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Abstract

We present a customized 3D mesh Transformer model for
the pose transfer task. As the 3D pose transfer essentially
is a deformation procedure dependent on the given meshes,
the intuition of this work is to perceive the geometric in-
consistency between the given meshes with the powerful
self-attention mechanism. Specifically, we propose a novel
geometry-contrastive Transformer that has an efficient 3D
structured perceiving ability to the global geometric inconsis-
tencies across the given meshes. Moreover, locally, a simple
yet efficient central geodesic contrastive loss is further pro-
posed to improve the regional geometric-inconsistency learn-
ing. At last, we present a latent isometric regularization mod-
ule together with a novel semi-synthesized dataset for the
cross-dataset 3D pose transfer task towards unknown spaces.
The massive experimental results prove the efficacy of our ap-
proach by showing state-of-the-art quantitative performances
on SMPL-NPT, FAUST and our new proposed dataset SMG-
3D datasets, as well as promising qualitative results on MG-
cloth and SMAL datasets. It’s demonstrated that our method
can achieve robust 3D pose transfer and be generalized to
challenging meshes from unknown spaces on cross-dataset
tasks. The code and dataset are made available. Code is avail-
able: https://github.com/mikecheninoulu/CGT.

Introduction
Pose transfer, applying the desired pose of a source mesh to
a target mesh, is a promising and challenging task in 3D
computer vision, which can be widely applied to various
industrial fields. However, existing methods (Wang et al.
2020; Cosmo et al. 2020; Zhou, Bhatnagar, and Pons-Moll
2020; Chen et al. 2021b) can only perform well within given
datasets of synthesized/known pose and shape space, and
fail to be generalized to other unknown spaces with robust
performances, which severely limits the further real-world
implementations.

To achieve robust performances on unknown latent spaces
and other domains as shown in Fig. 1, we propose a novel
Transformer network targeting generalized 3D mesh pose
transfer. Specifically, a novel geometry-contrastive Trans-
former with geometrically structured encoders is designed
that aims to enhance the identity mesh representation un-

*Corresponding Author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

der the guidance of the pose mesh with their global geomet-
ric contrasts. Locally, we introduce a novel central geodesic
contrastive loss to improve the geometric representation by
considering the regional contrast of all the geodesic direc-
tions of each vertex as back-propagation gradients. Further-
more, we present a latent isometric regularization module
to stabilize the unreliable performance of cross-dataset pose
transfer problems.

Moreover, we present a new 3D mesh dataset, i.e., SMG-
3D, for quantitatively evaluating the 3D pose transfer with
unknown spaces. The SMG-3D is based on daily sponta-
neously performed body gestures with more plausible and
challenging body movements and different than those well-
performed poses (Mahmood et al. 2019; Bogo et al. 2017).
We use a semi-synthesis way to build the dataset to provide
necessary GT meshes for training and validating. Our SMG-
3D dataset can be jointly combined with other existing body
mesh datasets for cross-dataset qualitative analysis.

A natural question to ask is: why not simply use purely
synthesized meshes to train and evaluate the model? The
short answer is that models trained on purely synthesized
meshes cannot cover the whole latent space and will fail
in the cross-dataset task. Indeed, using mesh synthesizing
models like the SMPL series (Bogo et al. 2016; Zuffi et al.
2017; Pavlakos et al. 2019) can synthesize unlimited poses
that can cover the whole latent space, or a large-scale dataset
AMASS (Mahmood et al. 2019) to eliminate the inconsis-
tencies with unknown dataset space. However, in practice,
even for a small dataset FAUST with only 10 pose cate-
gories, it takes more than 26 hours to train a model (Cosmo
et al. 2020) to fully learn the latent space. Thus, due to the
staggering variability of poses and movements, it’s not fea-
sible to train the model with synthesized samples covering
the whole pose space. It’s desirable that a model can be di-
rectly generalized to unknown latent spaces in a more effi-
cient way. To this end, we propose the SMG-3D dataset to
tackle the cross-dataset learning issue. It can provide chal-
lenging latent distribution allocates on natural and plausi-
ble body poses with occlusions and self-contacts instead
of well-posed body moves like AMASS (Mahmood et al.
2019), which could advance the research to real-world sce-
narios one step further.

To summarize, our contributions are as follows:
• A novel geometry-contrastive Transformer of positional
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Figure 1: Examples of pose transfer results by our 3D GC-Transformer. Blue, pink, and purple colors stand for identity, pose,
and result meshes, respectively. The left part shows the human pose transfer results. The identity meshes are from FAUST
(Bogo et al. 2014), MG-cloth (Bhatnagar et al. 2019), SMPL-NPT (Wang et al. 2020), and our new SMG-3D dataset. The right
part shows animal pose transfer results on the SMAL dataset (Zuffi et al. 2017). Our method can be generalized to different
spaces and even real-world scenarios and animals. More experimental results can be found in supplementary materials.

embedding free architectures with state-of-the-art perfor-
mances on the challenging 3D pose transfer task.

• A simple and efficient central geodesic contrastive loss
that can further improve the geometric learning via pre-
serving the direction gradient of the 3D vertices.

• A challenging 3D human body mesh dataset (i.e., SMG-
3D) providing unknown space of naturally plausible body
poses with challenging occlusions and self-contacts for
the cross-dataset qualitative evaluation.

• A new latent isometric regularization module for adapting
to challenging unknown spaces on cross-dataset tasks.

Related Work
3D Mesh Deformation Transfer. Deformation transfer
aims to generate a new 3D shape with a given pair of
source poses and target shapes. Even though existing meth-
ods (Groueix et al. 2018; Sumner and Popović 2004) could
bring impressive deformation results, the superb perfor-
mances largely rely on the given correspondences of the
source and target meshes, which limits their generalization
ability. Some disentanglement-based methods like (Zhou,
Bhatnagar, and Pons-Moll 2020; Cosmo et al. 2020; Chen
et al. 2021a) tried to decompose meshes into shape and pose
factors and achieve pose transfer as a natural consequence.
However, extra constraints on the datasets are still needed.

Model Vertex
operator

Vertex
topology Mesh size Mesh type

Vanilla MLP Damaged - -

METRO Positional
embedding

Preserved,
high cost

Down-sampled
from 6890 to 431

Post-
process

PolyGen Pointer
embedding

Preserved,
high cost

Filter meshes larger
than 800 vertices Real mesh

GCT
(ours)

Depth-wise
1D Conv

Preserved,
no cost

Original size
such as 6890 Real mesh

Table 1: A comparison of our GC-Transformer with other
3D Transformer variants.

Deep Learning for Geometric Representation. Point-
Net (Qi et al. 2017a) and PointNet++ (Qi et al. 2017b) have
become common-use frameworks that can work directly on

sparse and unorganized point clouds. After that, mesh varia-
tional autoencoders (Aumentado et al. 2019; Tan et al. 2018)
were also proposed to learn mesh embedding for shape syn-
thesis but they are under a strong condition that the shape of
target objects should be given as prior. On the other hand,
there is a trend to utilize to the self-attention mechanism
of Transformers for structural geometric information learn-
ing. However, as shown in Table 1, those preliminary works
(Lin, Wang, and Liu 2021; Nash et al. 2020; Engel, Bela-
giannis, and Dietmayer 2020) tried to directly encode the
vertex topological structures with computationally demand-
ing embeddings, thus can only handle small-size meshes. In
this work, our GC-Transformer is completely different and
implements depth-wise 1D Convolution instead of any com-
putational embedding to preserve vertex topological struc-
tures thus freely handles LARGE meshes with fine-grained
details at no cost, which could boost efficient implementa-
tions of Transformer frameworks in 3D fields.
Cross-Dataset 3D Pose Transfer. There is few 3D mesh
dataset suitable for the pose transfer task. Though many
techniques and body models have been developed for 3D
data analysis such as SMPL series (Bogo et al. 2016;
Romero, Tzionas, and Black 2017; Pavlakos et al. 2019;
Zuffi et al. 2017), as well as various 3D human body datasets
(Bogo et al. 2014, 2017; Bhatnagar et al. 2019; Pavlakos
et al. 2019; Mahmood et al. 2019), they are all originally
designed for other tasks such as scan registration, recog-
nition, or shape retrieval. Thus, the poses in those datasets
are all exaggerated and perfectly posed actions, for instance,
to ensure the quality of the scan registration. However, the
latent space distribution of real ones with occlusion and
self-contacts can differ widely. Besides, few of the existing
datasets can be parameterized and manipulated in the latent
space towards desired poses, thus no standard GT is avail-
able for the training and the quantitative evaluation. Existing
methods (Cosmo et al. 2020) could merely use approxima-
tions such as geodesic preservation as substitutes.

Methodology
We define a 3D parametric mesh as M(α, β), where α, β
denote the parameters of identity (i.e., shape) and pose. Let
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Figure 2: An overlook of our GC-Transformer. The left part is the whole architecture of the GC-Transformer. The right part
illustrates the architecture details of one GC-Transformer decoder. The GC-Transformer borrows the idea from the work of
(Dosovitskiy et al. 2021) but is extensively extended to 3D data processing tasks for both the encoders and decoders.

M1(αpose, βpose) be the mesh with the desired pose for
style transfer and M2(αid, βid) be the mesh with its iden-
tity to preserve. Then the polygon mesh M ′(αid, βpose) is
the target to generate. The goal of pose transfer is to learn a
deformation function f which takes a pair M1 and M2 and
produces a new mesh M ′, so that the geodesic preservation
of the resulting mesh M ′ is identical to the source one M2

and the pose style is identical to M1.

f(M1(αid, βid),M2(αpose, βpose)) = M ′(αid, βpose).
(1)

Below, we will first introduce how to use the Transformer
architecture-based model, called Geometry-Contrastive
Transformer (GC-Transformer) for learning the deformation
function f , then the Central Geodesic Contrastive (CGC)
loss for detailed geometric learning, and at last, the La-
tent Isometric Regularization (LIR) module for robust pose
transfer on cross-dataset tasks.

Geometry-Contrastive Transformer
An overview of the GC-Transformer is depicted in Fig. 2.
Our GC-Transformer consists of two key components, one
is a structured 3D mesh feature encoder and the other one is
a Transformer decoder.
Structured 3D Encoder. As mentioned, existing 3D Trans-
formers needs computationally demanding embeddings to
encode vertex positions, thus in practice can only process
‘toy’ meshes. Inspired by NeuralBody (Peng et al. 2021) that
uses structured latent codes to preserve the vertex topology,
we modify the conventional PointNet (Qi et al. 2017a) into
structured 3D encoders to capture the vertex topology by
implementing depth-wise 1D convolution instead of redun-
dant positional embeddings commonly used in conventional
Transformers. Meanwhile, we replace the batch normaliza-
tion layers into Instance Normalization (Ulyanov, Vedaldi,
and Lempitsky 2016) layers to preserve the instance style
which is widely used on style transfer tasks (Huang and Be-
longie 2017; Park et al. 2019). The resulting latent embed-
ding vector Z with dimension Nlatent from the encoder will
be dimensionally reduced with 1D convolution and fed into
the following GC-Transformer decoder. In this way, LARGE
meshes with fine-grained details can be handled freely at
no cost by our GC-Transformer while preserving the vertex

structures.
GC-Transformer Decoder. We encourage readers to refer
to the ViT (Dosovitskiy et al. 2021) for a standard Trans-
former structure, which achieve state-of-the-art results on
many tasks (Li et al. 2021; Yang et al. 2021). We propose the
GC-Transformer decoder that inherits the classical structure
with customized designs for 3D meshes. The structure of the
GC-Transformer decoder is shown in Fig. 2.

The core difference between the GC-Transformer and a
standard Transformer is the design of the multihead self-
attention. To learn the correlations between the given meshes
for geometric deformation, the model should be able to per-
ceive the geometric information from the two meshes. Thus,
we make the inputs of a GC-Transformer as the latent em-
bedding vectors of two meshes instead of a single input like
the classical Transformer. Besides, as it’s a style transfer
task, we utilize the Instance Norm (Huang and Belongie
2017) as our normalization layers. At last, to preserve the
structural information of 3D data, the MLP layers are re-
placed with 1D Convolutional layers.

We denote the latent embedding vectors of the pose mesh
and identity mesh from the encoders as Zpose and Zid re-
spectively. We feed the two embedding vectors into differ-
ent 1D convolution layers to generate the representations
qkv for the standard multihead self-attention (Vaswani et al.
2017). The query q is from Zpose, and the value v and key
k are from Zid. Then, the attention weights Ai,j based on
the geometric pairwise similarity between two elements of
q and k is given with the following formula:

Ai,j =
exp(qikj)∑n
i=1 exp(qikj)

. (2)

After this, a matrix multiplication between v and the trans-
pose of A is conducted to perceive the geometric inconsis-
tency between meshes. Finally, we weigh the result with a
scale parameter γ and conduct an element-wise sum opera-
tion with the original latent embedding Zpose to obtain the
refined latent embedding Z ′pose,

Z ′pose = γ
n∑

i=1

(Ai,jvi) + Zpose, (3)

where γ is initialized as 0 and updated gradually during the
training with gradients. The obtained Z ′pose is followed by
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Figure 3: Left: an overlook of our semi-synthesized 3D mesh body gesture dataset SMG-3D. It is a 3D dataset with a pose
space that fits the real-world dataset pose distribution, including naturally and spontaneously performed body movements
in daily communication with challenging occlusions and self-contacts. Right: the architecture of proposed Latent Isometric
Regularization (LIR) module for unknown latent space learning.

typical Transformer operators as introduced above Fig. 2
with a convolutional layer and Tanh activation, generating
the final output M ′. Please refer to the supplementary mate-
rials for more implementing details.

In such a crossing way, the geometric-perceived feature
code can consistently be rectified by the original identity
mesh and its latent embedding representations. Note that,
different than previous attention-based modules (Wang et al.
2018b; Tang et al. 2020b; Huang and Belongie 2017; Tang
et al. 2020a), our GC-Transformer could not only com-
pute the pair-wise correlations and contrasts in a crossing-
mesh way but also could fully preserve the local geometric
details with the residual layer. Most importantly, our GC-
Transformer is designed for 3D mesh processing which has
never been attempted in these works. Note that input mesh
vertices are all shuffled randomly to ensure the network is
vertex-order invariant.

Central Geodesic Contrastive Loss

Most of the existing 3D mesh representation learning losses,
such as triangle regularization loss, edge loss, Chamfer loss
and Laplacian loss (Wang et al. 2018a, 2020; Groueix et al.
2018; Sorkine 2005; Zhou et al. 2020) all repeal the gradi-
ent of the direction information of 3D vertices. They only
compare the scalar (or weak vector) differences of the mesh
vertices such as one-ring geodesic lengths to construct the
objective function, while the convexity of the mesh surface
containing rich directional gradient information is not uti-
lized. To this end, inspired by the superb performances of
central difference convolution (Yu et al. 2020, 2021a,b) that
considers the directional difference of depth space, we sug-
gest to compare the vector differences of the vertex topol-
ogy by proposing a simple yet efficient central geodesic con-
trastive loss as below:

Lcontra =
1

V

∑
p

∑
u∈Γ(p)

√
u2
M ′ + u2

M − 2uM ′uM · cos(θ),

(4)

where Γ(p) denotes the neighbor edges of vertex p and V
is the total vertex number of the mesh. uM denotes the edge
of mesh M and θ denote the included angle of the edges of
uM and uM ′ . In practice, Lcontra can be easily calculated
by taking the vector difference of uM and uM ′ within the
coordinate of each vertex p and divided by the total vertex
number as a global normalization.

Our CGC loss has three improvements compared to ex-
isting losses: 1) the full inconsistencies of vertex vectors are
calculated to preserve the direction gradient; 2) each direc-
tion of the vertex is separately considered instead of a simple
sum-up; 3) the sampling methods of the neighbor vertices of
p in Eq. (4) is different: the CGC loss samples all the ver-
tices connected to p resulting in a flexible N neighbor ver-
tices while others (Wang et al. 2018a; Groueix et al. 2018)
are within the mesh triangle of vertex p and fixed to 3. Please
refer to Fig. 4 for a better understanding. A point-wise L2
reconstruction loss of mesh vertices can only capture the ab-
solute distance in the coordinate space. Contrastively, our
CGC loss captures the inconsistencies of all the geodesic
directions at each vertex, so that direction gradients can be
preserved in the back-propagation. Note that our CGC loss
is similar to Laplacian loss but can preserve full vector dif-
ferences without Laplacian normalization, thus is not only
limited to smooth surfaces. As shown in Fig. 4, our CGC
loss could offer additional strong supervision especially in
tightening the output mesh surface.
Overall Objective Function. With our proposed CGC loss,
we define the full objective function as below:

Lfull = λrecLrec + λedgeLedge + λcontraLcontra, (5)

where Lrec, Ledge and Lcontra are the three losses used
as our full optimization objective, including reconstruction
loss, edge loss and our newly proposed CGC loss. λ is the
corresponding weight of each loss. In Eq. (5), reconstruc-
tion loss Lrec is the point-wise L2 distance and the edge
loss (Groueix et al. 2018) is an edge-wise regularization be-
tween the GT meshes and predicted meshes.
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Figure 4: A comparison of different losses for both the neighbor vertex sampling strategy and the local inconsistency. Our CGC
loss considers the inconsistencies of all the geodesic directions at each vertex, so that direction gradients can be preserved in
the back-propagation. Results show that CGC loss can make the local details more tight and realistic.

Cross-Dataset Pose Transfer
Although existing pose transfer methods can deal with fully
synthesized/known pose space, they fail to have a robust per-
formance on the pose space that is different from the training
one. To facilitate the 3D analysis of human behaviors to real-
world implementations, we propose a new SMG-3D dataset
as well as a LIR module towards the cross-dataset issue.
A New SMG-3D Dataset. The main contribution of the
SMG-3D dataset is providing an alternative benchmark to-
wards cross-dataset tasks by providing standard GTs under a
challenging latent pose distribution (unlike perfectly synthe-
sized/performed known distributions). As shown in Fig. 3,
SMG-3D is derived from an existing 2D body pose dataset
called SMG dataset (Chen et al. 2019) that consists of spon-
taneously performed body movements with challenging oc-
clusions and self-contacts. Specifically, we first adopt the
3D mesh estimation model STRAPS (Sengupta, Budvytis,
and Cipolla 2020) to generate the 3D mesh estimations
from the original 2D images of SMG. Then, we select 200
poses and 40 identities as templates to form the potential
pose space and optimize them by Vposer (Pavlakos et al.
2019). At last, the generated 3D meshes are decomposed
into numerical registrations as latent parameters which are
paired to synthesize the resulting 8,000 body meshes via the
SMPL model (Bogo et al. 2016), each with 6,890 vertices.
Compared to synthesized/well-performed meshes, our in-
the-wild 3D body meshes are more practical and challeng-
ing with the large diversity and tricky occlusions for provid-
ing the unknown latent space. Please check more about our
dataset in the supplementary materials.
Latent Isometric Regularization Module. When the poses
and shapes are from unknown latent spaces, existing meth-
ods suffer from degeneracy in varying degrees (see Fig. 5).
We address this issue by introducing the LIR module as
shown in Fig. 3 right part, that can aggregate the data dis-
tribution of target set and source set. The LIR can be stacked
to existing standard models to enhance the cross-dataset
performance. Specifically, the difference between the two
datasets is obtained by comparing the latent pose codes zM
and zM ′ of the shape mesh M ′ from the target set and the
pose meshM from the source dataset. The target shape mesh
will be fed into GC-Transformer along with another ran-
domly sampled mesh from the target set to obtain a newly
generated mesh M ′. This will be iteratively executed until
the latent pose code difference zM ′ and zM converges to
less than θ, resulting in a normalized target set. In this way,

PMD↓
(×10−4)

Seen Unseen

NPT-MP NPT GCT (ours) NPT-MP NPT GCT (ours)

SMG-3D 70.3 62.1 30.7 120.3 94.6 52.8
SMPL-NPT 2.1 1.1 0.6 12.7 9.3 4.0

Table 2: Intra-dataset performances on SMG-3D and SMPL-
NPT datasets. “NPT MP” stands for NPT model with max
pooling layers. Note that the “unseen” setting is still within
the same dataset with similar data distributions.

the latent pose distribution of the target set will be regulated
while its isometric information can still be preserved. Essen-
tially, our LIR module serves as a domain adaptive normal-
ization to warm-up the unknown target set to better fit the
model trained on the source pose space.

Experiments
Datasets
SMPL-NPT (Wang et al. 2020) dataset contains 24,000 syn-
thesized body meshes with the SMPL model (Bogo et al.
2016) by sampling in the parameter space. For training, 16
different identities and 400 different poses are randomly se-
lected and made into pairs as GTs. For testing, 14 new iden-
tities are paired with those 400 poses and 200 new poses
as “seen” and “unseen” sets. Note that the “unseen” poses
are sampled within the same parameter distribution as the
“seen” poses, thus still in the same/known latent pose space.
SMG-3D (Chen et al. 2019) dataset contains 8,000 pairs of
naturally plausible body meshes of 40 identities and 200
poses, 35 identities and 180 poses are used as the training
set. The rest 5 identities with the 180 poses and the other
20 poses are used for “seen” and “unseen” testing. Note that
both SMPL-NPT and SMG-3D provide GT meshes so that
they can be used for cross-dataset quantitative evaluation.
FAUST (Bogo et al. 2014) dataset consists of 10 differ-
ent human subjects, each captured in 10 poses. The FAUST
mesh structure is similar to SMPL with 6,890 vertices.
MG-Cloth (Bhatnagar et al. 2019) dataset contain 96
dressed identity meshes with different poses and clothes.
The MG-cloth meshes contain way more vertices (above
27,000), which is more challenging for more fine-grained
geometry details. Note that meshes in FAUST and MG-cloth
are not parameterized SMPL models so geodesic-based ap-
proximations (Crane, Weischedel, and Wardetzky 2013) is
always used for evaluation in previous works.
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Figure 5: Intra- and cross-dataset qualitative results on the SMPL-NPT, FAUST, MG-cloth, SMG-3D and SMAL datasets.

SMAL (Zuffi et al. 2017) animal dataset is based on a
parametric articulated quadrupedal animal model and we
adopted it to synthesize the training and testing datasets.

Intra-Dataset Pose Transfer Evaluation
Firstly, we evaluate the intra-dataset pose transfer perfor-
mance of our GC-Transformer on the SMPL-NPT and
SMG-3D. Given the GT meshes, we follow (Wang et al.
2020) to adopt Point-wise Mesh Euclidean Distance (PMD)
as the evaluation metric:

PMD =
1

|V |
∑
v

‖Mv −M ′v‖
2
2 . (6)

where Mv and M ′v are the point pairs from the GT mesh
M and generated one M ′. The final experimental results
can be found in Table 2. For both settings of the SMPL-
NPT: “seen” and “unseen pose”, our GC-Transformer signif-
icantly outperforms compared SOTA methods by more than
45% and 55% with PMD (×10−4) of: 0.6 and 4.0 vs. 1.1
and 9.3. We denote PMD (×10−4) as PMD for simplicity in
the following. On our SMG-3D dataset, our network again
yields the best performance among other methods with PMD
of (30.7 and 52.8). As shown, the SMG-3D is more chal-
lenging than the SMPL-NPT dataset with way higher PMD
values for all the models. Compared to the fully synthesized
dataset SMPL-NPT, the poses in SMG-3D are more realis-
tic as they contain many occlusions and self-contacts. The
distribution of the poses in the latent space is significantly
uneven and discontinuous while the poses synthesized in the
SMPL-NPT dataset are way easier with less noise.

Generalized Pose Transfer Evaluation
Cross-Dataset Pose Transfer with Same Pose Space. We
extent the setting to cross-datasets by training the model on
SMPL-NPT dataset and directly conduct the pose transfer on
the unseen meshes from FAUST and MG-cloth datasets. As

Disentnaglement Error

VAE LIMP-Euc LIMP-Geo GCT (ours)

7.16 4.04 3.48 0.11

Table 3: Cross-dataset performances on FAUST dataset. Be-
cause we use the raw meshes of FAUST and there is no GT,
geometric approximations are used for evaluation.

Cross-dataset PMD↓ (×10−4)

Training set Testing set NPT-MP NPT GCT (ours)

SMPL-NPT
SMPL-NPT 12.7 9.3 4.0

SMG-3D wo/LIR 321.4 240.1 178.7
SMG-3D w/LIR 132.3 121.4 79.2

SMG-3D SMG-3D 120.3 94.6 52.8

Table 4: Cross-Dataset performances with standard GTs as
metrics. Our LIR module can be stacked to existing models
and robustly improve the performances on unknown spaces.

shown in Fig. 5 second/third line, NPT might fail when the
target pose is not within the training latent space while our
method can still perform well. Since there is no GT available
here, we adopt the disentanglement error of the pose transfer
task illustrated in the work of LIMP (Cosmo et al. 2020) as
the metrics, see LIMP (Cosmo et al. 2020) for more details.
In Table 3, we report the performances of GC-Transformer
and state-of-the-art models on FAUST. Compared to LIMP
trained with the preservation of geodesic distances, ours sig-
nificantly outperforms it: 0.23 vs. 3.48. As expected, the
preservation of geodesic distances, geodesic distances can
only serve as the approximation of GTs.
Cross-Dataset Pose Transfer with Different Pose Space.
In this part, we quantitatively analyze the cross-dataset per-
formance between different latent spaces of SMPL-NPT and
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Figure 6: Ablation study by progressively enabling each component. The rightmost mesh is from the full GC-Transformer.

Pose Source PMD↓ (×10−4)

1 block 2 blocks 3 blocks 4 blocks

Seen-pose 1.4 1.0 0.9 0.8
Unseen-pose 7.3 4.9 4.9 4.2

Table 5: Effect of GC-Transformer. We evaluate the GP-
transformer by varying its multihead-attention block number
with the rest of the model untouched.

SMG-3D datasets by using GTs as metrics. As shown in
Table 4. We directly use the model trained on SMPL-NPT
to conduct the pose transfer on the meshes from SMG-3D.
The performance of the GC-Transformer (PMD 79.2 and
178.7) keeps outperforming compared methods (PMD 121.4
and 240.1) as presented in Table 4. It can be seen that, by
adopting our LIR module, all the models can effectively im-
prove the performances which proves its efficiency, which
also proves that the inconsistency of the latent pose space
affects the generalization of the pose transfer.
Efficacy of SMG-3D Dataset. From Table 4, we observe
that models trained on the synthesized SMPL-NPT dataset
can perform well within the same pose space (first row of the
table). However, when directly transferring the model to a
unknown space like SMG-3D, the PMD dramatically drops
down. This proves that a model trained with purely synthe-
sized datasets cannot fit the space distribution of challeng-
ing real-world poses. In contrast, by introducing SMG-3D
dataset, we can train the model with semi-synthesized data
to better fit the pose space of the real-world one, as shown
in the last line (PMD improved from 321.4 to 120.3 for NPT
and 178.7 to 52.8 for our GC-Transformer). As indicated, a
model that works on whole latent pose space is challenging
which proves the necessity of our SMG-3D dataset.
Pose Transfer on Different Domain. In the end, we show
the robust performance of GC-Transformer on animal pose
transfer in Fig. 5. Our model can be directly trained on
SMAL dataset without further modification to adapt the non-
human meshes, showing a strong generalizing ability.

Ablation Study
Experiments are conducted to present the effectiveness of
each proposed component on the SMPL-NPT dataset.
Effect of GC-Transformer. We vary the number of the
multi-head attention blocks to show the effect brought
by GC-Transformer in Table 5. We observe that the
proposed GC-Transformer with four multi-head attention
blocks works the best. However, increasing the number of

Pose Source PMD↓ (×10−4)

λconstra=0 0.0005 0.001 0.005 0.05

Seen-pose 0.83 0.64 0.84 0.92 1.13
Unseen-pose 4.21 3.98 4.27 4.55 4.71

Table 6: Effect of CGC loss. We validate the contribution of
CGC loss by varying the weight of the CGC loss. As we can
see, the CGC loss evidently improves the geometry learning
by more than 20%.

blocks further requires large computational consumption
and reaches the GPU memory limits. Thus, we adopt four
blocks as default in our experiments.
Effect of CGC Loss. We also validate the effect of CGC
loss with different λconstra settings, as shown in Table 6. It
shows that it gains the best performance when λconstra is set
as 0.0005, which proves that our CGC loss could effectively
improve the geometric reconstruction results.

Lastly, we visually present the contributions made from
each component in the GC-Transformer in Fig. 6. We dis-
able all the key components as a Vanilla model and enable
each step by step. Compared to the Vanilla model, the GC-
Transformer, LIR module and CGC loss can consistently
improve geometric representation learning. All components
can be easily stacked to other existing models.

Conclusion
We introduce the novel GC-Transformer, as well as the CGC
loss that can freely conduct robust pose transfer on LARGE
meshes at no cost which could be a boost to Transformers in
3D fields. Besides, the SMG-3D dataset together with LIR
module can tackle the problem of unstable transferring per-
formance as the cross-dataset benchmark. New SOTA re-
sults proves our framework’s efficiency in robust and gener-
alized pose transfer. The proposed components can be easily
extended to other 3D data processing models.
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