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Abstract

This paper starts by revealing a surprising finding: without
any learning, a randomly initialized CNN can localize objects
surprisingly well. That is, a CNN has an inductive bias to
naturally focus on objects, named as Tobias (“The object is at
sight”) in this paper. This empirical inductive bias is further
analyzed and successfully applied to self-supervised learning.
A CNN is encouraged to learn representations that focus on the
foreground object, by transforming every image into various
versions with different backgrounds, where the foreground
and background separation is guided by Tobias. Experimental
results show that the proposed Tobias significantly improves
downstream tasks, especially for object detection. This paper
also shows that Tobias has consistent improvements on train-
ing sets of different sizes, and is more resilient to changes in
image augmentations.

Introduction
Deep convolutional neural networks (CNNs) have achieved
great success in various computer vision tasks. However, as
of today we still know little about what makes a CNN suit-
able for analyzing natural images, i.e., what is its inductive
bias. The inductive bias of a learning algorithm specifies
constraints on the hypothesis space, and a model can only
be instantiated from the hypothesis space that satisfies these
constraints. It is easy to reveal the inductive bias of certain
learning algorithms (e.g., a linear classifier specifies a linear
relationship between the features and the target variable).
But, the inductive bias of complex CNNs is still hidden in
the fog (Cohen and Shashua 2017). Successfully identifying
CNN’s inductive bias will not only deepen our theoretical un-
derstanding of this complex model, but also lead to potential
important algorithmic progresses.

Objects are the key in most natural images, and CNNs are
good at recognizing, detecting and segmenting objects. For in-
stance, weakly supervised object localization (WSOL) (Zhou
et al. 2016; Selvaraju et al. 2017; Zhang, Cao, and Wu 2020)
and unsupervised object localization (USOL) methods (Wei
et al. 2017, 2019) can even localize objects without training
on bounding box annotations. All these methods, however,
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Figure 1: Visualization of localization heatmaps using
SCDA (Wei et al. 2017) for a randomly initialized ResNet-50.
Best viewed in color when zoomed in.

rely on ImageNet (Russakovsky et al. 2015) pretrained models
and non-trivial learning steps.

In this paper, we first show that focusing its attention to
objects is a born gift of CNNs even without any training,
i.e., it is CNN’s inductive bias (or one inductive bias out of
many) from an empirical perspective! A randomly initialized
CNN has surprisingly good localization ability, as shown in
Figure 1. We name this phenomenon “The object is at sight”,
or “Tobias” for short. The object(s) miraculously pop out
(“at sight”) without any need for learning. Our conjecture
is: the background is relatively texture-less compared to the
objects, and texture-less regions have higher chances to be
deactivated by activation functions like ReLU.

Tobias then lends us ‘free’ (free of labels and pretrained
models) and relatively accurate supervision for where objects
are. Hence, a natural application of Tobias is self-supervised
learning (SSL), which aims to learn useful representations
without requiring labels. After the emerging of the InfoNCE
loss (van den Oord, Li, and Vinyals 2018) and the contrastive
learning paradigm, many SSL algorithms have been pub-
lished, such as MoCo (He et al. 2020), SimCLR (Chen et al.
2020a), BYOL (Grill et al. 2020), and many more. In this
paper, we propose to probabilistically change an image’s
background (selected from other images) while keeping the
foreground objects by using Tobias. We thus force the model
to learn representations focusing on the objects.

We evaluate the representation learned by Tobias SSL on
ImageNet and other vision benchmarks. Our method achieves
consistent improvements on various benchmarks, especially
on object detection because our method can better capture the
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foreground objects. Also, we carefully study the influence of
the number of pretraining images, and our method has con-
sistent improvements on different amounts of training data.
Our contributions are: (i) We find the “Tobias” inductive bias
of CNN, i.e., a random CNN can localize objects without any
learning. (ii) We find that activation functions like ReLU and
network depth are essential for a random CNN to localize.
(iii) We successfully apply Tobias to SSL and achieve consis-
tent improvements on various benchmarks. (iv) Our method
is robust when the amount of data is small or large, and is
more resilient to changes in the set of image augmentations.

Related Works
Random networks’ potential. Frankle and Carbin (2019)
proposed the Lottery Ticket Hypothesis: A randomly ini-
tialized, dense neural network contains a subnetwork that is
initialized such that—when trained in isolation—it can match
the test accuracy of the original network after training for at
most the same number of iterations. A lot of works followed
this line of research (Chen et al. 2021; Girish et al. 2021;
Malach et al. 2020). The SSL method BYOL (Grill et al.
2020) was also motivated by the random network’s potential:
the representation obtained by using fixed randomly initial-
ized network to produce the targets can already be much
better than the initial fixed representation. DIP (Ulyanov,
Vedaldi, and Lempitsky 2018) proposed that a randomly ini-
tialized neural network can be used as a handcrafted prior in
standard inverse problems. These works show the potential
of random networks from the perspective of network pruning,
self learning or image denoising. We investigate it from a
new perspective: a random CNN sees objects.

Un/Weakly-supervised object localization. Weakly su-
pervised object localization (WSOL) (Selvaraju et al. 2017;
Zhang, Cao, and Wu 2020) learns to localize objects with
only image-level labels. CAM (Zhou et al. 2016) generated
class activation maps with the global average pooling (GAP)
layer and the final fully connected (FC) layer (weights of the
classifier). Unsupervised localization methods do not even
need image-level labels. SCDA (Wei et al. 2017) aggregated
information through the channel dimension to get localization
masks. DDT (Wei et al. 2019) evaluated the correlation of de-
scriptors. However, they all rely on ImageNet (Russakovsky
et al. 2015) pretrained models. Instead, our Tobias does not
require any labels or pretrained models.

Self-supervised learning. Self-supervised learning (SSL)
has emerged as a powerful method to learn visual representa-
tions without the expensive labels. Many recent works follow
the contrastive learning paradigm (van den Oord, Li, and
Vinyals 2018). SimCLR (Chen et al. 2020a) and MoCo (He
et al. 2020) trained networks to identify a pair of views orig-
inating from the same image when contrasted with a large
set of views from other images. The most related methods to
ours are (Shen et al. 2020) and (Chu, Zhan, and Wei 2020),
where Mixup (Zhang et al. 2018) or CutMix (Yun et al. 2019)
was used to combine two images and force the new image
to be similar to both. However, they may either generate
unnatural images or cut objects out due to the lack of super-
vision. In contrast, our method provides free foreground vs.

background supervision to merge patches, which proves to
be useful in subsequent experiments.

Data augmentation. We use Tobias to merge patches from
two different images to generate a new image, which keeps
the objects and replaces the background. Our method can
be viewed as a data augmentation strategy. As aforemen-
tioned, Mixup and CutMix do not have the location informa-
tion as in our method and the random cut in CutMix may
cover the foreground area with the background. “Copy and
paste” (Dwibedi, Misra, and Hebert 2019; Ghiasi et al. 2012)
is an effective augmentation in object detection and instance
segmentation, which cut object instances and paste them on
other images. These methods require ground-truth bounding
box labels, while ours does not rely on any labels.

Tobias, and SSL with Tobias
Now we first introduce how a randomly initialized CNN
localizes objects. Then, we introduce how Tobias is applied
to self-supervised learning.

Object Localization Using a Random CNN
Given an input image x of size H×W , the outputs of a CNN
(before the GAP layer) are formulated as an order-3 tensor
Q ∈ Rh×w×d, which include a set of 2-D feature maps
S = {Sn}(n = 1, . . . , d). Sn (of size h × w) is the n-th
feature map of the corresponding channel (the n-th channel).
For instance, by employing the ResNet-50 (He et al. 2016)
model, Q is the output of ‘pool5’ (i.e., activations of the last
max-pooling layer) and we can get a 7× 7× 2048 tensor if
the input image is 224× 224.

SCDA (Wei et al. 2017) obtains a 2-D aggregation map
A ∈ Rh×w by adding up Q through the depth direction and
then uses the mean value of A as the threshold to localize
objects. Formally, A =

∑d
n=1 Sn. Then, a mask map M of

the same size as A can be obtained by

Mi,j =

{
1 if Ai,j > ā
0 otherwise , (1)

where ā = 1
h×w

∑
i,j Ai,j and (i, j) denotes any position in

these h×w locations. Those positions (i, j) whose activation
responses are higher than ā (i.e., Mi,j = 1) indicate the
foreground objects.

The original SCDA (Wei et al. 2017) used ImageNet pre-
trained models for feature extraction and localization, and
obtained good localization performance. However, there are
many scenarios where pretrained models do not exist. Instead,
we follow the same setups as in SCDA but replace the Ima-
geNet pretrained weights by random weights. We find that a
pretrained model is not necessary and a randomly initialized
CNN can also localize objects surprisingly well. We name
this phenomenon “The object is at sight”, or “Tobias” for
short. Figure 1 visualizes some localization examples, and
we defer more results and analyses to the next section.

Tobias Self-supervised Learning
Based on our finding that an un-trained random network can
capture foreground objects surprisingly well (i.e., Tobias), it
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Part I: Localization using randomly initialized CNNs
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Part II: Probabilistically changing background
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Figure 2: Pipeline of Tobias SSL. Upper part: splitting fore-
ground and background using a randomly initialized CNN.
Lower part: applying Tobias augmentation into SSL.

is natural to wonder if we can take advantage of this prop-
erty in SSL, where we do not have any pretrained models or
annotated labels. In this section, we propose a Tobias augmen-
tation, which keeps the objects and probabilistically changes
the background for an image, and can be integrated into any
existing SSL method. Moreover, we will demonstrate that
our method can be viewed as either a data augmentation or a
pseudo supervised contrastive learning method.

The Tobias augmentation. We make two modifications
to SCDA in order to better adapt to SSL algorithms. First, we
add an extra max-pooling layer (with stride=2) after ‘pool5’
and the mask map M becomes 4 × 4 instead of 7 × 7 for
a 224 × 224 input image. The mask M for each image is
pre-calculated by a randomly initialized network and do not
change during further training. Second, we use the median in-
stead of the mean value as the threshold to make sure that we
have half the background (Mi,j = 0) and half the foreground
(Mi,j = 1). Notice that this hard half-half division cannot fit
all images exactly, because there exist images where objects
cover more than or less than half of the area. However, this
choice makes it easier when we combine foreground and
background patches from two different images.

Then we split the input image x into 4× 4 = 16 patches
R = {Ri,j}(i, j = 0, . . . , 3), in which each patch corre-
sponds to one position in M :

Ri,j = x[i×r : (i+1)×r−1, j×r : (j+1)×r−1] , (2)

where [:, :] denotes the slice operation, r× r is the patch size
and r = 224/4 = 56 in our setting. We call Ri,j a foreground
patch if Mi,j = 1 and a background patch otherwise.

Given two image x1 and x2, we can generate a new image
x1,2, which contains foreground patches in x1 and back-
ground patches in x2. When merging patches from two im-
ages, we keep the positions of foreground patches unchanged
and fill in other positions with background patches in a ran-
dom order. Let R(1), R(2) and R(1,2) denote the patches in

x1,x2 and x1,2, respectively. Then,

R
(1,2)
i,j =

{
R

(1)
i,j if M (1)

i,j = 1

R
(2)
σ(i,j) otherwise

, (3)

where σ(·, ·) defines a one-to-one mapping from background
positions in x1 to background positions in x2. More specif-
ically, background positions in x means {(i, j)|Mi,j = 0}
and σ defines such a random order to fill in background
patches. Notice that all images have the same number of fore-
ground and background patches and we are safe and free to
merge these patches.

Applying Tobias to SSL. We now apply Tobias to the
contrastive learning paradigm following the notations in Sup-
Con (Khosla et al. 2020). Suppose the dataset D has a total of
Nt images and we randomly sample N images {xk}k=1...N

to form a batch. The corresponding batch used for train-
ing consists of N pairs, {x′

k,x
′′
k}k=1...N , where x′

k and x′′
k

are two random augmentations (i.e., “views”) of xk. We de-
note the transformation as T , which is sampled from the
predefined augmentation function space Γ. Hence we have
x′
k = T ′(xk) and x′′

k = T ′′(xk), where T ′, T ′′ ∼ Γ. In
self-supervised contrastive learning, e.g., MoCo (He et al.
2020), the loss takes the following form:

Lself = −
∑
i

log
ez

′
i·z

′′
i /τ∑

j ̸=i e
z′
i·z′

j/τ +
∑

j e
z′
i·z′′

j /τ
, (4)

where z′
i = f(x′

i), z
′′
i = f(x′′

i ), the · symbol denotes the
inner product and τ is the temperature parameter. Here f(·) ≡
Proj(Enc(·)) denotes the composition of an encoder and a
projection network.

Then we introduce Tobias into SSL (illustrated in Figure 2).
Given an image xk, we generate the first view as before, i.e.,
x′
k = T ′(xk). However, for another view x′′

k , we transform
xk into xk,m by changing its background patches with an-
other randomly selected image xm with probability p, where
p is a hyper-parameter:{

Pr
(
x′′
k = T ′′(xk)

)
= 1− p

Pr
(
x′′
k = T ′′(xk,m)

)
= p

Nt
,m = 1, . . . , Nt

. (5)

Hence, the loss function becomes

LTobias = −
∑
i

log
ez

′
i·z

p
i /τ∑

j ̸=i e
z′
i·z′

j/τ +
∑

j e
z′
i·z

p
j /τ

, (6)

where zp
i = f(xp

i ) and xp
i is one of the augmented samples

in P (i) ≡ {xi,xi,1, . . . ,xi,Nt
}, which follows the distribu-

tion in Equation 5. Notice that when p = 0, LTobias degen-
erates into Lself . Furthermore, Equation 6 can be seen as
a pseudo supervised contrastive loss, where P (i) contains
images with the same foreground object.

Experimental Results
We use CUB-200 (Wah et al. 2011) and ImageNet (Rus-
sakovsky et al. 2015) for our experiments. First, we show
the localization results of randomly initialized CNNs and
make further analyses. Then, we apply our Tobias method
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Method Backbone #ReLU / #stages ImageNet CUB-200
IN super. random init. IN super. random init.

SCDA (Wei et al. 2017)

R-50 33 / 5 51.9 48.2±0.6 44.8 41.8±0.6
R-50 (sigmoid) 0 / 5 46.9 45.5±1.9 32.6 22.6±3.3
R-50 (arctan) 0 / 5 34.4 36.6±0.7 19.1 18.1±0.3
R-50 (conv1) 1 / 1 44.1 41.3±1.5 33.8 30.5±1.0
R-50 (conv1-2) 7 / 2 38.4 39.7±1.5 22.1 29.6±0.9
R-50 (conv1-3) 15 / 3 45.0 42.2±0.9 31.0 31.8±0.2
R-50 (conv1-4) 27 / 4 49.9 47.2±1.3 39.2 40.1±0.4
Vit-Base - / - 50.9 40.5±0.5 48.6 31.9±1.3

CAM (Zhou et al. 2016) R-50 33 / 5 52.9 33.8±0.1 50.0 26.0±0.3

Table 1: Comparisons of localization accuracy between ImageNet pretrained and randomly initialized CNNs on ImageNet and
CUB-200. ‘#ReLU’ and ‘#stages’ represent the number of ReLU units and stages, respectively. ‘IN super.’ stands for ‘ImageNet
supervised’. We report the average accuracy and standard deviation of 3 trials for randomly initialized models.

into SSL and demonstrate its effectiveness across various
pretraining datasets, downstream tasks, backbone architec-
tures and SSL algorithms. Finally, we study the effects of
different components and hyper-parameters and sensitivity
to data augmentations in our algorithm. All our experiments
were conducted using PyTorch (Paszke et al. 2019) and we
used 8 Titan Xp GPUs for our experiments.

Localization Ability of Random CNNs
In this section, we study the localization ability of randomly
initialized CNNs. We use SCDA (Wei et al. 2017) for local-
ization and conduct experiments on two popular datasets for
object localization, i.e., ImageNet and CUB-200. Notice that
Wei et al. (2017) used ImageNet pretrained models for eval-
uation while we study the potential of randomly initialized
models here. The localization is correct when the intersection
over union (IoU) between the ground truth bounding box and
the predicted box is 50% or more. In Table 1, we report the av-
erage localization accuracy and standard deviation of 3 trials
for randomly initialized models and we adopt Kaiming ini-
tialization (He et al. 2015) used in the PyTorch official code.
We use the PyTorch official models for ImageNet pretrained
models. We show some visualization results on CUB-200,
ImageNet as well as one complex multi-object dataset Pascal
VOC2007 (Everingham et al. 2010) in Figure 1. The heatmap
in Figure 1 is calculated by the 2-D aggregation mask A, as
noted in the previous section.

As shown in Table 1, a randomly initialized ResNet-50
(R-50) (He et al. 2016) achieves comparable localization ac-
curacies with its ImageNet supervised counterpart on both
ImageNet and CUB-200. We also present one popular WSOL
method CAM (Zhou et al. 2016) for comparison and it fur-
ther shows that our results for random CNNs are accurate.
Notice that SCDA relies only on convolution feature maps
while CAM also relies on the trained FC weights, hence
we can see a significant drop for CAM with randomly ini-
tialized models. Also, from Figure 1 we can observe more
intuitively that randomly initialized CNNs can not only lo-
cate a single object, but multiple objects as well. Furthermore,
we can observe that the standard deviation of multiple trials
is small for randomly initialized models (there is also only
small difference between the visualization results of different
trials). The results show that a randomly initialized CNN

can achieve surprisingly good localization results and the
localization results are robust with different random weights.
Moreover, as the core component of CNNs is convolution,
we also investigate what the localization effect has to do with
convolution. We compare with the non-CNN architecture
ViT-Base (Dosovitskiy et al. 2021) and there is a large gap
between the pretrained and randomly initialized ViT mod-
els. Hence, we can conclude that it is one inductive bias for
CNNs, not for MLP-based architectures, e.g., ViT.

But, why can a random CNN see objects without any learn-
ing? Given the empirical results and in particular its stability
under different random initializations, we believe it is the
inductive bias of modern CNNs. There are a lot of ReLU
and convolution layers inside ResNet-50 (and most other
modern CNNs). Remember that SCDA simply adds feature
maps across the channel dimension. Hence, if one spatial
location has many zeros (i.e., deactivated after ReLU), we
expect it to have a low SCDA score and thus being predicted
as belonging to the background.

Our conjecture is then: the background is relatively texture-
less when compared to the objects, and texture-less regions
have higher chances to be deactivated by ReLU when the net-
work depth increases. We design two experiments to verify
it. One is to replace all ReLU activations with other activa-
tion functions (e.g., sigmoid). The other one is to gradually
reduce the number of ReLU units and we directly remove
whole stages for R-50. For instance, ‘conv1-4’ means that we
remove the last stage in R-50 (i.e., ‘conv5’). From Table 1 we
can have the following two conclusions. First, ReLU plays
an important role because when we replace ReLU with sig-
moid or arctan, a significant decrease in localization accuracy
was observed. Second, network depth is also important and
we can observe a significant performance degradation as the
network depth decreases (i.e., fewer stages).

To make our conclusions more convincing, we add more
baselines and further investigate different components in
ResNet-50 as well as other CNN architectures in Table 2.
More baselines. We provide some more upper and lower
bounds to help understanding. The lower bound is the accu-
racy of predicting the entire image as the bounding box (not
trivial given that many images have a single prominent object
in CUB and ImageNet). The upper bound is the accuracy of
pretrained Faster R-CNN R-50 (Ren et al. 2015), which is
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id Backbone ImageNet CUB-200
1 R-50 48.2±0.6 41.8±0.6
2 R-50 (w/o skip connection) 50.8±1.0 42.3±1.5
3 R-50 (w/o batch normalization) 49.1±0.5 41.0±1.4
4 R-50 (shallow [1,2,3,1]) 43.9±1.5 36.7±0.7
5 R-50 (shallow [1,1,1,1]) 42.1±1.7 31.8±2.1
6 R-50 (deep [6,8,12,6]) 50.0±0.8 45.0±0.9
7 R-50 (ELU) 49.3±0.9 46.6±2.7
8 R-50 (SELU) 50.4±0.6 45.4±3.5
9 R-50 (softplus) 51.0±2.7 51.6±3.1

10 R-50 (init: Normal(0,0.1)) 50.6±0.3 43.4±0.5
11 R-50 (init: Uniform(-0.1,0.1)) 50.0±0.4 43.4±0.4
12 R-50 (init: Xavier) 42.2±1.1 32.6±0.9
13 VGG-11 40.0±0.5 30.6±1.4
14 VGG-16 40.8±0.5 33.5±1.9
15 VGG-16 (sigmoid) 39.8±0.6 18.2±1.3
16 VGG-16 (arctan) 34.6±0.5 20.1±1.0
17 VGG-16 (ELU) 40.4±1.0 32.5±1.0
18 VGG-19 41.4±1.8 34.2±0.3
19 AlexNet 34.6±1.5 24.8±0.3
20 Inception v3 52.2±0.6 49.6±0.9
21 Hourglass 52.6±0.2 46.9±0.4
22 EdgeBox 31.8 32.7
23 lower bound (whole image) 38.8 19.1
24 upper bound (faster R-CNN) 58.9 96.2

Table 2: Localization accuracy of various CNNs on ImageNet
and CUB-200. We report the average accuracy and standard
deviation of 3 trials for randomly initialized models.

directly supervised on the detection task COCO (Lin et al.
2014). We also compare with object proposal method Edge-
Box (Zitnick and Dollár 2014). These results further prove
that the localization results of random CNNs are good.

We then study the impact of different components in R-50:
(1) Skip connection and batch normalization (BN) (Ioffe

and Szegedy 2015) are not crucial. We remove all skip con-
nections in R-50 (row 2) and we even achieve slightly better
performance than the original R-50 (row 1). Also, when we
remove all BN (row 3), we achieve comparable performance.

(2) Network depth is important. We reduced the number
of stages in Table 1 before and now we keep the number of
stages unchanged but change the number of bottlenecks in
each stage. The number of bottlenecks in each stage for R-50
is 3, 4, 6 and 3, respectively (denoted as [3,4,6,3]). When
reduced to [1,2,3,1] (row 4), we have 4.3 and 5.1 points
decrease compared with original R-50 on ImageNet and CUB,
respectively. When further reduced to [1,1,1,1] (row 5), we
have 6.1 and 10.0 points decrease on ImageNet and CUB,
respectively. Conversely, when we increase the number of
bottlenecks to [6,8,12,6], we can get 1.8 and 3.2 points gains
on ImageNet and CUB, respectively. It indicates that deeper
architectures can better capture high-level information and
localize objects better, even when randomly initialized.

(3) Other ReLU-like unbounded activations also help.
When we use other activations, e.g., ELU, SELU and soft-
plus (row 7∼9), we can get comparable or even better results
than ReLU. All these activations have one thing in common:
deactivate negative values and unbounded for positive values.
Other CNN architectures. Other randomly initialized CNN
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Figure 3: Classification accuracy after training (PyTorch
model zoo) versus localization accuracy (when randomly
initialized) on ImageNet. The number in brackets represents
the number of convolutions in the model (i.e., depth).

architectures can also localize objects well. We study with
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), VGG-
style networks (Simonyan and Zisserman 2015), Hourglass
network (Ulyanov, Vedaldi, and Lempitsky 2018) and In-
ception v3 (Szegedy et al. 2016). We can observe that other
architectures (e.g., VGG-19, Hourglass and Inception v3) can
also achieve non-trivial localization ability.

When comparing among VGG-style networks, we can
also observe that the localization accuracy increases with the
increase of network depth (row 13∼18). Also, activations like
ReLU perform better than sigmoid and arctan activations.

When comparing among different CNN architectures, we
can see that deeper networks (e.g., Inception v3) perform
better than shallow networks (e.g., AlexNet). As shown in
Fig. 3, we rank the following according to the localization
accuracy on ImageNet: AlexNet<VGG-11<VGG-16<VGG-
19<ResNet-50<Inception v3. Note that the ranking of the lo-
calization accuracy of these random networks is surprisingly
consistent with their classification accuracy on ImageNet. We
can conclude that deeper networks perform better in terms of
localization, even when randomly initialized.
Initialization scheme. We observe that other initialization
methods can also get good and robust localization results
(row 10 and row 11) and Tobias is actually a general phe-
nomenon. However, as discussed by He et al. (2015), the
linear assumption in Xavier initialization (Glorot and Ben-
gio 2010) is invalid for ReLU and we can observe degraded
localization accuracy (row 12) here.

In short, we find that randomly initialized CNNs can lo-
calize objects surprisingly well, which is even comparable to
their supervised counterparts. Also, we analyze the effect of
different components in modern CNNs. The results reveal the
potential of a random CNN in localizing objects and provide
a new perspective to explain why modern CNNs achieve such
good performance in visual analysis.

Tobias Self-supervised Learning
Now we apply Tobias to SSL (Equation 6) and evaluate its ef-
fectiveness on CUB200 and ImageNet. Then, we will analyze
the effects of different components and hyper-parameters and
the sensitivity to data augmentations.
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Backbone SSL pretraining Fine-tuning accuracy (%)
method epochs Normal FT Mixup FT

ResNet-18

ImageNet super. N/A 76.2 75.0
random init. 0 62.0 63.4
MoCov2 200 63.7 65.8
MoCov2-Tobias 64.4 (+0.7) 66.3 (+0.5)
MoCov2 800 65.0 66.3
MoCov2-Tobias 66.2 (+1.2) 67.7 (+1.4)
SimCLR 200 63.6 64.5
SimCLR-Tobias 65.4 (+1.8) 68.6 (+4.1)
SimCLR 800 66.0 67.3
SimCLR-Tobias 67.4 (+1.4) 69.3 (+2.0)

ResNet-50

ImageNet super. N/A 81.3 82.1
random init. 0 58.6 56.3
MoCov2 200 56.2 53.0
MoCov2-Tobias 63.6 (+7.4) 62.0 (+9.0)
MoCov2 800 66.5 62.0
MoCov2-Tobias 67.2 (+0.7) 71.5 (+9.5)
SimCLR 200 68.0 66.5
SimCLR-Tobias 68.4 (+0.4) 71.7 (+5.2)
SimCLR 800 69.2 73.0
SimCLR-Tobias 70.0 (+0.8) 73.6 (+0.6)

Table 3: Comparisons of pretraining details and accuracies
(%) on CUB-200. ‘N/A’ means that pretraining are conducted
on ImageNet instead of CUB-200 for ImageNet supervised
models. ‘FT’ is short for ‘fine-tuning’.

Results on CUB-200 We carefully study our Tobias using
2 typical SSL methods, namely MoCov2 (Chen et al. 2020b)
and SimCLR (Chen et al. 2020a) under both ResNet-18 and
ResNet-50. We follow the training and evaluation protocols
in (Cao and Wu 2021) and conduct experiments on CUB-200.
The full learning process contains two stages: pretraining and
fine-tuning. We use the pretrained weights obtained by SSL
for initialization and then fine-tune networks for classification.
Note that SSL pretraining and fine-tuning are both performed
only on the target dataset CUB-200 in this subsection.

For the fine-tuning stage, we fine-tune all methods for 120
epochs using SGD with a batch size of 64, a momentum
of 0.9 and a weight decay of 5e-4 for fair comparison. The
learning rate starts from 0.1 with cosine learning rate decay.
We also list the results using the Mixup strategy, where the
alpha is set to 1.0. For the SSL pretraining stage, we follow
the same settings in the original papers. ‘-Tobias’ denotes
our method and we only change the data loading process and
other training settings remain the same as baseline methods.

The results are shown in Table 3. Tobias has consistent
improvements under various backbones, pretraining epochs
and SSL algorithms. Taking ResNet-50 as an example, our
Tobias achieves 13.2% relative higher accuracies than the
baseline MoCov2 with normal fine-tuning when both pre-
trained for 200 epochs. Also, the relative improvement has
risen to 17.0% if we use MixUp. It is because that we also
merge image patches (in an informative way) during pretrain-
ing and it is more friendly to subsequent fine-tuning with
MixUp. Moreover, we can observe that the improvement is
larger when pretrained for fewer epochs (200 vs. 800). It
is because that our method can better capture foreground
objects, which leads to faster convergence during pretrain-
ing. We will further demonstrate the effectiveness of such
foreground vs. background information.

pretraining method R-50-FPN (24k) R-50 C4 (24k)
AP50 AP AP75 AP50 AP AP75

random init. 63.0 36.7 36.9 60.2 33.8 33.1
IN supervised 80.8 53.5 58.4 81.3 53.5 58.8
MoCov2 200ep 81.8 55.0 60.5 82.2 57.1 64.5
MoCov2-Tobias 200ep 82.0 55.5 61.1 82.6 57.7 64.9
MoCov2 800ep 81.5 55.0 61.0 82.6 57.7 64.5

Table 4: Object detection on PASCAL VOC trainval07+12
(default VOC metric AP50, COCO-style AP, and AP75).

pretraining VOC 07&12 Tiny-IN-200method #imgs #eps AP50 AP75

random init. 0 0 63.0 36.9 0.5
MoCov2 10k 200 71.1 45.8 0.5
MoCov2-Tobias 71.4 (+0.3) 47.0 (+1.2) 9.9 (+9.4)
MoCov2

10k 800
71.6 45.9 23.6

MoCov2-Tobias 73.2 (+1.6) 48.5 (+2.6) 23.9 (+0.3)
MoCov2-RM 72.0 ↓1.2 47.4 ↓1.1 23.5 ↓0.4
MoCov2-Mixup 70.9 ↓2.3 43.3 ↓5.2 19.3 ↓4.6
MoCov2 50k 200 72.2 46.8 26.3
MoCov2-Tobias 73.7 (+1.5) 49.2 (+2.4) 26.0 (-0.3)
MoCov2

50k 800
77.5 53.3 37.9

MoCov2-Tobias 77.9 (+0.4) 54.9 (+1.6) 40.7 (+2.8)
MoCov2-RM 77.4 ↓0.5 53.3 ↓1.6 40.1 ↓0.6
MoCov2-Mixup 76.7 ↓1.2 52.4 ↓2.5 38.7 ↓2.0
MoCov2 100k 200 76.2 51.6 35.3
MoCov2-Tobias 77.5 (+1.3) 53.9 (+2.3) 36.5 (+1.2)
MoCov2 100k 800 78.7 56.3 43.7
MoCov2-Tobias 79.4 (+0.7) 57.3 (+1.0) 44.3 (+0.6)

Table 5: Downstream object detection performance on VOC
07&12 and linear evaluation accuracy on Tiny-IN-200 when
pretrained on ImageNet subsets using ResNet-50. ‘#imgs’
(‘#eps’) represent the number of images (epochs).

Results on ImageNet Now we move on to the large-scale
dataset ImageNet. We use MoCv2 for illustration following
the official training protocols in (Chen et al. 2020b). We
adopt ResNet-50 as backbone and set the batch size to 256,
learning rate to 0.03 and number of epochs to 200. We study
the downstream object detection performance on Pascal VOC
07&12 (Everingham et al. 2010) in Table 4. The detector is
Faster R-CNN with a backbone of R-50-FPN (Lin et al. 2017)
or R-50-C4 (He et al. 2017).

As shown in Table 4, Tobias achieves better performance
than baseline MoCov2 on Pascal VOC. Also notice that our
Tobias 200ep even achieves slightly better performance than
MoCov2 800ep (pretrained much longer).

Apart from the full large-scale ImageNet dataset, we also
study the performance under different data volumes by sam-
pling the original ImageNet to smaller subsets, motivated
by Cao and Wu (2021). We randomly sample (without using
any image label) 10 thousand (10k), 50 thousand (50k) and
100 thousand (100k) images to construct IN-10k, IN-50k and
IN-100k, respectively. We only change the amount of data
here and other training settings remain the same as before.
The results are shown in Table 5 and we adopt Pascal VOC
07&12 for object detection and Tiny-ImageNet-200 (100,000
training and 10,000 validation images from 200 classes at
64× 64 resolution) for linear evaluation.

As can be seen in Table 5 and Figure 4, our Tobias achieves
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Figure 4: Performance of Tobias on Pascal VOC (AP75) with
respect to different training data size.

significant improvements on both downstream tasks, espe-
cially on VOC 07&12 object detection. For instance, when
both trained for 200 epochs on IN-100k, our Tobias is sig-
nificantly better than baseline counterpart: up to +1.3 AP50

and +2.3 AP75. Also notice that when both trained for 200
epochs on IN-10k, MoCov2 performs the same as random
guess (0.5%) while our method learns much better represen-
tations (9.9%) in terms of Tiny-IN-200 linear evaluation. In
general, our method improves the most on AP75, which is
a more stringent metric for detection accuracy. It indicates
that our model can better capture foreground objects across
changing backgrounds during pretraining, hence improving
performance for object detection as well as image classifica-
tion. Moreover, our method is especially effective (i.e., has
greater improvements) when the amount of data is small.

Ablation Studies
In this section, we will first study the effectiveness of the
foreground vs. background (Tobias) information (generated
by random networks). Then, we will study the effect of the
hyper-parameter p in our method. Finally, we study the sensi-
tivity to data augmentations.

Effect of Tobias information. Notice that we use the fore-
ground vs. background information when merging patches
from two images. To demonstrate its effectiveness, we design
a random merging strategy for comparison (MoCov2-RM in
Table 5). More specifically, we do not use such information
and randomly select patches from two images for merging
(also half-half division) and it can also be viewed as one
kind of patch-level CutMix. We also compare with MoCov2-
Mixup where we use Mixup when merging images. We keep
all other settings the same and conduct pretraining on both
IN-10k and IN-50k. As can be seen in Table 5, we will see a
significant drop, especially in object detection performance
if we discard the foreground vs. background information
provided by our Tobias: up to -1.2 AP50 for RM and -2.3
AP50 for Mixup when trained on IN-10k for 800 epochs. It
demonstrates the Tobias information provided by a randomly
initialized network is vital. Another interesting thing is that
RM achieves better performance than the baseline MoCov2,
which indicates that this kind of data augmentation is some-
how useful for SSL, as shown in (Shen et al. 2020).

Effect of hyper-parameter. Now we study the effect of
the hyper-parameter p, i.e., the probability of changing back-

prob p
VOC 07&12 Tiny-IN-200AP50 AP AP75

0.0 71.6 43.9 45.9 23.6
0.3 73.2 45.7 48.5 23.9
0.5 73.9 46.3 49.4 23.3
0.7 72.3 44.8 47.4 25.4
1.0 71.8 44.3 46.6 24.3

Table 6: Effect of hyper-parameter p. All settings are pre-
trained on IN-10k for 800 epochs using ResNet-50.

transformation set MoCov2 MoCov2-Tobias
AP50 AP75 Tiny-IN AP50 AP75 Tiny-IN

baseline 71.6 45.9 23.6 73.2 48.5 23.9
remove grayscale 70.2 44.1 19.9↓ 3.7 73.1 49.0 22.7↓ 1.2

remove color 71.3 46.0 18.1↓ 5.5 72.7 48.2 21.2↓ 2.7

crop+flip only 71.0 46.2 16.8↓ 6.8 72.9 48.3 20.2↓ 3.7

crop only 71.7 46.7 15.0↓ 8.6 73.1 49.9 17.9↓ 6.0

Table 7: Impact of progressively removing transformations.
All pretrained on IN-10k for 800 epochs.

grounds in another view. We study p = 0, 0.3, 0.5, 0.7 and
1.0. Notice that when p=0, our Tobias degenerates into the
baseline MoCov2. We train on IN-10k for 800 epochs for
all settings in Table 6. For object detection, we can see that
when p grows, the result becomes better and will not continue
to improve when it grows beyond 0.5. For Tiny ImageNet,
p = 0.7 achieves the highest accuracy. Notice that we directly
set p to 0.3 for all our experiments throughout this paper and
did not tune it under different settings. It also indicates that
we can get better results with more carefully tuned p.

Sensitivity to image augmentations. Now we study the
sensitivity to image augmentations of our Tobias by progres-
sively removing transformations in the transformation set fol-
lowing Grill et al. (2020). The results in Table 7 show that the
performance of Tobias is much less affected than the perfor-
mance of MoCov2 when removing the color distortion from
the set of image augmentations, especially on Tiny-IN-200.
Also we can observe that color distortion (e.g., grayscale and
color-jitter) has greater impact on downstream image clas-
sification and less impact on object detection. When image
augmentations are reduced to a mere random crop, the gap be-
tween our Tobias and baseline MoCov2 has increased to 2.9
and 3.2 points for Tiny-IN-200 and VOC detection (AP75),
respectively. It indicates that our Tobias is itself an effective
data augmentation and less sensitive to other augmentations.

Conclusions
In this paper, we revealed the phenomenon that a randomly
initialized CNN has the potential to localize objects well,
which we called Tobias. Moreover, we analyzed that acti-
vation functions like ReLU and network depth are essential
for a random CNN to localize. Then, we proposed Tobias
self-supervised learning, which forces the model to focus on
foreground objects by dynamically changing backgrounds
while keeping the objects under the guidance of Tobias. Var-
ious experiments have shown that our method obtained a
significant edge over baseline counterparts because it learns
to better capture foreground objects. In the future, we will try
to apply our Tobias to supervised learning.
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