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Abstract

Video anomaly detection aims to automatically identify un-
usual objects or behaviours by learning from normal videos.
Previous methods tend to use simplistic reconstruction or pre-
diction constraints, which leads to the insufficiency of learned
representations for normal data. As such, we propose a novel
bi-directional architecture with three consistency constraints
to comprehensively regularize the prediction task from pixel-
wise, cross-modal, and temporal-sequence levels. First, pre-
dictive consistency is proposed to consider the symmetry
property of motion and appearance in forwards and back-
wards time, which ensures the highly realistic appearance and
motion predictions at the pixel-wise level. Second, associ-
ation consistency considers the relevance between different
modalities and uses one modality to regularize the prediction
of another one. Finally, temporal consistency utilizes the rela-
tionship of the video sequence and ensures that the predictive
network generates temporally consistent frames. During in-
ference, the pattern of abnormal frames is unpredictable and
will therefore cause higher prediction errors. Experiments
show that our method outperforms advanced anomaly de-
tectors and achieves state-of-the-art results on UCSD Ped2,
CUHK Avenue, and ShanghaiTech datasets.

Introduction
Video anomaly detection (VAD) is critical for video surveil-
lance systems. A key challenge in developing machine learn-
ing methods for VAD is that very few or even no samples
of abnormal data are available for learning. This makes it
a one-class classification problem (Perera and Patel 2019),
in which one must learn a distribution based only on nor-
mal distances. VAD methods learn the normal distribution
implicitly within a model; anomalies are then detected by
the model’s inability to either reconstruct (Zhou et al. 2019;
Gong et al. 2019; Nguyen and Meunier 2019) or predict (Liu
et al. 2018; Lu et al. 2019; Zhou et al. 2019b) some data
samples. During inference, normal samples are assumed to
have low reconstruction or prediction errors, while samples
with high reconstruction or prediction errors are anomalies.

*corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Association consistency

Temporal consistency
Embedding space

Predictive consistency

Forward sequence

Time

Time

Backward sequence

Appearance

Motion

BPN

Figure 1: Our bi-directional VAD framework predicts miss-
ing patches forwards and backwards in time for video
anomaly detection. The multi-granularity consistency con-
straints regularize the prediction of patches from pixel-wise,
cross-modality, and temporal-sequence levels. High predic-
tion errors suggest the presence of an abnormal event. For
better presentation, we set the number of input sequence
frames to 5 in all figures.

Naturally, the “normal” model must be sufficiently expres-
sive for such an assumption to hold. Learning such a model
for a medium as rich and high-dimensional as video can be
especially challenging. The ability to capture the intrinsic
properties of the video, such as the appearance, dynamic in-
formation, and temporal sequencing all play an important
role. In our method, we employ a patch-wise prediction ap-
proach to do VAD through the bi-directional architecture.
Some previous VAD works predict entire frames (Liu et al.
2018; Lu et al. 2019); we follow (Yu et al. 2020) and pre-
dict only patches associated with video events based on de-
tected objects, which avoids the interference of irrelevant
background. The abnormal event is detected by the predic-
tion error of appearance and optical flow in forward and
backward directions. As shown in Fig. 1, this architecture
enables comprehensive consistency constraints to regular-
ize the prediction task from pixel-wise, cross-modal, and
temporal-sequence levels.

In contrast to the simple reconstruction or prediction con-
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straints of previous models, we propose multi-granular con-
sistency constraints based on the video’s inherent charac-
teristics. Firstly, in our predictive consistency, the back-
wards treatment presents the possibility to enforce forward-
backward constraints in motion and appearance prediction.
This consistency is based on the symmetry property of mo-
tion and appearance forwards and backwards in time. The
appearance in the forwards direction should be consistent
with the backwards predicted appearance at the correspond-
ing pixel. Similarly, the optical flow in the forwards pre-
diction should be the inverse of the backwards prediction.
However, the previous methods (Liu et al. 2018; Zhou
et al. 2019b) impose appearance and motion constraints for
prediction quality without the backwards. Their constraints
only minimize the difference between a generated image and
its ground truth from pixel-level in forwards direction.

Secondly, apart from employing predictive constraint in
each modality prediction, we design the association con-
straint in terms of relevance between different modalities.
The multi-modal discriminator is added to distinguish be-
tween matching versus non-matching appearance and mo-
tion predictions for association consistency. In our associa-
tion consistency, we consider the consistent correlation be-
tween appearance and motion in VAD, which was ignored
by previous methods (Tang et al. 2020; Yan et al. 2018).
Recently, AMMC-Net(Cai et al. 2021) models the consis-
tency between regular appearance and motion through com-
plex memory modules. It learns two mapping functions from
the appearance memory pool feature to the motion memory
pool feature and vice versa. Differently, avoiding the design
of an extra sophisticated network, our simple multi-modal
discriminator estimates the association between the ground
truth appearance and its corresponding input motion.

Finally, we add a temporal consistency constraint, ensur-
ing the predictive network to predict more temporally con-
sistent frames. The sequence discriminator is added to dis-
tinguish between real versus fake sequences for temporal
consistency. Although the previous approaches (Cai et al.
2021; Yu et al. 2020) consider the temporal feature to reg-
ularize the prediction task through the motion information,
the motion (optical flow) can only represent the short-term
temporal relationship between two adjacent frames. The
long-term temporal relationship of events that occurs in a
video sequence was also not concerned in these approaches.
Our model is able to obtain a rich yet discriminative rep-
resentation of normal video events that is easily separable
from abnormal events even though we do not have samples
of the latter during training. Experimental evaluation shows
that our method surpasses state-of-the-art on several VAD
benchmarks.

We summarize our contributions below:

• We introduce three consistency regularizations from a
pixel-wise, a cross-modality and temporal-sequence lev-
els; these consistencies are unaccounted for in previous
works.

• By assuming forwards-backwards symmetry in appear-
ance and flow, the predictive consistency regularizes the
modality prediction through a novel bi-directional pre-

dictive framework.
• The association consistency explicitly models the correc-

tion between modalities by the multi-modal discrimina-
tor. The temporal consistency captures the temporal re-
lationship of a video sequence by the sequence-wise dis-
criminator.

• Extensive experiments demonstrate that our method
can surpass state-of-the-art methods on several VAD
benchmarks. On ShanghaiTech, our method achieves the
frame-level AUC of 78.1%.

Related Work
Reconstruction VAD Methods attempt to capture the dis-
tribution of normal video and reconstruct these videos with
high quality in the training process. During inference, the
distribution of anomaly samples should be far from the
learned distribution and lead to a large reconstruction er-
ror. Some propose a Convolutional Autoencoder to recon-
struct an input sequence of frames (Hasan et al. 2016; Tran
and Hogg 2017). Recent works explore variants of Convo-
lutional Autoencoders such as two-stream recurrent frame-
work (Yan et al. 2018), a parametric density estimator (Abati
et al. 2019) and a memory-augmented autoencoder (Gong
et al. 2019). The reconstruction-based approaches attempt to
reconstruct whole frames from scratch, but they sometimes
suffer from over-fitting (Kieu et al. 2019) and can even re-
construct abnormal event well (Liu et al. 2018), which can-
not distinguish between normal and abnormal data easily
and successfully.

Prediction VAD Methods aim to predict future frames
based on the context of previous frames. They (Liu et al.
2018; Lu et al. 2019; Fan, Zhu, and Yang 2019) assume
that normal events are predictable while abnormal ones are
unpredictable. The previous method already proposes some
consistencies to regularize the prediction task. For example,
(Liu et al. 2018) propose a method that predicts the future
frame with higher quality for normal events by the simple in-
tensity and gradient constraint. They regularize the predicted
result by comparing the value of each pixel between the
ground-truth image and the predicted image. Apart from sin-
gle modality constraint, (Cai et al. 2021) attempts to model
the consistency between appearance and motion information
through the complex modality memory pools. It combines
the multiple modality features to build a more robust fea-
ture representation of normal events. Recently, inspired by
the cloze test (“fill-in-the-blank”) (Taylor 1953) used in lan-
guage understanding, Yu et al.(Yu et al. 2020) proposed a
novel prediction task by predicting erased patches of incom-
plete video events and fully exploit temporal information in
the video. However, it still simply take previous pixel-wise
constraint to regularize the prediction task and ignore the
correlation between optical flow and video frame.

Unlike these previous prediction approaches in VAD, our
focus is on exploring and leveraging the full extent of the in-
formation contained both forwards and backwards in time
within a video. Besides, we consider modeling the rela-
tionship between appearance and motion through a simple
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Figure 2: Method overview. The bi-directional predictive networks take the incomplete sequences as input to predict the cor-
responding motion and appearance of the erased frame, which is regularized by predictive consistency. To keep the relevance
between different modalities, the multi-modal discriminator (MD) learns to classify between fake {target appearance, generated
motion} and real {target appearance, target motion} tuples. Appearance and motion sequence-wise discriminators (ASD and
MSD) guarantee the predictors to generate the temporally consistent appearance or motion patches by distinguishing a fake
contained sequence from the ground-truth sequence.

multi-modal discriminator. It estimates the association be-
tween ground truth appearance and its corresponding input
motion. Finally, the temporal relationships in the video se-
quence are also taken into account. It is regularized by the
sequence-wise discriminator which distinguishes a fake con-
tained sequence from the ground-truth sequence.

Methodology
The framework (see overview in Fig. 2) consists of bi-
directional predictive networks (BPNs), a multi-modal dis-
criminator (MD), and a sequence-wise discriminator (SD).
Three comprehensive consistency regularizations include
predictive consistency, association consistency, and tempo-
ral consistency.

Given the incomplete video sequence in forwards and
backwards order, the BPNs predict the missing frame’s ap-
pearance and motion in both directions. To make highly re-
alistic appearance and motion predictions, three consisten-
cies regularize the prediction task from pixel-wise, cross-
modal, and temporal-sequence levels. Firstly, in BPNs, the
predictive consistency penalizes pixel differences between
the predicted frame and target frame. Secondly, association
consistency ensures that each predicted motion is strongly
related to the target appearance. The multi-modal discrim-
inator (MD) determines an association between each input
appearance and its corresponding motion. Finally, to predict
the temporally consistent frames, the appearance and mo-
tion sequence discriminators (ASD, MSD) are used to de-
cide whether the sequence contains a predicted sample or

not. During inference, the anomaly is detected through the
video event completion task in BPNs. When a video event is
abnormal, the missing frame’s appearance and motion pre-
diction error should be higher than a normal video event.

Video Event Extraction
We wish to avoid the influence of the background and fo-
cus explicitly on the objects presented in the scene. To do
so, we apply a pre-trained cascade R-CNN (Cai and Vas-
concelos 2018) as an object detector to each frame. Since
all abnormal events in the available public datasets (Lu, Shi,
and Jia 2013; Luo, Liu, and Gao 2017; Tan et al. 2021) are
defined by the anomaly object or behavior, we perform the
basic object detection in preprocessing to avoid the inference
of background and focusing on the pattern of objects. For a
frame at time t, each detection bounding box is applied as
an ROI to extract a track from frames t−(n − 1) to t. We
define the resized track (to a fixed resolution of 32×32) as a
video event; each event can produce n (e.g. n = 5) different
incomplete sequences by removing any one of the frames.
The prediction task is then to infer this missing frame. Aside
from appearance defined by the RGB frames, we also esti-
mate the corresponding n-frame optical flow track.

Bi-directional Predictive Networks
The Bi-directional Predictive Networks have a forward and
a backward branch (see Fig. 2(a)). Each branch contains two
U-Net architectures (Ronneberger, Fischer, and Brox 2015)
to predict the missing frame of RGB and optical flow respec-

232



tively from some incomplete sequences of a video event. In
the forward branch, Fa and Fm denote the appearance and
motion predictors; similarly,Ba andBm, denote the appear-
ance and motion predictors in the backward direction. For a
given video event X with n frames, we denote as an incom-
plete sequence X/i where the ith frame xi is missing. The
prediction x̂i is found via the predictor x̂i = Fa(X/i, θa).
Similarly, if the backward sequence is denoted as X ′, then
the corresponding missing frame x′i can also be predicted
as x̂′i = Ba(X

′
/i, θ

′
a). For motion predictions, we denote

ŷi=Fm(X/i, θm) and ŷ′i=Bm(X ′
/i, θ

′
m) as the forward and

backward motion predictors, respectively. All four predic-
tors use the same U-Net architecture and differ only in their
output size – the appearance predictors have three channels
for RGB outputs while the motion predictors have two chan-
nels for optical flow outputs. Each predictor has its own
unique set of parameters.

Predictive Consistency: We design predictive consis-
tency loss functions to ensure the consistency between the
forward and backward predictions. For appearance predic-
tion, we combine the pixel-wise MSE loss and a perceptual
Laplacian pyramid loss (Ling and Okada 2006) to approxi-
mate the predictors x̂i and x̂′i to the corresponding ground-
truth xi and x′i. We are inspired by (Bojanowski et al. 2018),
which promotes the use of the Laplacian pyramid loss to
capture edges and context over multiple scales to improve
predictions. The predictive consistency loss for appearance
can be formulated as:

La =

n∑
i=1

(
‖xi−x̂i‖22 +

∑
j

22j
∣∣∣Lapj(xi

)
− Lapj (x̂i)

∣∣∣
1

+ ‖xi−x̂′
i‖22 +

∑
j

22j
∣∣∣Lapj(xi

)
− Lapj (x̂′

i

)∣∣∣
1

)
,

(1)

where the first and third terms are MSE losses with respect
to forward and backward predictions x̂i and x̂′i respectively.
The second and fourth terms in Eq. 1 are the Laplacian pyra-
mid loss with respect to forward prediction x̂i and backward
prediction x̂′i, where Lapj(·) is the jth level of Laplacian
pyramid representation. xi is the ith original frame, which
is denoted as the appearance ground-truth.

Unlike the appearance prediction, the direction of back-
ward motion prediction should be inverse to that of the for-
ward one. We employ the `1 loss to minimize the distance
between predicted motions and target ones:

Lm =
n∑

i=1

(
‖yi − ŷi‖1 + ‖yi + ŷ′i‖1

)
, (2)

where yi is the target motion from the ith frame in the orig-
inal sequence X . Note that the second term in Eq. 2 play a
role of pushing away the directions between the target mo-
tion yi and the predicted backward motion ŷ′i.

Multi-modal Discriminator
The BPNs’ regularization terms focus on the consistency
between the forward and backward stream, but cannot as-
sociate any relevance or lack thereof between the appear-
ance and motion itself. We therefore propose to construct an

association between appearance and motion predictions by
adding the multi-modal discriminator. The ground-truth ap-
pearance patch xi and its corresponding ground-truth mo-
tion patch yi are treated as real pairs while the ground-
truth appearance patch xi and generated motion ŷi or ŷ′i are
fake pairs. The discriminator, fed by the concatenation of an
erased patch and its motion, learns to classify between fake
and real pairs. The structure of multi-modal discriminator is
based on the DCGAN (Radford, Metz, and Chintala 2016),
where the input layer of size 32×32×5 is fed by the concate-
nation of a video patch and its motion. Therefore, the ob-
jective function of a multi-modal discriminator for forward
direction can be formulated as:

Lmdf = −
1

2

n∑
i=1

(
logD(xi, yi) + log [1−D(xi, ŷi)]

)
. (3)

Similarly, in the backwards direction, the multi-modal dis-
criminator distinguishes the real pair from fake pair byLmdb:

Lmdb = −1

2

n∑
i=1

(
logD(xi, yi) + log

[
1−D(xi,−ŷ′

i)
] )

, (4)

where −ŷ′i is the inverse of the generated backward motion
ŷ′i. The multi-modal discriminator loss can be formulated as:

Lmd = Lmdf + Lmdb. (5)

Sequence-wise Discriminator
Finally, we propose sequence-wise adversarial training to
ensure temporal consistency. It decides whether the se-
quence contains the predicted (fake) image or not. Suppose
that N indicates a set of 2n fake sequences containing the
generated patches both from forward and backward predic-
tors, P is the ground-truth video event, i.e., real sequence.
The objective function of the sequence discriminator can be
expressed as follows:

Lsd = −1

2

2n∑
i=1

(
logD(P ) + log [1−D(Ni)]

)
. (6)

Specifically, for each modal (appearance and motion), we
design the sequence discriminator respectively. They share
the same architecture with independent parameters, except
that each sequence of the former has 3 input channels (im-
ages) while the latter has 2 (optical flow).

For the appearance stream, as the fake sequence, we con-
struct X̂ (F )

ai and X̂ (B)
ai by replacing the ground-truth se-

quence at the ith position with the predicted x̂i and x̂′i from
forward and backward predictors respectively as:

X̂ (F )
ai

= [x1 : xn\x̂i], X̂ (B)
ai

= [x1 : xn\x̂′i]. (7)

Therefore, we can further construct a fake appearance se-
quence set X̂a with the sequence number of 2n by concate-
nating all the predicted positions across forward and back-
ward predictors.
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Information Discriminator Modality UCSD Ped2 CUHK Avenue Traffic-TrainForward Backward Sequence Multi-modal Motion Appearance
" " " 97.3% 89.6% 64.2%
" " " " 97.9% 90.0% 66.6%
" " " " " 98.1% 90.1% 67.6%
" " " " " 96.5% 85.0% 67.4%
" " " " " " 98.3% 90.3% 68.5%

Table 1: Ablation study for source information, discriminator and input modality.

The appearance sequence discriminator (ASD) attempts
to distinguish between the ground-truth Xa and fake se-
quence 2n times. The object function Eq. 6 for appearance
sequence discriminator can be expressed by Lsda:

Lsda = −1

2

2n∑
i=1

(
logD(Xa) + log

[
1−D(X̂ai)

] )
. (8)

Similarly, for the motion, we also design the object function
Lsdm for motion sequence discriminator, which classifies an
input motion sequence as real or fake. The objective function
is formulated as follows:

Lsdm = −1

2

2n∑
i=1

(
logD(Xm) + log

[
1−D(X̂mi)

] )
, (9)

where Xm is the ground-truth motion sequence. Similar to
the construction of fake appearance set X̂a, X̂m is a fake mo-
tion sequence set with the sequence number of 2n, contain-
ing the fake motion sequence X̂ (F )

m and X̂ (B)
m from the for-

ward and backward predictors. Note that the fake sequence
of motion from the backward predictor is constructed by:

X̂ (B)
mi

= [y1 : yn\(−ŷ′i)]. (10)

Anomaly detection
For training, the BPNs are optimized by appearance and
motion prediction loss forwards and backwards. We mini-
mize the following objective function, which consists of ap-
pearance and motion prediction losses (i.e., Eqs. 1 and 2),
the multi-modal and two sequence adversarial losses (i.e.,
Eqs. 6, 8 and 9):

L = λ1La + λ2Lm + λ3Lmd + λ4Lsda + λ5Lsdm, (11)

where λ1 to λ5 are hyperparameters for balancing five loss
functions.

During inference, the video event is extracted from the
current frame and four previous frames by an object detector.
Each video event produces n different incomplete sequences
by erasing the patch at i-th position. The trained BPNs out-
put the predicted appearance (x̂i, x̂′i) and motion (ŷi, ŷ′i) for
the forwards and backwards direction. The total prediction
error Sa and Sm for appearance and motion is defined as:

Sa =

n∑
i=1

wa‖xi − x̂i‖22 + w′
a‖xi − x̂′

i‖22,

Sm =

n∑
i=1

wm‖yi − ŷi‖22 + w′
m‖yi + ŷ′

i‖22,
(12)

where wa, w′
a, wm and w′

m indicate the weights of ap-
pearance and motion prediction error in forward and back-
ward respectively. Finally, the frame-level abnormal score S
based on video event is calculated as follows:

S = Sa + Sm. (13)

Experiments
Experimental Setting
Datasets. We experiment on five VAD benchmarks: CUHK
Avenue (Lu, Shi, and Jia 2013), UCSD Ped2 (Mahadevan
et al. 2010) and ShanghaiTech (Luo, Liu, and Gao 2017)
in the main paper. In all the datasets, only the normal class
exists in the training data. The optical flow of each frame as
motion is computed by FlowNet2 (Ilg et al. 2017).

Evaluation metrics. For UCSD Ped2, CUHK Avenue
and ShanghaiTech datasets, We adopt the most frequently-
used metric (Mahadevan et al. 2010): The area under curve
(AUC) of the receiver operating characteristic (ROC) curve
estimated from the frame-level scores.

Implementation. Our model is implemented in PyTorch;
we train with the Adam optimizer with a batch size of 128
and a learning rate of 0.0002 for the predictors and 0.00002
for the discriminators. Considering the dataset scale, model
is trained by 5, 20, and 30 epochs with a batch size 128
on UCSDped2, Avenue and ShanghaiTech respectively. The
anomaly scoring and balancing weights are evaluated via
cross-validation. Specifically, for anomaly scoring, we set
(wa, w

′
a, wm, w

′
m) to be (0.5, 0.01, 1, 1.5) for UCSD ped2,

(1.2, 0.8, 0.8, 1.2), (1, 0.01, 0.01, 3) for Avenue and Shang-
haiTech, respectively. We set the weights for balancing five
loss functions (λ1, λ2, λ3, λ4, λ5) to be (1, 2, 0.25, 1, 1). The
number of incomplete sequence frames is set to 5, except the
ablation study on video event length in next section.

Ablation Studies
Effectiveness of backward information. We conduct sev-
eral ablation studies in Tab. 1. Comparing the first and sec-
ond row, i.e., with versus without the backwards stream adds
the improvement of 0.6%, 0.4% and 2.4% for UCSD ped2,
CUHK avenue and Traffic-Train datasets respectively. We
do an additional comparison to check if the gains come sim-
ply from an ensemble effect as adding the backwards stream
effectively doubles the number of predictors. Tab. 2 shows
that using two forwards predictors does not provide much
benefit and performance improvement, which is on par with
one forwards predictor. The main reason is the lacking sup-
port from backward information.
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Predictors UCSD Ped2 Avenue Traffic-Train
One forward

predictor 97.3% 89.6% 64.2%

Two forward
predictors 97.3% 89.5% 64.3%

One forward
predictor
+One backward
predictor

97.9% 90.0% 66.6%

Table 2: Ablation for increasing the number of predictors.

Loss UCSD Ped2 Avenue Traffic-Train
MSE 98.0% 90.1% 67.1%

MSE + LAP 98.3% 90.3% 68.5%

Table 3: Ablation for Laplacian pyramid loss.

Effectiveness of consistency regularizers. Compared
with the proposed model without any discriminator in the
second row of Tab. 1, we observe that, in the third row, the
sequence-wise discriminator (temporal consistency) brings
evident improvement by 0.2%, 0.1% and 1.0% AUC gain on
UCSD Ped2, CUHK Avenue, and Traffic-Train respectively.
In the last row of Tab. 1, multi-modal discriminators (associ-
ation consistency) achieve improvement by 0.2%, 0.2%, and
0.9%, compared to that without multi-modal discriminator
(i.e., the third row in Tab. 1). We adopt a strategy of typical
conditional GAN in our framework. For multi-modal dis-
criminator, it makes sure that the underlying distribution of
predicted motion is highly related to its corresponding target
appearance (association consistency) and closer to the dis-
tribution of ground truth motion patch simultaneously. Be-
sides, for sequence-wise discriminator, it increases the ro-
bustness and temporal consistency of predicted frames.

Effectiveness of modality. In the last two rows of Tab. 1,
It is clear that the two modalities have different impacts on
the performance of the proposed method in these benchmark
datasets. In UCSD Ped2, the video quality of a stationary
camera mounted at an elevation is too low. In the Traffic-
Train, people are blocked by obstacles in the train. The ap-
pearance information of the object in both datasets can not
be employed to detect the abnormal event effectively. Differ-
ently, the videos captured in CUHK avenue are much more
clear, which supports the network to learn the normal pattern
from spatial–temporal information in the video. Therefore,
with motion information, the appearance information could
further achieve great improvement to the detection perfor-
mance, 5.3%, in CUHK avenue dataset.

Effect of predictive consistency loss. The effectiveness
of the Laplacian pyramid loss is further verified in Tab. 3.
The Laplacian loss is a better measure of image reconstruc-
tion according to perceived visual quality than L1 or MSE
error. This has been verified in previous works (Bojanowski
et al. 2018; Hou and Liu 2019).

Effect of Video event length n. We experiment the num-
ber of sequence frames n with 3, 5, 7 and 9; in each case,
only one frame is erased and the proposed model learns the
normal patterns by predicting the erased frame from these

Length UCSD Ped2 Avenue Traffic-Train
3 93.5% 88.1% 65.7%
5 98.3% 90.3% 68.5%
7 97.1% 89.3% 66.7%
9 96.6% 89.1% 64.5%

Table 4: Ablation for the length of the complete video event.
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Figure 3: Abnormal score (prediction error) curves evolved
along time on two example abnormal events in UCSD Ped2
and CUHK Avenue. Red areas contain ground-truth abnor-
mal frames.

incomplete sequences. Tab. 4 shows that with short events
(3 frames), we cannot fully exploit the temporal context in-
formation and obtain the worst performance. Longer video
events of 7 and 9 frames adds computational expense but
also learns some patches which are not strongly related to
the erased patch. Therefore, we fix the video event at 5
frames, which achieves the best performance in UCSD Ped2,
CUHK Avenue, and Traffic-Train.

Comparison with the State-of-the-art
CUHK Avenue, UCSD Ped2 and ShanghaiTech. Our
method belonging to frame prediction-based methods
achieves the state-of-the-art performance on ShanghaiTech,
CUHK Avenue, and UCSD Ped2 in Tab. 5. Our method uses
additional backward information and several consistencies
to regularize the appearance and motion prediction from the
incomplete sequence, which improves the performance by
1.0%, 0.7%, and 3.3% AUC, compared with VEC (i.e. the
previous best SOTA method) on these benchmark datasets
respectively. We plot the prediction errors over time for two
sequences from UCSD Ped2 and CUHK Avenue in Fig. 3.
The prediction error increases dramatically when abnormal
events (cycling and throwing paper) occur and decreases
again when the events are complete. Such an observation
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Types Methods Citation & Year UCSD Ped2 CUHK Avenue ShanghaiTech

Reconstruction
Based Methods

AnomalyNet (Zhou et al. 2019a) 94.9% 86.1% -
Appearance-Motion (Nguyen and Meunier 2019) 96.2% 86.9% -
Memory-guided (Park, Noh, and Ham 2020) 97.0% 88.5% 70.5%
Clustering Driven (Chang et al. 2020) 96.5% 86.0% 73.3%
SIGnet (Fang et al. 2020) 96.2% 86.8% -
DGN (Saypadith and Onoye 2021) 93.6% 86.8% 73.0%
Memory Consistency (Cai et al. 2021) 96.6% 86.6% 73.7%

Frame Prediction
Based Methods

Frame-Prediction (Liu et al. 2018) 95.4% 84.9% 72.8%
Attention-Prediction (Zhou et al. 2019b) 96.0% 86.0% -
VEC (Yu et al. 2020) 97.3% 89.6% 74.8%
MONAD (Doshi and Yilmaz 2021) 97.2% 86.4% 70.9%
STCEN (Hao et al. 2021) 96.9% 86.6% 73.8%
VPC (Liu et al. 2021) 93.6% 85.4% -

Hybrid Methods
Skeleton-Trajectories (Morais et al. 2019) - - 73.4%
AnoPCN (Ye et al. 2019) 96.8% 86.2% 73.6%
Prediction&Reconstruction (Tang et al. 2020) 96.3% 85.1% 73.0%
sRNN (Luo et al. 2021) 92.2% 83.5% 69.6%
Ours 98.3% 90.3% 78.1%

Table 5: Comparison of frame-level performance (AUC) of anomaly detection; The methods are ordered chronologically.
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Figure 4: Visualization of erased patches and their optical flow (Target), completed patches (Output) and prediction error (Error)
from our method and VEC. Brighter color in Error indicates larger error shown in the rightest bar.

indicates that our method is effective in detecting the occur-
rence of anomalies. However, it still has some problems that
need to be solved, especially on ShanghaiTech, which is a
larger-scale dataset and consists of 13 scenes, several types
of anomalies. Previous models have the risk of overfitting to
normal training patterns and being sensitive to hard normal
patterns. Their method may results in irregular responses to
normal data during inference. In our method, to avoid over-
fitting issues, three consistency constraints to comprehen-
sively regularize the prediction task.

Appearance and Motion Predictions. We visually com-
pare the predictions between VEC and our method in Fig. 4.
The first two rows of Fig. 4, our model makes high-quality
appearance and motion predictions for the normal event of
a pedestrian; the errors are also lower compared to VEC.
For the abnormal events of bikers in UCSD and people
walking in the wrong direction for CUHK, our method has
higher prediction errors compared to VEC. Therefore, our
method distinguishes between normal and abnormal events

more easily and correctly. In addition, it is worth noting that
for the appearance prediction, the error for the forward and
backward direction are quite similar. For the motion, how-
ever, the gap between target and predicted flow is larger for
the backward direction than the forwards. In other words,
compared with forwards information, the backwards flow
plays a more essential role in discriminating between nor-
mal and abnormal samples. This is a key point which VAD
methods to date have overlooked.

Conclusion
In this paper, we propose a novel bi-directional predic-
tive framework based on video event completion for video
anomaly detection. To learn more discriminative representa-
tion, we introduce three consistencies to regularize the out-
put prediction from pixel-wise, cross-modal, and temporal-
sequence levels. Extensive experiments on five benchmark
datasets show superior performance gains over state-of-the-
art methods.
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