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Abstract

We propose a dual-domain generative model to estimate a
texture map from a single image for colorizing a 3D hu-
man model. When estimating a texture map, a single image
is insufficient as it reveals only one facet of a 3D object.
To provide sufficient information for estimating a complete
texture map, the proposed model simultaneously generates
multi-view hallucinations in the image domain and an esti-
mated texture map in the texture domain. During the gener-
ating process, each domain generator exchanges features to
the other by a flow-based local attention mechanism. In this
manner, the proposed model can estimate a texture map uti-
lizing abundant multi-view image features from which multi-
view hallucinations are generated. As a result, the estimated
texture map contains consistent colors and patterns over the
entire region. Experiments show the superiority of our model
for estimating a directly render-able texture map, which is ap-
plicable to 3D animation rendering. Furthermore, our model
also improves an overall generation quality in the image do-
main for pose and viewpoint transfer tasks.

Introduction
Along with the increase of online activities recently, recon-
structing a 3D avatar from photos becomes an important
problem. To reconstruct a 3D avatar, we need a 3D mesh
template for shape representation and a corresponding tex-
ture map for colorization. Traditionally, a 3D avatar recon-
struction requires multiple image pairs consisting of diverse
poses and viewpoints taken at a dedicated studio. However,
trend has move on to reconstructing a 3D model from fewer
or a single image. Many works (Bogo et al. 2016; Lassner
et al. 2017; Kanazawa et al. 2018; Pavlakos et al. 2018; Varol
et al. 2018; Alldieck et al. 2019; Natsume et al. 2019; Weng,
Curless, and Kemelmacher-Shlizerman 2019; Gabeur et al.
2019; Saito et al. 2019; Kolotouros et al. 2019; Choutas et al.
2020; Saito et al. 2020) have been studied to resolve 3D hu-
man shape reconstruction from a single image, however, lit-
tle has been studied for texture map reconstruction from a
single image for a 3D model (Jian et al. 2019; Lazova, Insa-
futdinov, and Pons-Moll 2019).

A texture map is an image lying on uv-coordinates con-
taining whole surface colors of a 3D model (Catmull 1974;
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Figure 1: Estimating a texture map from a single image by
hallucinating multi-view images. An arrow from each hallu-
cination image represents a reference part for estimating a
boxed region on the estimated texture map.

Catmull and Smith 1980). When rendering an image using
the 3D model, the surface color values are drawn from the
texture map according to the pre-defined uv parameteriza-
tion. One hardness of the texture map estimation from a sin-
gle image is that a single image is insufficient for generating
a complete texture map for the entire surface. Convention-
ally, a texture map is obtained by aggregating multiple par-
tial texture maps, obtained by unwrapping multi-view im-
ages into uv-coordinates, called stitching (Wang et al. 2001;
Thormählen and Seidel 2008). However, when it comes to
generating a texture map from a single image, a half of the
entire surface is unseen, whose colors should be filled by
imagination.

To resolve this issue, we propose a texture map estima-
tion method from a single image for colorizing a 3D human
model utilizing multi-view features. Recently, deep architec-
tures have achieved remarkable success on pose transferred
image generation, and we expect that deep architectures can
provide sufficient alternatives for real multi-view images. To
this end, instead of generating a texture map solely, we de-
sign our model to generate images in two different domains:
pose transferred images in the image domain and a texture
map in the texture domain. Our model consists of two main
generators: an image generator and a texture generator. Dur-
ing the generation process, the image generator generates
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pseudo multi-view images from a single image to provide an
entire surface features for generating a texture map. Simul-
taneously, the texture generator generates the texture map
utilizing features from the pseudo multi-view images, which
we named as hallucinations. The overall texture generating
scheme is depicted in Figure 1. The texture domain genera-
tor utilizes multi-view features drawn from the image gen-
erator and makes the image generator utilize texture fea-
tures drawn from the texture domain generator using an at-
tention mechanism. As a consequence, each domain’s gen-
erator takes advantage of geometric clues and information
about unseen surfaces. In light of the image domain gener-
ator, texture features provide geometrically consistent pat-
terns over any pose, viewpoint, and scale, increasing gener-
alization performance even for the out-of-distribution cases.
From the texture domain generator’s standpoint, image fea-
tures provide natural colors and pattern information dedi-
cated to generating real-looking images and clues for unseen
surfaces.

To validate our method, we conduct experiments on vari-
ous datasets and show the superiority of our method for gen-
erating a texture map and pose transferred images. We also
demonstrate our resulting texture map can be applied to 3D
human model for rendering a 3D animation clip.

We can summarize our contributions into three folds.
• We propose a novel multi-view hallucination generation

scheme to provide pseudo multi-view images for estimat-
ing a texture map from a single image.
• We propose dual-domain generators in which each do-

main feature is interacting with the other by an attention
mechanism, which improves generated image qualities
for image pose transfer and texture map estimation tasks.
• We generate a directly render-able texture map in decent

quality for the 3D human model from a single image.

Related Work
Texture map estimation. Densepose transfer (Neverova,
Alp Guler, and Kokkinos 2018), which firstly adopts a tex-
ture mapping technique on pose transferred image genera-
tion, inpaints a partial texture map warped from an input
image to generate a complete texture map. Grigorev et al.
(2019) estimate a flow-field from a partial flow map by
which an input image is warped to make a full texture map.
However, their resulting texture maps have limited quality
for being directly used for rendering, which requires addi-
tional processing layers to obtain a final pose transferred im-
age. Jian et al. (2019) utilize person re-identification loss to
generate a direct render-able texture map, albeit their results
are somewhat blurry. Lazova, Insafutdinov, and Pons-Moll
(2019) proposed texture and displacement-map-generating
networks from a single image trained using full texture maps
obtained from elaborately synthesized 3D models. The gen-
erated texture map by Lazova, Insafutdinov, and Pons-Moll
(2019) has sufficient fidelity, however, training them re-
quires full texture maps which are hard to obtain in prac-
tice. Utilizing texture mapping for pose transferred image
generation has an advantage of keeping temporal consis-
tency on the same surfaces when generating a video clip.

Zhi et al. (2020) proposed a texture and displacement gen-
erating framework from multiple RGB-D frames of a video.
Our approach differs from Zhi et al. (2020) in that we as-
sume multi-view images for generating a texture map are not
given as inputs, but an another objective to generate during
the process.

Preliminary
Global flow local attention (GFLA) (Ren et al. 2020) is a
patch-based attention module in which a local patch is ex-
tracted from where a flow points to. GFLA consists of two
modules: flow generator,1 F , and local attention module, A.
A flow generator F generates a flow f, according to which
local patches are extracted2, and a binary mask m for merg-
ing features. Let φq and φk denote a query and a key feature
respectively, and fkq denote a flow from key to query. The lo-
cal attention module outputs φout = A(φq,φk, fkq) in two
steps. Let Nn(φ, l) be an n × n sized local patch extracted
from φ centered at location l. In a local attention module, a
local attention feature φattn is computed as

φattn(l) = Attn
(
Nn(φq, l), Nn

(
φk, l + fkq(l)

))
, (1)

where Attn(·, ·) is a general attention module (Vaswani et al.
2017). Then the final output φout is computed as

φout = (1−mkq)⊗ φq + mkq ⊗ φattn. (2)

where mkq denotes a binary mask generated by F together
with fkq , ⊗ denotes an element-wise multiplication, and 1
denotes a tensor whose elements are all ones.

Proposed Method
Notations. Let x denote an image, s denote a surface an-
notation representing texel3 coordinates of pixels in uv, ob-
tained by DensePose (Güler, Neverova, and Kokkinos 2018).
Let p denote an image pose of the image x represented as
a heat map of keypoints detected by OpenPose (Cao et al.
2019). Let t denote an estimated texture map and c denote a
coordinate annotation representing pixel coordinates of tex-
els. The coordinate annotation c and the surface annotation
s are inversely related satisfying l = c(s(l)) for any pixel
coordinate l on a human body. Let b denote a texture pose,
a warped image pose p to the texture domain according to
the coordinate annotation c, namely b = warp(p; c). Super-
script s and t are used to denote source and target, identi-
fying that a symbol is used for pre-/post-pose-transform, re-
spectively, and h is also used in place of t to emphasize that
targets are used for hallucination. Please refer to the supple-
mentary material for more detailed notations.
Formulation. Our model consists of two generative net-
work pipelines: a hallucination network complex (hallunet-
complex, H-NetsI) and a texture network complex (texnet-
complex, T-NetsT ). Step I in Figure 2 depicts an overview

1It is called a global flow field estimator in the original paper.
2Originally, f represents relative positions, however, we use rel-

ative positional representation when key and query features lie on
the same domain, and absolute positional representation elsewhere.

3pixel of a texture map
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Figure 2: Overview of the proposed dual-domain generative method consisting of two generative pipelines: a hallucination
network complex (H-NetsI) and a texture network complex (T-NetsT ). The H-NetsI generates nh pose-transferred hallucination
images, {x̂hi }

nh
i=1, on the image domain while the T-NetsI generates an estimated texture map, t, on the texture domain. The

two pipelines processed simultaneously exchanging their features (φI : image feature, φT : texture feature) to the other domain.

of the generation process. The hallunet-complex, H-NetsI ,
simultaneously generates nh pose transferred hallucina-
tion images, {x̂hi }

nh
i=1, from a source image, xs, and nh

hallucination image poses, {phi }
nh
i=1, while the texnet-

complex, T-NetsT , generates an estimated texture map, t.
The hallunet-complex and the texnet-complex are processed
simultaneously referring to intermediate features of the other
domain by GFLA. To utilize GFLA, the hallunet-complex,
H-NetsI , consists of a texture-to-image flow generator ad-
mitting hallucination image poses, {phi }

nh
i=1, as inputs. Sim-

ilarly, the texnet-complex, T-NetsT , consists of a image-to-
texture flow generator admitting hallucination poses on both
image and texture domain, {phi , b

h
i }
nh
i=1, as inputs. Denoting

φI and φT , intermediate features4 of the image domain and
the texture domain, respectively, we can express a genera-
tion process of each network complex as

x̂hi , φ
h
I i = H-NetsI(xs, ps, phi , φT ), (3)

t, φT = T-NetsT (Ph, Bh, Φh
I), (4)

where a capital symbol denotes a set of nh smaller sym-
bols used for hallucinations, e.g., Ph = {phi }

nh
i=1 and Φh

I =
{φhI i}

nh
i=1.

Hallucination Network Complex
A hallucination network complex consists of a source image
encoder, EsI , an image generator, GI , and two flow genera-
tors: source-to-target (source-to-hallucination) flow genera-
tor, F stI , and texture-to-image flow generator, FT →I .
Image generator. The image generator, GI , generates
nh pose transferred hallucination images, {x̂hi }

nh
i , each of

4The actual attention mechanism is applied to multiple feature
layers, however, we regard them as a single layer feature for a con-
cise representation in the rest of the paper.

which is generated from a source image, xs, conditioned on
a hallucination image pose, phi . The image generator con-
sists of an encoder-decoder structure interleaved with two
types of local attention modules – source local attention
module, AstI , and texture local attention module, AT →I , –
at decoder side. The source image encoder EsI provides a
source image feature extracted from the source image xs as
a key feature for the source local attention module. Let φsI
denote a source image feature, φT denote a texture feature,
f shI and msh

I denote a source-to-hallucination flow and a cor-
responding mask respectively. Let fT I and mT I denote a
texture-to-image flow and a corresponding mask. Then the
image generator GI generates nt target images {x̂hi }

nh
i=1 as

x̂hi = GI(phi ,φ
s
I ,φT , f shI ,msh

I , fT I ,mT I), (5)

referring to the source feature, φsI , and the texture feature,
φT , as a query using a source- and a texture- local attention
module by (1) and (2) respectively.
Source-to-target (source-to-hallucination) flow genera-
tor. The source-to-target flow generator, F stI , generates a
source-to-hallucination flow f shI and a corresponding mask
msh

I for the source local attention module from the source
image xs, the source pose ps and the hallucination image
pose ph, following the GFLA (Ren et al. 2020), as

f shI , msh
I = F sh

I (xs, ps, ph). (6)

Texture-to-image flow generator. The texture-to-image
flow generator, FT →I , generates a texture-to-image mask,
mT I , for texture a local attention module basically from a
hallucination image pose, ph, for the lowest layer and se-
quentially combines a texture feature, φT , of the same level
layer after outputting the lowest layer’s flow and mask, as
depicted in Figure 3.

fT I , mT I = FT →I(φT , ph). (7)

205



constants

Image
Local Attn

generated image

estimated texture map

source-to-target

texture-to-image

image-to-texture

Flow generator

Flow generatorsImage generator

Texture generator

H
a

ll
u

c
in

a
ti

o
n

 N
e

tw
o

rk
 C

o
m

p
le

x
T

e
x

tu
re

 N
e

tw
o

rk
 C

o
m

p
le

x

Texture
Local Attn

Texture
Local Attn

Source
Local Attn

Source
Local Attn

Image
Local Attn

Figure 3: Detailed structures of the hallunet-complex and the texnet-complex consisting of a respective domain generator and
the corresponding flow generator(s) with input-output linkages.

Texture Network Complex
A texture network complex consists of a texture generator,
GT , and a image-to-texture flow generator, FI→T .
Texture generator. The texture generator, GT , generates
an estimated texture map, t, from learn-able constants utiliz-
ing multi-pose image features, Φt = {φt}nt

i=1. The SMPL
(Loper et al. 2015) based texture map we use has a spe-
cific layout, in which every body part appears at the same
location. Hence, we design the learn-able constants be the
universal input for the texture generator, GT , to generate
all output texture maps, hoping the texture generator to find
an optimal encoding for the universal texture map structure.
Similar to the image generator, the texture generator is com-
posed of an encoder-decoder structure interleaved with im-
age local attention modules at decoder side. While the image
generator, GI , generates nt different target images simulta-
neously, the texture generator, GT , generates a single tex-
ture map, t, referring to nt different image features at once.
Let ΦI = {φIi

}nt
i=1 denote a set nt image features of nt

different target poses generated by the image generator, and
FIT = {fIT i

}nt
i=1, MIT = {mIT i

}nt
i=1 denote a set of nt

image-to-texture flows and masks, and aIT denote an aggre-
gation mask which will be explained later. Then the texture
generator, GT , estimates a texture map, t, as

t = GT (ΦI ,FIT ,MIT , aIT ). (8)
We design the texture generator to attend to multi-view

features at the same time. To achieve this, we introduce an
additional merging layer at the end of the image local atten-
tion module to merge multiple multi-view attention features.
Let nh be the number of hallucination and φattni be the at-
tention feature of i-th view according to (1). Then a merged
attention feature, φmerge, is obtained by applying a convo-
lution layer on a concatenation of {φattni }nh

i=1 as

φmerge = Conv(concat(φattn1 , ... , φattnnh
)), (9)

where concat(·) denotes a concatenation operation on fea-
tures along the channel dimension. Then the final output fea-

ture, φout, is computed as
φout = (1− aIT )⊗ φIT + aIT ⊗ φmerge, (10)

with a texture decoding feature, φT , and an aggregation
mask, aIT , obtained by FI→T , where 1 is a tensor whose
elements are all ones.
Image-to-texture flow generator. The image-to-texture
flow generator, FI→T , generates an image-to-texture flow,
fIT , a corresponding mask, mIT , and an aggregation mask,
aIT , for image local attention from a hallucination image
pose, ph, a hallucination texture pose, bh, and a hallucina-
tion pixel coordinate, ch, as

fIT , mIT , aIT = FI→T (ph, bh, ch). (11)
Notice that the FI→T generates the additional aggregation
mask aIT for merging multi-view attention features accord-
ing to (10).

Loss Functions and Training Strategy
We assume that the ground-truth of an estimated texture map
is inaccessible. Hence, we render an image using the esti-
mated texture map, t, and compare it to a ground-truth image
for training. We simplify the rendering process into warping
t according to a surface coordinate, s. However, the warped
texture map constitutes only a foreground human body and
lacks background. We provide the lacking background to the
rendered image from the generated pose transferred image,
x̂, generated by the image generator. Let m denote a binary
mask of the surface coordinate, s. Then we obtain the final
rendered image, x̃, by

x̃ = (1−m)⊗ x̂ + m⊗ warp(t; s). (12)
Loss functions. To train the image generator,GI , and the
texture generator, GT , we use four types of losses in the
image domain: Reconstruction loss, Lrec, to minimize the
difference between a generated/rendered image, {x̂, x̃}, and
ground-truth image, x, according to `1 norm as

Lrec = ‖x̂− x‖1 + ‖x̃− x‖1.
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Figure 4: The path along the combined flows, fIT and fT I ,
should be consistent with a direct path along the f stI .

The perceptual loss, Lperc (Johnson, Alahi, and Fei-Fei
2016), to minimize `1 norm between deep features of {x̂, x̃}
and x as

Lperc =
∑
j

[
‖ jψ(x̂)− jψ(x)‖1 + ‖ jψ(x̃)−ψj(x)‖1

]
,

where jψ represents a j-th layer feature obtained by the pre-
trained VGG19 networks for preserving coarse level con-
tents. The style loss, Lstyl (Johnson, Alahi, and Fei-Fei
2016),

Lstyl =
∑
j

[
‖ jGψ(x̂)−jGψ(x)‖1+‖ jGψ(x̃)−jGψ(x)‖1

]
,

for preserving an overall style, where jGψ represents a
Gram matrix constructed from jψ. And the hinge version
of the adversarial loss, Ladv , with a discriminator, D(·), to
make the generated/rendered images and the estimated tex-
ture map real-looking.

Additionally, we use four types of losses to train three
flow generators: F st

I , FT →I , and FI→T . As in Ren et al.
(2020), we use the sample correctness loss to train the
source-to-target flow generator, F st

I :

Lcor =
1

L

∑
l∈Ω

exp

(
− µ(ψ̃ls, ψ

l
t)

µlmax

)
, (13)

where µ(·, ·) denotes the cosine similarity, Ω denotes the co-
ordinate set containing all L positions in the feature maps,
ψ̃s denotes the warping of the VGG19 feature, ψs, accord-
ing to the flow f stI , that is ψ̃s = warp(ψs; f stI ), with a su-
perscript l denoting feature values of ψ̃s located at the coor-
dinate l = (x, y). To train the image-to-texture flow genera-
tor, FT I , we introduce a coordinate loss, Lcoord, as

Lcoord =
∥∥m̃T ⊗ (fIT − c̃)

∥∥
2
, (14)

where c̃ denotes a rescaled version of c to the same spatial
size and scale of cIT , m̃T denotes a binary mask indicating
visible parts of c̃. Additionally, we introduce a path consis-
tency loss,Lcons. Considering two types of paths as depicted
in Figure 4. One path, represented as f stI , is a direct path
from a source to a target. The other path is a two-step path
from the source to the target passing through a texture map
represented as a combination of image-to-texture flow, fIT ,
and texture-to-image flow, fT I . We assume that information
contained in the source image should be convey to the same

location on the target image regardless of the paths. To im-
pose this assumption, the path consistency loss reduces the
difference between the two paths as

Lcons =
∥∥m⊗

(
f stI − warp(fIT ; fT I)

)∥∥
2
, (15)

with the binary mask, m, representing foreground human
body obtained along with surface annotation, s. Lastly, all
flows are regularized by the regularization loss devised in
Ren et al. (2020) as

Lreg = Lr(f stI ) + Lr(fIT ). (16)

Please refer to Ren et al. (2020) for further details of the
regularization loss.
Training Strategy The goal of the hallunet-complex is to
provide sufficient image features from diverse viewpoints to
the texture generator. Providing evenly rotated poses as a set
of hallucination poses could be an option, however, gener-
ating evenly rotated images is often ungeneralizable for the
image generator as most training images are biased to frontal
and side views. To balance the trade-off between viewpoint
diversity and generalization performance, we sample nh−1
poses from another image pair having a different clothes
identity and combine a source pose to make a set of nh
hallucination poses. Let {phi }

nh
i=1 denote a set of hallucina-

tion image poses. As {phi }
nh
i=1 are sampled from the other

image pair, except one from the source, we do not have
ground-truths to evaluate the generated hallucination im-
ages. Hence we propose two-step generation processes for
training as depicted in Figure 2. Firstly, we run the whole
networks, both hallunet-complex and texnet-complex, using
the sampled hallucination poses, {phi }

nh
i=1, to obtain an esti-

mated texture map, t, and a texture feature, φT , which we
named it φhalluT . Let {pti}

nt
i=1 denote target image poses of

the current image pair, a set of different pose images of the
source image which we can use as ground-truths. In the sec-
ond step, we run the hallunet-complex solely using the tar-
get image poses, {pti}

nt
i=1, referring to the kept hallucination

texture feature, φhalluT , to obtain generated target images,
{x̂ti}

nt
i=1, posing {pti}

nt
i=1. Now, we do have the ground-truths

for {x̂ti}
nt
i=1, we can train the whole networks using the pro-

posed loss functions.

Experiments
Datasets. We use three datasets to evaluate our model:
DeepFahsion In-shop Clothes Retrieval Benchmark (Liu
et al. 2016), iPER (Liu et al. 2019), and Fashion video col-
lected from Amazon (Zablotskaia et al. 2019). From Deep-
Fahsion we filter out 5,745 images wearing 1,628 differ-
ent clothes, which are non-detectable to the human detector
(Cao et al. 2019), from the training set.
Evaluation and metrics. To evaluate estimated texture
maps, we render multi-pose/view images using the esti-
mated texture maps as we do not have ground-truth tex-
ture maps. We use three measures to compute reconstruction
errors and a distributional discrepancy between generated
images and reference images: Structural similarity (SSIM)
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source target LWG Ours ( ) Ours ( )GFLA

Figure 5: Examples of comparison result on Deepfashion
dataset to pose transferred image generation methods. LWG
(Liu et al. 2019) and GFLA (Ren et al. 2020) preserve tex-
tures locally, but sometimes fail to generate exact posture
and scaled images, while ours preserve the overall postures
and scales.

DeepFashion iPER
FID ↓ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑

PG2 47.714 0.246 0.763 0.135 0.854
Def-GAN 18.457 0.233 0.761 0.129 0.829
LWG 23.286 0.283 0.731 0.087 0.840
GFLA 10.573 0.234 0.715 - -
HPBTT - - 0.735 - -
Ours (GI) 9.001 0.156 0.830 0.051 0.907
Ours (GT ) 19.656 0.177 0.786 0.063 0.897

Table 1. Comparison results on DeepFashion and iPER
datasets. GI indicates the image domain output and GT in-
dicates the rendered image using the estimated texture map.

(Wang et al. 2004), Learned Perceptual Image Patch Sim-
ilarity (LPIPS) (Zhang et al. 2018), and Fréchet inception
distance (FID) (Heusel et al. 2017).

Comparisons
We compare our method to several state-of-the-art pose
guided image transfer methods including PG2 (Ma et al.
2017), Def-GAN (Siarohin et al. 2018), GFLA (Ren et al.
2020), LWG (Liu et al. 2019), and a recent texture map es-
timation method, HPBTT (Zhao et al. 2020). The results
are summarized in Table 1. On the DeepFashion and iPER
dataset our method outperforms the others. Figure 5 shows
some examples comparing generated images (ours (GI))
and rendered images (ours (GT )) of our method to other
pose transferred image generation methods. We can find that
our model has the advantage of generating an image involv-
ing large scale transform over the others. For example, in
the third row of Figure 5, LWG and GFLA generate fine
details locally but fail at generating the exact pose and con-
sistent patterns overall. However, our method successfully
generates a desirable scaled image even if the target pose

iPER FashionVid
LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑

GI (nh = 1) 0.067 0.894 0.063 0.920
GI (nh = 2) 0.055 0.907 0.061 0.922
GI (nh = 3) 0.051 0.907 0.066 0.921
GI (nh = 4) 0.082 0.871 0.061 0.924
GT (nh = 1) 0.076 0.887 0.081 0.903
GT (nh = 2) 0.066 0.898 0.081 0.905
GT (nh = 3) 0.063 0.897 0.082 0.903
GT (nh = 4) 0.026 0.869 0.079 0.905

Table 2. Analysis results of the number of hallucination.

iPER FashionVid
LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑

GI (Ind.) 0.051 0.907 0.073 0.913
GI (T →I) 0.056 0.903 0.072 0.916
GI (I→T ) 0.061 0.901 0.057 0.900
GI (Full) 0.051 0.907 0.066 0.921
GT (Ind.) 0.075 0.888 0.100 0.888
GT (T →I) 0.075 0.887 0.085 0.901
GT (I→T ) 0.073 0.892 0.083 0.902
GT (Full) 0.063 0.897 0.082 0.903

Table 3. Results of the ablation study. GI denotes generated
image from the image generator and GT denotes rendering
image using the estimated texture map.

represents merely a magnified body part, ascribing to the
interacting feature flow. The rendering results of ours are
comparable to the others despite some artifacts, attributing
to resolution mismatch between the image and the texture
map and surface annotation errors. Thus, we can conclude
that our texture generator generates a plausible texture map
for direct rendering. Please refer to the supplementary mate-
rial for more examples.

Analysis and Ablation Study
Number of hallucination. To analyze whether the pro-
posed hallucination generation scheme is indeed helpful for
texture map estimation, we conduct experiments increasing
the number of hallucination, nh, from one to four. Table 2
summarizes the results. For iPER, LPIPS tends to decrease
for increasing nh on both generated and rendered images.
In terms of SSIM, generation quality greatly increases for
nh= 2 compared to nh= 1 for all cases, which demonstrates
the effectiveness of the proposed hallucination generation
scheme for texture map estimation. However, there are little
improvements for nh > 2 and a degenerate result appears
for GT (nh= 4). Practically, as each posed image reveals a
half of the whole surface, nh= 2 seems sufficiently enough
to contain all surface features. We conjecture the degenerate
result for nh= 4 on iPER is attributed to overlapping surfaces
among hallucinations which distract both image and texture
generators from generating qualified outputs.
Ablation study. To analyze the role of inter-domain fea-
ture flows, we conduct ablation studies by unlinking each
attention path from one domain to the other. Independent
model (Ind.) has no inter-domain attention path, Image-
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Figure 6: Examples of ablation studies. Rendered images of various viewpoints and poses using estimated texture maps from
source images (column 1 of each example, top: source image, rest: texture map).

to-texture model (I→T ) solely has image-to-texture atten-
tion path, and Texture-to-image models (T →I) solely has
texture-to-image attention path. As the original input for the
texture generator have no distinguishable information about
input clothes, we leave the image-to-texture flow at the low-
est layer solely from the source image to the texture gen-
erator for the Ind. and the T →I models. Full model (Full)
denote the original model consisting of all directional atten-
tion paths and nh= 3 is used. The results are summarized in
Table 3. The quality of estimated texture maps (GT ), eval-
uated by rendered images, improves when image-to-texture
flows are added to the independent model, and improves fur-
ther when texture-to-image flows are incorporated. For the
image generator (GI), neither the I→T nor T →I model
shows a consistent improvement, however, the two types
of flow altogether improve the overall generation quality.
Figure 6 shows some rendered images comparing ablated
models. In Figure 6, the Ind. and the T →I models cannot
generate distinguishable black sleeves in the first example
while I→T model and the full model generate distinguish-
able black sleeves. The Ind. and T →I models often fail at
generating accurate clothes color while the full model suc-
ceed. The I→T model generates comparable texture map to
the full model, however, the it often generates some artifacts
on texture map and background.

Application
To verify the usability of our method for 3D model render-
ing, we generate 3D animation clips using texture maps gen-
erated by our method. We first reconstruct a sequence of 3D
human shape in the SMPL format using the off-the-shelf
3D video reconstruction model (Kocabas, Athanasiou, and
Black 2020) and the off-the-shelf clothing model (Ma et al.
2020). Then we apply a texture map generated by ours to the
3D shape sequence to obtain a colored animation clip. Fig-
ure 7 shows some examples. The generated 3D animations
are viewed in two different viewpoints. The result shows that

source

texture map rendered animation

target video

source

texture map rendered animation

target video

Figure 7: Examples of 3D animation rendering using our es-
timated texture map viewed in two different viewpoints.

a person in a source image acts as the target target video, pre-
serving clothes patterns all around. The generated texture
map works effectively for 3D model rendering, generating
consistent images for any pose and viewpoint.

Conclusion
We propose dual-domain generative models for a complete
texture map estimation by providing multi-view features us-
ing a novel hallucination generation scheme. Our model uti-
lizes a local attention module over the domains to convey
multi-view features to the texture map and texture features
to pose transferred images. Experimental results show that
the estimated texture map has decent quality for rendering
colorful 3D human models, which is applicable to generate
a free-view point 3D animation.

209



Acknowledgments
This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2019-0-
01190, [SW Star Lab] Robot Learning: Efficient, Safe, and
Socially-Acceptable Machine Learning).

References
Alldieck, T.; Magnor, M.; Bhatnagar, B. L.; Theobalt, C.;
and Pons-Moll, G. 2019. Learning to Reconstruct People
in Clothing From a Single RGB Camera. In IEEE Conf.
Comput. Vis. Pattern Recog.
Bogo, F.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.;
and Black, M. J. 2016. Keep It SMPL: Automatic Estima-
tion of 3D Human Pose and Shape from a Single Image. In
Eur. Conf. Comput. Vis. Springer.
Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; and Sheikh, Y.
2019. OpenPose: Realtime Multi-Person 2D Pose Estima-
tion Using Part Affinity Fields. IEEE Trans. Pattern Anal.
Mach. Intell., 43(1): 172–186.
Catmull, E. 1974. A Subdivision Algorithm for Computer
Display of Curved Surfaces. PhD dissertation, Utah Univ
Salt Lake City School of Computing.
Catmull, E.; and Smith, A. R. 1980. 3-D Transformations of
Images in Scanline Order. In SIGGRAPH, 279–285. ACM.
Choutas, V.; Pavlakos, G.; Bolkart, T.; Tzionas, D.; and
Black, M. J. 2020. Monocular Expressive Body Regression
Through Body-Driven Attention. In Eur. Conf. Comput. Vis.
Springer.
Gabeur, V.; Franco, J.-S.; Martin, X.; Schmid, C.; and Ro-
gez, G. 2019. Moulding Humans: Non-Parametric 3D Hu-
man Shape Estimation From Single Images. In Int. Conf.
Comput. Vis.
Grigorev, A.; Sevastopolsky, A.; Vakhitov, A.; and Lempit-
sky, V. 2019. Coordinate-Based Texture Inpainting for Pose-
Guided Human Image Generation.
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