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Abstract
Weakly supervised temporal sentence grounding aims to tem-
porally localize the target segment corresponding to a given
natural language query, where it provides video-query pairs
without temporal annotations during training. Most exist-
ing methods use the fused visual-linguistic feature to re-
construct the query, where the least reconstruction error de-
termines the target segment. This work introduces a novel
approach that explores the inter-contrast between videos in
a composed video by selecting components from two dif-
ferent videos and fusing them into a single video. Such a
straightforward yet effective composition strategy provides
the temporal annotations at multiple composed positions, re-
sulting in numerous videos with temporal ground-truths for
training the temporal sentence grounding task. A transformer
framework is introduced with multi-tasks training to learn
a compact but efficient visual-linguistic space. The experi-
mental results on the public Charades-STA and ActivityNet-
Caption dataset demonstrate the effectiveness of the pro-
posed method, where our approach achieves comparable per-
formance over the state-of-the-art weakly-supervised base-
lines. The code is available at https://github.com/PPjmchen/
Composition WSTG.

Introduction
Temporal sentence grounding (Gao et al. 2017) is regarded
as a crucial vision-language task that aims at localizing the
temporal boundary of the target segment in an untrimmed
video when given a natural language query. As a fundamen-
tal problem in video analysis and understanding, it has at-
tracted increasing research interest over the last few years.

Many fully supervised methods (Anne Hendricks et al.
2017; Mithun, Paul, and Roy-Chowdhury 2019; Yuan, Mei,
and Zhu 2019; Yuan et al. 2020; Wang, Ma, and Jiang 2020;
Zhang et al. 2020a, 2021) has been developed, which di-
rectly learn from the videos, the text queries, and the tem-
poral boundaries. Such methods rely on a variety of multi-
modal information fusion and supervision from accuracy
timestamp labels to model the boundary and content infor-
mation of the target segments. However, the fully super-
vised setting needs precise temporal boundary annotations
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Query1: A person awakens in a closet snuggling their pillow.
Query2: Person close the door behind them.

0.0s 7.8s 18.6s 25.0s

(a)

10.0s 21.0s

Query1: A person takes clothes out of a dryer.
Query2: A laughing person is drinking a soda in the bathroom.

(b)

Video1 clip Video1 clipVideo2 clip 27.0s0.0s

Figure 1: (a) Temporal sentence grounding in videos. Cam-
era movements and scene transitions cause intra-contrast
inside the same video. (b) Composing clips from differ-
ent videos produces numerous artificial video samples and
pseudo temporal labels.

that are expensive and time-consuming. This inevitable lim-
itation prevents the temporal sentence grounding from being
applied at a large scale.

The limitations come from the precise but labor-intensive
boundary annotations, while the text query annotations are
much easier to collect (Lin et al. 2020). To this end, the
weakly supervised temporal sentence grounding setting is
introduced, where coarse text-video pair annotations are
provided only during training. Without boundary annota-
tions of the target segments, recent methods (Lin et al. 2020;
Song et al. 2020) fuse the visual and linguistic features and
reconstruct either themselves or the masked query. The tar-
get segment accompanied by the text query is expected to
yield the least reconstruction error during testing. These
methods, however, cannot guarantee that the target segments
always correspond to the best reconstruction due to the pow-
erful representation of deep neural networks that can even
well reconstruct the irrelevant clips.

Videos describe a sequence of actions accompanied by
various participants and complex backgrounds, leading to a
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contrast of these elements among different videos. We name
it inter-contrast in this paper. Due to camera movements and
scene transitions, one video can be treated as a combination
of a series of clips, which undoubtedly brings temporal cor-
relations and intra-contrast between these clips, as shown in
Figure 1 (a). Inspired by this observation, we intend to use
the composition of clips from different videos to simulate a
collection of clips inside a natural video. As shown in Fig-
ure 1 (b), the built-up video-video pairs can be regarded as
the simulation of clip-clip pairs inside a single video. Under
the weakly supervised setting, this approach can generate a
series of re-organized samples with pseudo-labels of tempo-
ral boundaries for training. That means we can easily tackle
the weakly supervised setting by the fully supervised view.
Suppose the model can learn the inter-contrast between clips
sampled from different videos and successfully locates all
the clips based on their natural language descriptions. In
that case, such a mechanism can be seamlessly applied to
a regular testing video to locate the target segment given the
corresponding text query. We propose a novel method for
weakly supervised temporal sentence grounding via the pro-
posed video composition strategy based on this assumption.

The key idea of this paper is that the training videos are
composed of different videos, yielding numerous and pre-
cise composition timestamps. With the crafted video, we
further carefully investigate how to separate it into different
semantic components for different text queries. Given one
of the text queries from the two sampled videos, the com-
posed video can be treated as a collection of text-related and
text-unrelated segments. The former explicitly indicates sev-
eral temporal annotations corresponding to the given query.
We then reverse the temporal annotations for the other query
text. Thus, it provides supervision signals to train the weakly
supervised temporal sentence grounding task. As shown in
Figure 1 (b), we can create a reliable synthetic training sam-
ple with precise temporal boundaries. The network takes it
as input and performs temporal grounding by learning to
separate the composed video to different semantic compo-
nents conditioned on the respective texts. Besides, a negative
query sample is introduced, which is critical to prevent the
model from learning to locate the target segments using the
obvious scene transitions between different videos. To effec-
tively capture rich semantics in the video and text query as
well as encode videos and texts into a unified sequence rep-
resentation, we utilize a transformer-based model adopted
in (Zhang et al. 2021), which is trained by the above three
queries together.

To summarize, our main contributions are three-fold: i)
we tackle the weakly supervised temporal sentence ground-
ing task with a novel approach based on learning to ground
segments composed from different videos in training, where
such composition brings pseudo temporal annotations for
training; ii) we propose a multi-queries grounding task in
the fully supervised manner where it recognizes the com-
posed video from different query sentences, predicts com-
position ratios in a global view and predicts masked word
prediction task to better align visual-linguistic features.
All these tasks are seamlessly integrated into an emerging
transformer-based model; iii) our method achieves compara-

ble performance over the state-of-the-art weakly-supervised
approaches (Gao et al. 2019; Lin et al. 2020; Song et al.
2020; Wu et al. 2020; Zhang et al. 2020c; Ma et al. 2020;
Tan et al. 2021; Zhang et al. 2020b) on the public Charades-
STA and ActivityNet-Captions dataset.

Related Work
Fully Supervised Temporal Grounding
As one of multi-modalities tasks (Zhang et al. 2019b; Ar-
belle et al. 2021; Zhang et al. 2021; Wang et al. 2018,
2019), temporal sentence grounding is a task to temporally
localize the corresponding segment in a video based on a
given sentence query, initially proposed by (Gao et al. 2017;
Anne Hendricks et al. 2017). Until now, it remains challeng-
ing since it requires understanding the semantics of both vi-
sion and language and realizing alignment between these
two modalities. Early work (Gao et al. 2017) utilizes slid-
ing windows to extract candidate video segments. The seg-
ment features are extracted and then fused with text rep-
resentation by various multi-modal fusion operations (i.e.,
Add, Multiply, and Fully-connected) for estimating the cor-
relation between queries and clips. (Anne Hendricks et al.
2017) proposes to minimize the squared distance between
candidate clips and query sentences in the joint representa-
tion space. The two early methods follow a simple pipeline
of extracting a set of candidate clips and then matching the
clip and the given query. The following work adopts more
sophisticated strategies such as Graph Convolutional Net-
work used in (Zhang et al. 2019a), attention mechanisms
used in (Yuan, Mei, and Zhu 2019), and reinforcement learn-
ing used in (He et al. 2019). In addition, (Wang, Ma, and
Jiang 2020) introduces a boundary-aware method that keeps
the paradigm of candidate matching and proposes an addi-
tional branch to predict the temporal boundaries of the tar-
get segments. 2D Temporal Adjacent Network (Zhang et al.
2020a) proposes to embed segment representation and lan-
guage representation into a 2D feature map and utilizes 2D
convolutions to align these two modalities and extract ad-
jacent relationships among candidate segments. Inspired by
recently proposed multi-modal BERT models, (Zhang et al.
2021) presents a visual-language transformer backbone and
utilizes multi-stage feature aggregation to produce discrimi-
native representation for temporal sentence grounding.

Weakly Supervised Temporal Grounding
Although temporal sentence grounding methods succeed
under the fully supervised setting, they rely on labor-
intensive labeling. In contrast, weakly supervised tempo-
ral sentence grounding learns from coarse video-query pairs
without timestamp ground truths. In (Mithun, Paul, and Roy-
Chowdhury 2019), a text guided attention module (TGA)
is proposed to extract frame-wise attention scores, and slid-
ing windows with different sizes are utilized to aggregate
segment attention scores. The segments with the highest
matching scores are considered as predictions in the testing
stage. (Tan et al. 2019) proposes a multi-level co-attention
mechanism for multi-modal alignment and utilizes the po-
sitional encoding to construct the temporally-aware multi-
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modal representations. (Gao et al. 2019) designs a multi-
instance learning framework consisting of a classification
module and a ranking module. The former measures the
matching scores between candidate segments and query sen-
tences, while the latter intends to rank and select the candi-
dates. Inspired by sentence reconstruction in visual ground-
ing (Liu et al. 2019),(Song et al. 2020) proposes to recon-
struct the whole sentence from weighted features of candi-
date video segments. (Lin et al. 2020) proposes to recon-
struct the masked keywords of the query sentence from the
candidate video segments, as the reconstruction loss will
guide the network to discover high-quality proposal seg-
ments by assigning higher confidence scores to them. (Ma
et al. 2020) proposes a Video-Language Alignment Net-
work (VLANet) based on contrastive learning. Firstly, it
utilizes the Surrogate Proposal Selection module to select
candidate proposals in a multi-modal representation space.
Then the Cascaded Cross-modal Attention module learns
to align two modalities based on feature interactions and
multi-directional attention flows. (Wu et al. 2020) proposes
a Boundary Adaptive Refinement (BAR) network based on
reinforcement learning, which designs a cross-modal eval-
uator for computing the matching scores between video
segments and queries and providing boundary-flexible and
content-aware rewards. (Zhang et al. 2020b) proposes a Reg-
ularized Two-Branch Proposal Network (RTBPN), which
designs a language-aware filter to generate an enhanced
video stream and a suppressed one and utilizes a two-branch
framework to learn from inter-sample and intra-sample con-
frontments simultaneously. (Tan et al. 2021) leverages a
multi-level co-attention mechanism and proposes a Latent
Graph Co-Attention Network (LoGAN). The network ex-
tracts the context cues from all possible pairs of frames
through frame-by-word interactions and learns contextual-
ized visual-semantic representations.

Proposed Method
Problem Formulation
Mathematically, given a set of video-query pairs Ptest =
{(V1, Q1), (V2, Q2), ..., (VN , QN )}, the weakly supervised
temporal sentence grounding task intends to predict the
temporal range {(s1, e1), (s2, e2), ..., (sN , eN )} of the tar-
get segments. Here si and ei denote the start timestamp
and the end timestamp of the i-th target segment and
N denotes the number of pairs in the testing set. Dur-
ing training, it provides another set of video-query pairs
Ptrain = {(V1, Q1), (V2, Q2), ..., (VM , QM )} only without
timestamp annotations. Here M represents the number of
pairs in the training set and Ptrain ∩ Ptest = ∅.

Following (Zhang et al. 2020a, 2021), each video is
evenly divided into NC clips. The feature vectors in each
clip are extracted from a pre-trained CNN model and aver-
aged across time dimensions, resulting in a single clip fea-
ture vector with a dimension of DV . A downsampling 1D
average pooling layer is applied over all the clip feature vec-
tors so that each video can be represented to V = {fi}NVi=1.
Similarly, we use a pre-trained GloVe (Pennington, Socher,
and Manning 2014) model to embed each word in the query

sentence and pad them to a fixed length NQ, which can be
denoted as Q = {wi}

NQ
i=1.

The following sections are organized as follows. First, our
used temporal sentence grounding framework is introduced.
Afterward, we present the proposed composition strategy,
including composing input videos and generating pseudo-
labels for training the network in detail. Last but not least,
the training losses and the inference details are illustrated.

Temporal Sentence Grounding Framework
Since our proposed composition strategy naturally provides
pseudo labels for training, any advanced, fully supervised
method can be seamlessly integrated into our framework.
This paper constructs our approach based on the cutting-
edge transformer introduced.

Recently, a multi-modal transformer (Su et al. 2019; Chen
et al. 2020; Lin et al. 2020; Zhang et al. 2021) is pro-
posed to address a series of vision-language tasks. Such net-
works have a similar framework as shown in Figure 2, where
the visual data and text data are embedded into an input-
sequence of feature tokens that interact inside the multi-head
self-attention layers of the transformer network. Thus, the
produced output-sequence aggregates cross-modalities in-
formation. We then introduce the technical details of such
a robust network. More specifically, the visual features and
the text features are mapped to the same dimension, where
each of them is regarded as a feature token. We then put
them together as the sequence inputs added with the standard
position embedding. As discussed in (Zhang et al. 2021),
to better model different modalities, the parameters of the
self-attention layers are decoupled to two groups for vi-
sual and language, respectively. In the process of interac-
tion inside the self-attention layers, two modalities are fused
in joint representation space. Similar to other multi-modal
transformers, the output sequence is divided back into two
groups, which corresponds to the original visual sequence
and text sequence as shown in Figure 2.

To our best knowledge, this is the first work to tackle
the weakly supervised temporal sentence grounding in a
fully supervised manner. We modify the multi-modal trans-
former (Zhang et al. 2021) by introducing video composi-
tion and pseudo-label generation, including query pseudo-
labels, localization pseudo-labels, and video-query align-
ment pseudo-labels. It turns out that our method not only
intends to align the visual target segment and the linguis-
tic query but also explores the inter-contrast between videos
due to the composition.

Composition Strategy
Video Composition
In this work, we propose a video composition method to
produce artificial video samples for training. There exist
the inter-contrast between different videos naturally. We as-
sume that the model can well learn the visual-linguistic cor-
responding within a regular video as long as it has suc-
cessfully captured the counterpart within a composed video.
That means we replace the investigation of intra-contrast
within a single video with the exploration of inter-contrast
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a person takes [MASK] out of dryer

… …

Transformer Encoder

QueryA: A person takes clothes out of dryer.

QueryB: A person open the door.
Query neg: A person sit on a bed.

a person open the [MASK] [PAD] [PAD]

a person sit on a bed [PAD]

doorclothes

MaskedWord Prediction

…

Composition Ratio Prediction

FC
0.76
0.24
0.00 FC

…… …

…… …

…… …

FC

Boundary 
Prediction 3×Nv×Dv

Mean

3×1×Dv

VideoA VideoB

Random Mask

Composed Video

Positional
Embedding

Figure 2: The main framework of the proposed method. Two video-query pairs are randomly sampled from the training set,
and the videos are broken into clips and composed randomly. The visual and text sequences are mapped to the same dimension
feature vectors and put together and fed into the transformer encoder. Conditioned by different queries, the output sequence is
aggregated in the prediction head, which performs multi-task learning: boundary prediction, composition ratio prediction and
masked word prediction.

between different videos when temporal annotations re-
lated to queries are absent in the training set. More specif-
ically, as shown in Figure 1 (b), two video-query pairs
(V1, Q1), (V2, Q2) are sampled randomly from the training
set. Recall each video holds the same length NV . There-
fore we randomly select a clip in the second video and its
length ratio l accounts for the whole video and satisfies
r1 ≤ l ≤ r2, where 0 < r1, r2 < 1 are hyperparameters
empirically selected. The selected clip is inserted into an-
other random position of the first sampled video. It should
be noticed that the two queries remain the same.

Pseudo-Labels Generation
As shown in Figure 2, composing videos naturally produces
artificial videos with clear boundary information, which is
absent in most of existing weakly supervised temporal sen-
tence grounding methods. Our framework provides three
kinds of pseudo-labels for training a network:

Query Pseudo-Labels Aforementioned, contrast between
clips always happens within a regular video due to camera
movements and scene transitions. This property can be eas-
ily simulated via video composition because of the inter-
contrast between different videos. During the composition
of two different videos from the training set, the two corre-
sponding queries remain the same. Meanwhile, we randomly
choose a query sentence corresponding to the third video not
involved in composition. Conditioned by these three query
sentences, the network should yield different responses. We
train the network with the first two query sentences relevant
to the composed video as the fully supervised setting always

does.
It is worth noting that inserting V2 clips will interrupt V1

and split V1 into two parts in the composed video where the
Q1 is used to recover the starting and ending timestamps
twice. The network, however, may easily locate the target
segments due to the obvious boundary artifacts in the com-
posed videos. To this end, we also add the irrelevant query
as a regularization used in (Arbelle et al. 2021), in which the
network should refuse to respond when it takes the irrelevant
query as an input.

Localization Pseudo-Labels Besides target classification
and boundary localization commonly used in many ground-
ing tasks, the previous works (Wang, Ma, and Jiang 2020;
Zhang et al. 2021) propose to carry out classification on mo-
ments such as starting time and ending time, where it can
contribute to the grounding scores. Thus, we construct the
localization pseudo-labels by each clip’s temporal bound-
aries, i.e. starting timestamp ts and ending timestamp te, as
well as their middle timestamp tm = ts+te

2 . Rather than pro-
ducing a single positive label at each moment, we generate
the moment classification ground-truths with multiple Gaus-
sian distributions following (Zhang et al. 2021). Specifically,
for a clip spanning over [ts, te], the moment classification
ground-truths ds, de, and dm of the t-th output visual feature
in the transformer encoder can be formulated as follows:

ds = e−
(t−ts)2

2σ2

de = e−
(t−te)2

2σ2

dm = e−
(t− ts+te

2 )
2

2σ2
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Here the range of ts, te is normalized to [0, NC ]. The σ =
α(ts − te) is the deviation of the Gaussian distribution and
the α denotes the controlling factor for sharpness. Such lo-
calization pseudo-labels from the composed videos will be
verified in experiments where they can effectively guide the
network to conduct accurate grounding in regular videos
even under the weakly supervised setting.

Video-query Alignment Pseudo-Labels Perform local-
ization for all the composed clips may ignore the global
information of the whole composed video. To remedy this
problem, we propose to predict the proportions of the clips
corresponding to different queries, which requires the net-
work to aggregate all the information to produce the predic-
tions. Concretely, an average operation is carried out over
all the visual features, and a fully-connected layer is used to
produce proportion scalars, as shown in Figure 2.

Training
As introduced above, three pseudo-labels are constructed
from the composed video, and we then design three tasks
as follows: (1) Proposal classification and moment classifi-
cation; (2) Composition ratio prediction; (3) Masked word
prediction. For simplicity, we sample two different video-
query pairs (Va, Qa) and (Vb, Qb) to compose a video, and
we also sample another video-query pair (Vn, Qn) as a neg-
ative sample. Since we paste a clip Cb randomly sampled
from Vb into Va, the composed video consists of a clip from
Vb and two clips from Va. Here we take theCb with the query
Qb as an example for simplicity.

Proposal Classification and Moment Classification The
temporal sentence grounding intends to temporally locate
the target segment related to the query, which can be re-
garded as a classification task and a localization task. Thus,
we follow the proposed classification and the moment clas-
sification used in (Zhang et al. 2021). Initially, video seg-
ment proposals are proposed in a sparse way introduced in
(Zhang et al. 2020a). Those proposals of which Intersection
over Union(IoU) with Cb is higher than a predefined thresh-
old th are treated as positive samples, and those of which
IoU is below than another predefined threshold tl are treated
as negative samples during training. Other proposals that do
not satisfy these requirements will not participate in training.

The objective function designed for the proposed classifi-
cation is defined as follows.

LP =
∑

i∈{a,b,n}

LCE(ĝi, gi)

where LCE is a cross-entropy loss and ĝ is the proposal
score. For Qa and Qb, the ground-truth g is set to 1 for pos-
itive proposals, otherwise 0 for negative ones. Conditioned
by the negative query Qn, the ground-truth gn is set to all
zeros.

As for the moment classification, the model is required to
classify the moment for each one ofNV steps. The objective
function of the moment classification is defined below.

LB =
∑

i∈{a,b,n}

LCE(d̂
s
i , d

s
i )+LCE(d̂

m
i , d

m
i )+LCE(d̂

e
i , d

e
i )

where d̂s, d̂m, and d̂e are the boundary predictions for the
starting moment, the middle moment, and the ending mo-
ment, respectively. Meanwhile, the ground-truths ds, dm,
and de have been illustrated in the previous subsection. Con-
ditioned by the negative query Qn, we set the ground-truth
dn to all zeros.

Composition Ratio Prediction We also construct a task
on a video level. After averaging all the output features, a
fully-connected layer is used to predict the ratio r̂ of Cb in
the composed video given Qb. Conditioned by the two rele-
vant queries Qa and Qb, the model should predict their own
proportion in the composed video. Conditioned by the neg-
ative query Qn, we set the ground-truth rn to all zeros. The
loss is designed as follows:

LR =
∑

i∈{a,b,n}

LCE(r̂i, ri)

Masked Word Prediction To better align visual and lin-
guistic features, we mask each word in Qa, Qb with a prob-
ability of 0.15 and use the ”[MASK]” token to replace
them. For the output feature of the masked words, the trans-
former should reconstruct the masked words w from other
unmasked words and the visual information, which is widely
used in other multi-modal transformer frameworks (Zhang
et al. 2021) and the standard cross-entropy loss is used here:

LM =
∑

i∈{a,b}

LCE(ŵi, wi)

where ŵ is the predicted masked word.

Total loss During the training phase, we compute the
weighted sum for all the losses above as follows:

L = wP ∗ LP + wB ∗ LB + wR ∗ LR + wM ∗ LM

where the wP , wB , wR, wM are hyper-parameters to indi-
cate the importance of each task.

Inference
In the inference stage, the composed video is replaced by the
testing video, which is fed to the transformer encoder with
the unmasked query sentence together. All of the candidate
clips are sorted by the mean of proposal classification and
moment classification scores as the prediction results.

Experiments
To verify the effectiveness of our composition strategy,
we perform experiments on two public benchmark datasets
ActivityNet-Captions (Caba Heilbron et al. 2015) and
Charades-STA (Sigurdsson et al. 2016). Since our method
is the first to tackle the weakly supervised temporal sen-
tence grounding task in a fully supervised manner, we com-
pare the proposed method with both the recent state-of-the-
art fully supervised methods MCN (Anne Hendricks et al.
2017),ABLR (Yuan, Mei, and Zhu 2019), TGN (Mithun,
Paul, and Roy-Chowdhury 2019), CBP (Wang, Ma, and
Jiang 2020), SCDM (Yuan et al. 2020) 2D-TAN (Zhang
et al. 2020a), MAT (Zhang et al. 2021) and weakly super-
vised approaches WSLLN(Gao et al. 2019), SCN (Lin et al.

271



Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

Fully Supervised Methods
MCN 42.80 21.37 9.58 - - -
ABLR 73.30 55.66 36.79 - - -
TGN 70.06 45.51 28.47 79.10 57.32 44.20
CBP - 54.30 35.76 - 77.63 65.89
SCDM - 54.80 36.75 - 77.29 64.99
2D-TAN - 59.45 44.51 - 85.53 77.13
MAT - - 48.02 - - 78.02

Weakly Supervised Methods
WSLLN 75.40 42.80 22.70 - - -
SCN 71.48 47.23 29.22 90.88 71.45 55.69
MARN - 47.01 29.95 - 72.02 57.49
BAR - 49.03 30.73 - - -
VGN - 50.12 31.07 - 77.36 61.29
RTBPN 73.73 49.77 29.63 93.89 79.89 60.56
Ours 71.86 46.62 29.52 93.75 80.92 66.61

Table 1: Comparison with state-of-the-arts on ActivityNet-
Captions dataset (n ∈ {1, 5},m ∈ {0.1, 0.3, 0.5}).

2020), MARN (Song et al. 2020), BAR (Wu et al. 2020) ,
VGN (Zhang et al. 2020c), VLANet (Ma et al. 2020), Lo-
GAN (Tan et al. 2021), RTBPN (Zhang et al. 2020b). We
also perform ablation study and qualitative analysis in this
section.

Datasets
ActivityNet-Captions. The ActivityNet-Captions dataset
is built on ActivityNet v1.3 dataset(Caba Heilbron et al.
2015), which is originally developed for human activity un-
derstanding. It consists of 19209 videos and is the largest
dataset for temporal sentence grounding. Following the
splitting in (Zhang et al. 2020a, 2021), we use val-1 as the
validation set and val-2 as the testing set. In conclusion, we
have 37417, 17505, and 17031 moment-sentence pairs for
training, validation, and testing, respectively.

Charades-STA. The Charades-STA dataset is built upon
Charades (Sigurdsson et al. 2016) by adding query sen-
tence annotations, which are all about indoor activities. (Gao
et al. 2017) proposes a semi-automatic method to gener-
ate moment-query annotations for fully supervised tempo-
ral sentence grounding. Following the splitting as (Lin et al.
2020), 12408 video-query pairs are used for training and
3720 pairs for testing in our experiments.

Evaluation Metric
Following the evaluation metric proposed in (Gao et al.
2017), we adopt the ”R@n, IoU=m” metric to evaluate the
performance for all methods. Specifically, it computes the
percentage of testing samples that have at least one correct
grounding prediction (i.e., the IoU between the prediction
and the ground truth is larger than m) in the top-n pre-
dictions. Following previous methods(Lin et al. 2020), we

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7

Fully Supervised Methods
ABLR - 24.36 9.01 - - -
CBP - 36.80 18.87 - 70.94 35.74
SCDM - 54.44 33.43 - 74.43 58.08
2D-TAN - 39.70 23.31 - 80.32 51.26

Weakly Supervised Methods
SCN 42.09 23.58 9.97 95.56 71.80 38.87
MARN 48.55 31.94 14.81 90.70 70.00 37.40
BAR 44.97 27.04 12.23 - - -
VGN - 33.21 15.68 - 73.50 41.87
VLANet 45.24 31.83 14.17 95.70 82.85 33.09
LoGAN 51.76 34.68 14.54 92.74 74.30 39.11
RTBPN 60.04 32.36 13.24 97.48 71.85 41.18
Ours 43.31 31.02 16.53 95.54 77.53 41.91

Table 2: Comparison with state-of-the-arts on Charades-
STA dataset (n ∈ {1, 5},m ∈ {0.3, 0.5, 0.7}).

set n ∈ {1, 5},m ∈ {0.3, 0.5, 0.7} for Charades-STA and
n ∈ {1, 5},m ∈ {0.1, 0.3, 0.5} for ActivityNet-Captions.

Implementation Details
Following (Zhang et al. 2020a), we utilize C3D (Tran et al.
2015) to extract visual features for the ActivityNet-Captions
dataset and VGG (Simonyan and Zisserman 2014) for the
Charades-STA dataset. NC and NV are set to 256 and 32,
respectively, where the kernel size and stride of the 1D av-
erage pooling layer are both 8. The clip length r1 and r2
are 0.2 and 0.9 for the ActivityNet-Captions dataset while
0.2 and 0.5 for the Charades-STA dataset. The α factor is
set as 0.25. The proposal threshold th and tl are set as 0.7
and 0.5. Our model is trained on AdamW (Loshchilov and
Hutter 2017) optimizer with the reduce-on-plateau learning
rate decay strategy. The initial learning rate is set to 2e-4
and the training batch size is set to 64. The loss weights
wB , wP , wR, wM are set as 0.4, 1.0, 1.0, 10.0.

Performance Comparisons
ActivityNet-Captions Dataset. We show the perfor-
mance comparison on ActivityNet-Captions in Table 1. Our
method almost outperforms all weakly supervised meth-
ods on ”R@5”, denoting a high recall for grounding. For
”R@1”, Our method obtained competitive performance
compared to SCN and MARN.

Charades-STA Dataset. We further show the perfor-
mance comparison on Charades-STA in Table 2. Our method
outperforms other methods on ”R@1, IoU=0.7” and ”R@5,
IoU=0.7”, which means that our proposed method is able
to predict more precise boundaries than other methods. For
”R@5, IoU=0.3”, there exists only a 0.02% gap between our
method and the result of SCN. We also achieve competi-
tive performance compared to SCN and MARN for ”R@1,
IoU=0.3” and ”R@1, IoU=0.5”.
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Query: person holding a glass of water

GT 0.0s 9.9s

Result 0.0s 9.29s

Video

Query: person sits down on the bed

20.9s 32.0s

21.51s 31.02s

GT

Result

Video

v

GT 29.3s 185.9s

Result 13.59s 178.71s

Video

Query: they then do a cheer routine

v

GT 31.46 157.3

Result 16.57 157.84

Video

Query: they play the game with various parts of the video going in slow motion for dramatic effect 

（a）

（b）

（c）

（d）

Figure 3: The visualization of examples. (a), (b) are from Charades-STA dataset and (c), (d) are from ActivityNet-Captions.

Methods R@1, IoU=0.1R@1, IoU=0.3R@1, IoU=0.5

QueryA-Only 67.72 44.60 27.24

w/o Negative Query 68.42 44.62 28.76

w/o CRP 71.52 45.98 29.01

w/o MWP 69.12 44.31 27.89

Complete Model 71.86 46.62 29.52

Table 3: Ablation study on ActivityNet-Captions, where the
first ’QueryA-Only’ means the model is trained with a single
query sentence rather than both. The following three denote
the cases by removing the corresponding module only.

Ablation Study
In this section, we design the ablation experiments on
ActivityNet-Captions, as shown in Table 3:

• Multi-queries Evaluation To evaluate the effect of the
three queries (two relevant and one negative), we train the
network on (1) QueryA only, (2) QueryA+QueryB, and (3)
all the three queries. The results in Table 3 show that the
model trained with the last configuration achieves better per-
formance than the model trained with a single Query or
without the negative query. We believe that training on two
relevant queries can fully explore the composed video while
the negative one can prevent the model from over-fitting the
obvious boundary artifacts caused by composition.

• Training w/o Ratio Prediction To verify the effect of
the composition ratio prediction, we remove the video-query
alignment branch directly and keep other settings the same
as the proposed method. The results in Table 3 show that
it slightly hurts the performance when removing the ratio
prediction module. However, learning holistic features by
global reasoning tasks is meaningful for temporal grounding
in those videos that do not hold obvious scene transitions.
We leave this exploration in the future.

• Training w/o Masked Word Prediction To verify the
effect of the masked word prediction, we feed the com-
plete query sentences to the network and remove the masked

word prediction module. Masked word prediction requires
the linguistic features to consider their linguistic contexts
and fully utilize the visual components to accurately predict
the masked words, which help learn a compact and effective
visual-linguistic representation. The results in Table 3 have
supported this claim, where the performance drops by about
2% on all the metrics.

Qualitative Analysis
Further, we visualize several examples from Charades-STA
and ActivityNet-Captions as shown in Figure 3. We can ob-
serve that there exists clear intra-contrast of (a) and (b) in
Figure3 but also inter-contrast between (a) and (b). Since
our method is designed for exploring such inter-contrast un-
der a weakly-supervised setting, it can also localize the tar-
get segments well within the regular videos (a) and (b). In
Figure3 (c), the intra-contrast is not so obvious, and our
network also yields excellent predictions, which means that
our method can also well tackle the videos with tiny intra-
contrast and capture the fine-grained semantic information
inside the videos. In Figure3 (d), the whole video presents
large-scale scene transitions, and the text query contains
complex descriptions. Our network, however, still performs
well in most cases except for the beginning prediction.

Conclusion
This paper proposes a simple yet effective video compo-
sition strategy for weakly supervised temporal sentence
grounding. Specifically, we compose a video by sampling
different clips from videos where inter-contrast is always
present. Then, we tackle the weakly supervised temporal
sentence grounding in a fully supervised manner. By impos-
ing multi-tasks including proposal classification, moment
classification, clip ratio prediction, and masked word predic-
tion, the network explores the inter-contrast between videos
within a composed video when given different queries. The
promising results on the Charades-STA and the ActivityNet-
Caption demonstrate the effectiveness of our proposed
method. We hope that this research work could provide in-
sight for temporal sentence grounding and other research
fields such as pre-training.
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