has gradually become a hot topic in recent years with the
breakthrough development of hardware (shooting, display,
etc.), and the public data source is still limited. In addition,
the luminance information reflected by HDR varies across
camera parameters, sensor characteristics and shooting con-
ditions, so the pixel value is impossible to have a standard
and unified distribution. Therefore, how to design an end-
to-end HDR deep compression model and train it with good
performance in practical use has become an open question.

On the other hand, there are numerous standard SDR
datasets publicly available for training (e.g., DIV2K
(Agustsson and Timofte 2017), Flickr2K (Lim et al. 2017),
etc.) and evaluation (like Kodak), which greatly facilitate the
development of deep SDR compression.

So can SDR data be used to make up for the insufficient
training samples in deep HDR compression? Theoretically,
if the HDR data share the same features as those of the SDR
in coding space, SDR data can be leveraged for HDR com-
pression learning. Fig. 2 presents some distribution exam-
ples of SDR and HDR, where the gray area indicates the
upper and lower limits of data distribution (log10 of value).
We observe that compared with SDR of which the data is
concentrated in a fixed interval, HDR data is more widely
distributed and varies in scope. Nevertheless, there is no es-
sential distinction between HDR and SDR in the form of
data distribution within the grey area, but more like the data
distribution shift in one dimension. Inspired by it, we view
the HDR values as the distribution shift of SDR images

and model the HDR compression as an out-of-distribution
(OoD) problem. Specifically, we propose a novel OoD im-
age compression framework (OoDHDR-codec) which uti-
lizes the joint data of SDR and HDR environments, aug-
mented with training regularization, so as to learn the latent
representations that are strongly correlated with compres-
sion performance, and thus allows the model not have to be
trained on a large HDR collection.

In addition to data shift, too wide distribution of HDR is
another factor that increases the difficulty of model design
and training. To address this, we design a hybrid model in-
corporating white-box modules for differentiable perceptual
encoding and tone-mapping (also their inverse) operations
to initially compress the distribution interval of HDR, with
a black-box neural network to implement the content com-
pression. The linearly segmented luminance masking and
tone-mapping curves guarantee the differentiability and re-
versibility of our framework.

We deploy our OoDHDR-code framework on a deep
compression model, and showcase the compression per-
formance on SDR and HDR. It achieves strong compet-
itive in-distribution performance compared to other SDR
compression approaches (comparable performance with the
learning-based methods and outperforms the latest conven-
tional standard VVC (Ohm and Sullivan 2018)), and also
shows superior compression performance on HDR (OoD)
data over other HDR compression approaches. The ablation
study presents significantly higher generalization ability on
HDR (OoD) data compared to the standard model, and also
demonstrates the effectiveness of perceptually uniform (PU)
encoding and tone-mapping operation (TMO).

Related Work
HDR Compression
With the development of HDR technology, there have been
numerous HDR image and video compression researches.
The HDR file formats mainly includes Radiance RGBE
(.hdr) (Ward 1991), OpenEXR (.exr) (Kainz, Bogart, and
Stanczyk 2009), LogLuv TIFF (.tiff) (Larson 1998). For
further HDR compression, the algorithms can be roughly
divided into two categories: backward and non-backward
compatible methods (Mukherjee et al. 2019). The first cate-
gory generates two or more layers containing an 8-bit SDR
version (Zaid and Houimli 2017; Mai et al. 2011), which
allows content can be displayed on legacy SDR devices.
The non-backward compatible methods encode the content
into higher bit-depth (eg., 10-bit or 12-bit) streams that are
supported by modern video/image codecs (Mantiuk et al.
2004; Garbas and Thoma 2011; Miller, Nezamabadi, and
Daly 2013; Mukherjee et al. 2019). For backward solution,
Li et al. first adopt forward and inverse tone-mapping to opti-
mize the HDR compression (Li, Sharan, and Adelson 2005).
JPEG HDR is also a typical compression algorithm. It con-
verts HDR content into an SDR version by a global TMO
and the information for HDR reconstruction is encoded with
JPEG legacy compliant codestream (Ward and Simmons
2006; Richter 2013; Zaid and Houimli 2017). Apart from the
global TMO, Pendu et al. use local TMO with a template-
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based inter-layer prediction (ILP) for HDR reconstruction
(Pendu, Guillemot, and Thoreau 2015).

However, these methods utilize the conventional stan-
dards for image content compression, which rely on hand-
crafted design of each module and are not expected to be the
general and optimal solutions for all image contents.

Learning-based Compression
Recently, deep learning for SDR image compression has
attracted considerable attention. Google Inc propose three
variants of RNN based en/decoder to compress progres-
sive images and residuals (Toderici et al. 2017, 2016). Li
et al. design fully convolution networks with residual block
as en/decoder (Li et al. 2018). Different from using the
round function in the conventional codecs, deep compres-
sion employs some differentiable operations (e.g., K-means
algorithm (Mentzer et al. 2018), mapping function with
Bernoulli distribution noise (Toderici et al. 2016)) for soft-
quantization. To further reduce the redundancy of quantiza-
tion code, the entropy model for entropy coding (e.g., Huff-
man coding) is proposed and has been widely investigated
for coding navigation (Toderici et al. 2017; Minnen, Ballé,
and Toderici 2018; Mentzer et al. 2018).

However, the implementation of learning-based HDR
compression especially in an end-to-end manner is rather
difficult. The main challenges are as follows:

1. Distribution differences between HDR and SDR do-
mains lead to SDR datasets not being suitable for HDR
model training. Also, the standard deep SDR compression
models designed for smaller luminance range are not com-
patible with HDR data. This is because the wide luminance
distribution of HDR data is harder to be represented by fewer
bits of information.

2. Large distribution differences within HDR domain
leads to the potential shifts between training and testing
data. The luminance distribution of test dataset might devi-
ate from training dataset, which is different from SDR image
compression where pixel values are constrained in a smaller
range. Therefore, the traditional training paradigm (empiri-
cal risk minimization) for independent and identically dis-
tributed (IID) data is not optimal for HDR tasks.

Methodology
To deal with the aforementioned problems, we argue that it
is critical to bridge the distribution gap between HDR and
SDR domains, and enhance the robustness of network. By
investigating the data distributions in two domains (SDR and
HDR), we find that although there is luminance distribution
between these two domains, they share similar semantic fea-
tures for image compression. For example, to compress an
image containing a cat, it is essential to preserve the shape
information of this image both for its SDR and HDR ver-
sion. This inspires us to learn the invariant representations
from SDR and HDR for more efficient data representations.
To this end, we model the HDR compression as an OoD
generalization problem and propose an algorithmic frame-
work to learn the invariant representations in HDR and SDR
domains (as Fig. 3) for image compression. The details of
implementation are as follows:

To eliminate the impact of too wide HDR data distribu-
tion on training, we design a white-box pre-processing mod-
ule that contains a PU transform and a global TMO, which
converts the HDR data to a more concentrated-distribution
space. The content compression is achieved by a DNN.
It firstly transforms the input data into the coding space
with a deep encoder, then quantizes the latent representa-
tion and generates the bit-stream using entropy model and
lossless coding (e.g., arithmetic coding (Rissanen and Lang-
don 1981)), and finally transform the information back to the
image space with entropy model and deep decoder. To find
a more general coding space and thus effectively extract the
latent representation of two domains (SDR & HDR), we per-
form regularization of the losses and fusion them together
during training, allowing the DNN to generalize to different
distributions.

Preprocess Module
Perceptual Unit Transform Due to the wide illumina-
tion range distribution of HDR scenes, we employ a per-
ceptual transfer function to map the linear physical lumi-
nance (cd/m2) to a perceptual uniform space derived from
the contrast sensitivity function of the visual system, which
helps to avoid the distortion of TMO caused by too large dy-
namic range (Mantiuk et al. 2011). Specifically, the transfer
function we adopt is known as Perceptually Uniform (PU)
encoding, which is defined as the reciprocal integral of de-
tection threshold:

P (L) =

∫ L

Lmin

1

T (l)
dl (1)

where Lmin represents the minimum encoded luminance.
L is the absolute luminance. T (L) represents the detection
thresholds defined as below:

T (L) = S·

((
C1

L

)C2

+ 1

)C3

(2)

Where S refers to the absolute sensitivity constant. C1, C2,
C3 are parameters obtained by contrast sensitivity fitting, in
which we use the parameters from (Mantiuk et al. 2011). For
forward/inverse perceptual transform and backward propa-
gation in networks, we use piece-wise (five segments) lin-
ear functions to fit the PU encoding curves, which keeps the
problem analytically tractable during forward and inverse
calculations. The piece-wise PU curve is shown in Fig. 4(a).
The forward and inverse modules are denoted as ”PU” and
”IPU” in Fig. 3.

Global Tone-Mapping Operator To correct the data bi-
ases caused by too wide data distribution, we apply a TMO
operator to further map the perceptual values into a more
concentrated-distribution space (same distribution boundary
with SDR). There are plenty of HDR tone-mapping imple-
mentations, mainly based on the ”S-shaped” curve or power
function curve with exponent (gamma) less than 1. How-
ever, for most of the tone-mapping curves, it is very hard to
find its exact inverse function expression, which inevitably
increases the calculation difficulty and introduces the recon-
struction error (especially for large HDR luminance values).
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Figure 3: Overview of the proposed OoDHDR-codec framework. The input data consists of SDR and HDR images in a certain
proportion (7:1 in figure). The framework consists of two branches to process the corresponding data streams. After compression
by DNN, the losses of two environments are regularized and fusion together to get the final loss.
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Figure 4: (a) Piece-wise PU transform function, converts
absolute luminance into approximately perceptual uniform
values. (b) Piece-wise tone-mapping curve, background his-
togram represents the data distribution in original space.

To address this, we introduce the mapping approach in
(Mai et al. 2011), which models the mapping curve uniquely
with a series of nodes (ui, vi) and linear functions to con-
struct our TMO (shown in Figure 4 b). For each segment,
the interval is set as a constant value δ. The forward map-
ping function is defined as:

v(u) = (u− ui)si + vi, if ui<u < ui+1 (3)

where u represents the original PU value, v is the mapped
value and si is the slope of the ith linear function. similarly,
the inverse mapping function can be defined as:

ũ(v) =

{ v−vi
si

+ ui, if vi < v < vi+1 and si > 0
(ui+ui+1)

2 , if si = 0
(4)

where ũ is the inverse mapped value. For the segment with
a slope of zero, the ũ is assigned with the mean value of its
lower and upper bounds.

To keep the simplicity of calculation, we utilize the
closed-form solution in (Mai et al. 2011) with the assump-
tion that the original u and distorted ũ has the same slope
due to the local linearity of the mapping curve, and the slope
si is given by:

si =
vmaxpi

1/3

δ
N∑

i=1
pi1/3

, pi =
ui+1∑
u=ui

p(u) (5)

where vmax is the maximum value, p(u) is the probability

Figure 5: Operational diagram of the compression model.

of the original PU value, δ denotes the interval of the piece-
wise function.

Compression Model Generalization
Learning-based Compression Formulation The image
compression based on transform coding approach (Goyal
2001) (shown in Fig. 5) can be expressed as:

y = ga(x;φ1); ŷ = Q(y); x̂ = gs(ŷ;φ2) (6)
where input data x is firstly transformed into a coding space
with a parametric analysis transform ga(x;φ1) to extract the
latent representation y for quantization and entropy coding
(U |Q), and thus realize the data lossy compression. For im-
age recovery, the quantized latent representation ŷ is sent to
a synthesis transform gs to reconstruct image x̂.

The learning-based image compression can be regarded
as a rate-distortion optimization (Ballé et al. 2018), and the
loss function can be expressed as

L = Rate(ŷ) + λDist(x, x̂) (7)

where Rate and Dist represent the entropy coding rate
and distortion measures respectively. λ ∈ R+ is a hyper-
parameter for rate and quality trade-off.

Invariance Regularization To make up for the insuffi-
cient HDR training samples, we utilize a large SDR dataset
augmented with a small HDR dataset as union training en-
vironment ε = {esdr, ehdr}. Herein, our goal is to use these
multiple datasets to learn generalizable encoders and de-
coders (ga, gs), which performs well across esdr, ehdr and
also other environments with different distributions that do
not appear in the training set.

We also need to note that although ehdr data is augmented
with esdr, naively training models on the augmented dataset
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will lead to degenerated performance as the model will tend
to overfit on the SDR dataset. While a simple method is to
propose a loss function that is the weighted sum of losses
on HDR and SDR to avoid overfitting, this may hurt the
SDR compression performance if the weight for HDR loss
is large. To improve the OoD generalization performance
of the proposed algorithmic scheme, in addition to the tra-
ditional compression loss, we add invariance regularization
terms that enforce the model to achieve optimalty simulta-
neously at two environments.

To minimize the expected loss overall environments ε, in-
spired by (Arjovsky et al. 2019), we introduce invariance
regularization as a penalty term to learn data representa-
tions eliciting invariant features across multiple environ-
ments. Different from (Arjovsky et al. 2019) that is designed
for classification tasks, we calculate the gradients of losses
on the reconstructed image. The loss terms of two environ-
ments are as follows:

Lsdr =1−ms-ssim(xsdr, x̂sdr)

− λ4
∥∥∇w=1ms-ssim(xsdr, w

T x̂sdr)
∥∥2
2

(8)

Lhdr = l1(xhdr, x̂hdr) + λ4
∥∥∇w=1l1(xhdr, w

T x̂hdr)
∥∥2
2
(9)

where the first term in Eq. (8), (9) measures the quality dis-
tortion while the second is the corresponding gradient norm
penalty term for invariance regularization which enforce the
model to achieve optimality simultaneously for SDR and
HDR. Two losses share the same hyper-parameter λ4 ∈ R+

for balancing the numerical scale of losses.
Based on this, the final loss function is can be formulated

as follows:

Lfinal = λ1(λ2Lsdr+(1−λ2)Lhdr)+λ3 ‖wdnn‖22+Rate(ŷ)
(10)

where the hyper-parameter λ1 ∈ R+ is used for rate and
quality trade-off, λ2 ∈ R+ balances losses from two en-
vironments. wdnn denotes the model weights, the corre-
sponding regularization term is adjusted by hyper-parameter
λ3 ∈ R+. For distortion measurement, MS-SSIM metrics
(Wang, Simoncelli, and Bovik 2003) is employed in esdr
and the pixel-wise L1 loss (MAE) is employed in ehdr.

Experiments
In this section, we deploy the OoDHDR-codec algorith-
mic framework on a widely used deep image compression
model structure, augmented with simplified attention model
(Cheng et al. 2020) and hyperprior (Minnen, Ballé, and
Toderici 2018). It is worth noting that our proposed method
is generic and can be applied to any deep model. The chan-
nel number of the latent representation y is set to 192 (More
network details can be found in the supplemental material).
For evaluation, we conduct the compression experiments on
both SDR (in-distribution) and HDR (OoD) datasets.

Experimental Setup
Datasets The environment esdr is constructed by SDR
images from DIV2K (Agustsson and Timofte 2017) and

Flickr2K (Lim et al. 2017) datasets with around 3500 sam-
ples. To construct ehdr, we collect HDR images from (Funt
and Shi 2010; Kalantari and Ramamoorthi 2017; Yeganeh
and Wang 2013; Narwaria et al. 2013; Debevec and Malik
2008; Ward et al. 2006), pfstools resources 2, HDRI HEVEN,
with 480 samples in total and all of them are in Radiance
RGBE (.hdr) (Ward 1991) format that contains the absolute
luminance value (cd/m2). For in-distribution evaluation, a
widely used Kodak lossless image benchmark containing 24
SDR (768 × 512) images is tested. For OoD evaluation, we
conduct the tests on 80 HDR images (2048 × 1024) from
HDRI HAVEN (not be selected deliberately for a fair com-
parison). The detail information of HDR datasets is listed in
supplemental material.

Training Details Our framework is implemented with Py-
Torch 1.6.0, CUDA v11.4 on NVIDIA 2080Ti GPU. The
deployment of deep compression model is realized based on
the CompressAI library (Bégaint et al. 2020). During train-
ing, the model is optimized using Adam (Kingma and Ba
2014) with a batch size of 32 (7:1 for the ratio of SDR to
HDR). Each image is randomly cropped with patch size of
256×256, and a regular data augmentation including random
rotation and flipping are conducted. The model is trained
up to 250 epochs with initial learning rate of 1e−3, which
decreases to 1e−4 at 200th epoch. To obtain the models
with different rate control, the hyper-parameter λ1 is chosen
from [12, 40, 150, 300], and the channel number of latent
representation is fixed at 192. For each model, the hyper-
parameter of λ2, λ3 and λ4 is set to 0.95, 1e−5 and 1, the
segment number of TMO is set to 10.

Evaluation Metrics To assess the performance, we use
several perceptual and structural quality image metrics for
comparison between the original images and the degraded
ones. For in-distribution (SDR) evaluation, the quality is
measured by MS-SSIM, and the rate is measured by bits
per pixel (bpp). For OoD (HDR) evaluation, the quality is
measured with HDR-VDP 3.0.6 (Mantiuk et al. 2011), puP-
SNR and puSSIM (Aydın, Mantiuk, and Seidel 2008) as
these metrics deliver the assessment that is highly correlated
with subjective evaluation for HDR images (Mukherjee et al.
2016).

In-Distribution Performance Evaluation
Comparison Approaches For in-distribution evaluation,
we compare our compression model with widely-used com-
pression standards and recently proposed methods, includ-
ing JPEG, JPEG2000, WebP (Banerjee and Arora 2011),
BPG(444) (Bellard 2015) and VTM(444), and recent deep
compression work by (Ballé et al. 2018), (Minnen, Ballé,
and Toderici 2018), (Lee, Cho, and Beack 2019), (Zhong,
Akutsu, and Aizawa 2020) and (Johnston et al. 2018).
The implementation of JPEG, JPEG2000, WebP and BPG
are realized with CompressAI library, and the results of
VTM(444) are traced from the CompressAI paper (Bégaint
et al. 2020). The results of the learning-based approach are
traced from their corresponding paper.

2http://pfstools.sourceforge.net/hdr gallery.html
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Figure 6: (a) In-distribution performance evaluation on Kodak with MS-SSIM metric. (b)(c)(d) OoD performance evaluation
on HDR testset with puSSIM, puPSNR, HDR-VDP metrics respectively (The higher the better).
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Figure 7: Visual quality comparison of example images from HDR test set with approximately 0.44 bpp. The images are
evaluated on HDR-VDP (Mantiuk et al. 2011) metric (the higher the HDR-VDP value, the better the image quality) and the
prediction maps are presented to indicate the probability of distortion detection by the human visual system at the corresponding
image region. For a more intuitive comparison of details, the cropped and zoomed-in images are presented under suitable
exposure values (EVs) (Better viewed on screen).

Rate-distortion Performance The rate-distortion results
on Kodak are shown in Fig. 6 (a). Where the quality met-
ric is converted to (-10log10(MS-SSIM)) form for a clearer
presentation. The results of conventional codecs are pre-
sented with dotted lines while the learning-based methods
are presented with solid lines. These results indicate that our
method achieves a competitive or even better result com-
pared to several learning-based methods (Zhong, Akutsu,
and Aizawa 2020; Johnston et al. 2018) which are purely
trained and tested in-domain. Our method also outperforms
the widely used image-standard BPG, and yields better per-
formance in MS-SSIM compared to VTM, the intra-frame
codec of the next-generation compression standard Versatile
Video Coding (VVC) (Ohm and Sullivan 2018).

Out-of-Distribution Performance Evaluation
Comparison Approaches To evaluate the generaliza-
tion of our method in HDR (OoD) images, we compare
our method with the representative HDR compression ap-
proaches (schemes):
1. (Mai et al. 2011): Under framework of combining tra-
ditional SDR codecs (H.264/AVC in their work) with re-
versible TMO, which is the most widely used framework
for HDR backward-compatible compression. (Same frame-
work embedded with WebP and BPG have also been imple-

mented, denoted as ”TMO+WebP” and ”TMO+BPG”).
2. (Zaid and Houimli 2017): Under the framework of com-
bining conventional SDR compression standard (JPEG in
their work) with a ratio image to store the information used
for HDR reconstruction, which is a another typical frame-
work for backward-compatible HDR compression.
3. JPEGXT (Artusi et al. 2019): An extension of JPEG to-
wards high-dynamic range photography.
4. (Han et al. 2020): Deep HDR compression method. DNN
for residual compression and post-processing.

Rate-distortion Performance Figure 6(b)(c)(d) presents
the average ratio-distortion (RD) curves on the HDR test
set. In three metrics, our method outperforms all other HDR
compression approaches, both conventional and learning-
based compression schemes. Especially in low bit rates, the
gap between our method and other approaches is even more
pronounced. These results indicate that our approach also
yields a strong OoD compression performance.

Visual Results Fig. 7 presents the visual quality evalu-
ation from HDR test set. It can be seen that our method
presents more clear and textural details (including the power
lines in the sky, and the transmission tower under sunlight),
while obvious artifacts and noises occur in other approaches.
The smaller detection region and lower probability in HDR-
VDP prediction maps also reveal the better overall perfor-
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HDR (OoD)* SDR (In-Distribution)†
Model puPSNR (dB) puSSIM HDR-VDP Rate (bpp) PSNR (dB) MS-SSIM Rate (bpp)

Standardsdr 27.875 0.971 4.67 0.401 26.799 0.969 0.268
Standardhdr 35.846 0.970 7.490 0.269 25.746 0.956 0.273
OoDHDR 37.899 0.972 7.92 0.223 26.572 0.968 0.269

Standardsdr+TMO 45.399 0.987 8.536 0.202
Standardhdr+TMO 45.228 0.982 8.756 0.206 * Evaluation on HDR test set
OoDHDR+TMO 46.192 0.987 8.840 0.202 †Evaluation on Kodak (SDR set)

Table 1: Ablation studies of OoD training framework and TMO module

Segment (N ) puPSNR (dB) HDR-VDP Rate (bpp)
N = 2 44.701 8.198 0.100
N = 5 46.546 8.547 0.129
N = 10 46.837 8.823 0.148
N = 20 47.145 8.950 0.163

Table 2: Testing results of OoDHDR-codec with different
segment number (N ) of TMO

Figure 8: Ablation study of PU encoding. ”OoD” denotes
OoDHDR model, ”Std *” denotes the Standard model with
its corresponding training set (The higher the better).

mance of our method on the example images. More visual-
ization results in supplementary.

Ablation Studies
Generalization of Model To further investigate the gen-
eralization ability and measure the contribution of our pro-
posed framework, we compare the following models:
(1) Standardsdr: Backbone model of the framework, trained
with SDR datasets. (2) Standardhdr: Backbone model of
the framework, trained with HDR datasets. (3) OoDHDR:
Proposed method. (4) Standardsdr+TMO: Standardsdr
model augmented with TMO module during testing. (5)
Standardhdr+TMO: Standardhdr model augmented with
TMO module during testing. (6) OoDHDR+TMO: OoD-
HDR model augmented with TMO module during testing.
These models are optimized with λ1 = 12 and trained up to
250 epochs. For each model with HDR data during training,
the TMO module is adopted for stable training.

The corresponding results are depicted in Table. 1. For
HDR (OoD) compression, our method notably outperforms
the baseline models in all metrics, which reveals the strong
OoD generalization of our proposed method, and indicates

the effectiveness of the proposed invariance regularization
within two domains in the framework for learning the la-
tent representations that are shared by two domains (SDR
and HDR). Besides, it can be seen that the overall perfor-
mance of all models improved significantly by applying the
TMO module, which indicates that the TMO module in our
method plays an essential role in performance enhancement.
This is because TMO initially converts the data into a more
concentrated-distribution space, which helps to reduce the
generalization gap for the models. We also test the perfor-
mance with different TMO segmentation numbers. The re-
sults of OoDHDR-codec with PU and TMO module are
shown in Table. 2. As expected, with the increase of the
TMO segment number, the performance of OoDHDR-codec
can be improved, confirming the effectiveness of the TMO
module in our method. For SDR (in-domain) compression,
it can be observed that the baseline model trained with SDR
has a slight advantage compared to our method. This is rea-
sonable because our method tries to find a more general
representation transform across all domains while avoiding
overfitting in an individual domain.

Effectiveness of Perceptually Uniform (PU) Encoding
We test the effects of the PU model, which is used for HDR
image coding to avoid the distortion of TMO caused by too
large dynamic range. The results are depicted in Fig. 8. We
can observe that with the adoption of PU module, the cod-
ing bitrate of all models reduced significantly, and two mod-
els present an enhanced performance. This might be due to
the PU transform paying more attention to the coding of
high luminance areas, while choosing to further compress
the low luminance value into a narrower interval. This helps
the transformed image containing richer details at high lu-
minance, and saves the coding costs at extremely low lumi-
nance area, thus realizing the coding gain.

Conclusion

In this paper, we propose a novel OoD HDR image com-
pression framework (OoDHDR-codec), which improves the
compression model’s OoD generalization ability for HDR
image compression. Extensive experimental results indicate
that our OoDHDR codec shows strong generalization capa-
bilities across multiple datasets. To the best of our knowl-
edge, our proposed approach is the first work to model HDR
compression as an OoD generalization problem to achieve
state-of-the-art HDR image compression performance.
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