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Abstract

In the last decade, the blossom of deep learning has witnessed
the rapid development of scene text recognition. However,
the recognition of low-resolution scene text images remains a
challenge. Even though some super-resolution methods have
been proposed to tackle this problem, they usually treat text
images as general images while ignoring the fact that the vi-
sual quality of strokes (the atomic unit of text) plays an essen-
tial role for text recognition. According to Gestalt Psychol-
ogy, humans are capable of composing parts of details into
the most similar objects guided by prior knowledge. Like-
wise, when humans observe a low-resolution text image, they
will inherently use partial stroke-level details to recover the
appearance of holistic characters. Inspired by Gestalt Psy-
chology, we put forward a Stroke-Aware Scene Text Image
Super-Resolution method containing a Stroke-Focused Mod-
ule (SFM) to concentrate on stroke-level internal structures of
characters in text images. Specifically, we attempt to design
rules for decomposing English characters and digits at stroke-
level, then pre-train a text recognizer to provide stroke-level
attention maps as positional clues with the purpose of control-
ling the consistency between the generated super-resolution
image and high-resolution ground truth. The extensive exper-
imental results validate that the proposed method can indeed
generate more distinguishable images on TextZoom and man-
ually constructed Chinese character dataset Degraded-IC13.
Furthermore, since the proposed SFM is only used to pro-
vide stroke-level guidance when training, it will not bring
any time overhead during the test phase. Code is available
at https://github.com/FudanVI/FudanOCR.

Introduction
In recent years, scene text recognition has achieved tremen-
dous progress owing to the rapid development of deep learn-
ing. It has been widely used in many real-world applications
such as auto-driving (Zhang et al. 2020a), ID card recog-
nition (Satyawan et al. 2019), signature identification (Ren
et al. 2020), etc. Although the recently proposed recognizers
become stronger as reported, we observe that low-resolution
(LR) text images still pose great challenges for them. In
this context, a super-resolution module is required as a pre-
processor to recover the missing details of LR images.
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Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: For incomplete or blurred images, detailed infor-
mation (e.g., spots or strokes) play a significant role during
recovery. Our method can generate recognizable English and
Chinese text images with the guidance of stroke details.

The previous super-resolution methods usually try to
learn degradation patterns through HR-LR pairs with global
loss functions (e.g., L1 or L2 loss) to recover every pixel in
text images (Xu et al. 2017; Pandey et al. 2018). These meth-
ods, however, usually view text images as general images re-
gardless of text-specific properties. Recently, a few methods
attempt to take several text-specific properties into account,
which achieve better performance in terms of both im-
age quality and recognition accuracy. For example, PlugNet
(Yan and Huang 2020) employs a multi-task framework with
the purpose of jointly optimizing super-resolution and text
recognition tasks in one model. In (Wang et al. 2020), the au-
thors introduced a Text Super-Resolution Network (TSRN)
via appending two recurrent layers in the backbone to cap-
ture sequential information of text images. The recently
proposed Scene Text Telescope (STT) (Chen, Li, and Xue
2021a) introduces text priors into the model by proposing
a position-aware module and a content-aware module. The
concurrent work TPGSR (Ma, Guo, and Zhang 2021) incor-
porates text-specific semantic features to each block in the
backbone and exerts an iterative way to enhance text images.
Through observations, the text priors used in these works
usually regard character as the smallest unit of text lines,
whereas ignoring the significance of more detailed internal
structures. In this paper, we take a step further to answer the
critical question: Can text priors at a more fine-grained level
(e.g., stroke) benefit the super-resolution procedure?
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According to Gestalt Psychology (Köhler 1967), humans
can compose parts of details into the most similar objects
guided by prior knowledge. As is shown in Figure 1(a), hu-
mans can inherently recover the whole appearance of the
spotted dog with the guidance of local details such as spots.
Likewise, for blurred text images, strokes that act as local
details play an indispensable role in the recovery process.
As is shown in Figure 1(b), even though the character “m”
in “300ml” looks blurred, we can easily recover it when dis-
covering the three parallel vertical strokes.

Inspired by Gestalt Psychology, we propose a stroke-
aware Scene Text Image Super-Resolution method that uti-
lizes a Stroke-Focused Module (SFM) to take advantage
of fine-grained stroke-level attention maps generated by
an auxiliary recognizer as guidance for recovery. Different
from most existing recognizers (Shi, Bai, and Yao 2016;
Shi et al. 2018; Luo, Jin, and Sun 2019) that function at
character-level, we design a recognizer working at the stroke
level, thus is capable of generating more fine-grained at-
tention maps. To validate the effectiveness of our method,
we employ some recognizers and image quality metrics to
evaluate the generated SR images. The experimental results
show that our method can indeed achieve state-of-the-art
performance on the TextZoom and designed Chinese charac-
ter dataset Degraded-IC13 in terms of recognition accuracy.
Moreover, since the proposed SFM is only used when train-
ing, it will not bring any time overhead during testing. Our
contributions are listed as follows:
• We attempt to design rules for recognizing English letters

and digits at the stroke level to provide more fine-grained
attention-level guidance.

• Inspired by Gestalt Psychology, we propose a Stroke-
Focused Module (SFM) to concentrate more on stroke
regions with the guidance of stroke-level attention maps.

• Compared to the previous methods, our method can gen-
erate more distinguishable text images on the TextZoom
and Degraded-IC13 in terms of recognition accuracy
without bringing any time overhead during testing.

Related Work
Single Image Super-Resolution
Single image super-resolution aims to generate an SR image
based on its LR counterpart while recovering several miss-
ing details. In the deep learning era, the first CNN-based
method named SRCNN (Dong et al. 2014) establishes an
end-to-end approach to learning the mapping from LR to
HR images using a shallow network, while achieving better
performance compared with previous traditional methods.
EDSR (Lim et al. 2017) proposes a deep model by using
multiple residual blocks for better representation and remov-
ing several unnecessary batch normalization layers in the
residual blocks. MSRN (Li et al. 2018) introduces filters of
different sizes in two branches while extracting multi-scale
features.

Text Image Super-Resolution
Traditional methods usually utilize classical machine learn-
ing algorithms to upsample LR images. In (Capel and Zis-

serman 2000), a Maximum a posteriori approach combined
with a Huber prior was applied to TISR. In (Dalley, Free-
man, and Marks 2004), a Bayesian framework was pro-
posed to upsample binary text images. However, the de-
sign of traditional features was time-consuming and the low-
capacity features were subpar to tackle such task (Chen et al.
2021). Recently, PlugNet (Yan and Huang 2020) designs a
multi-task framework by optimizing recognition and super-
resolution branches in one model. To capture sequential in-
formation of text images, in (Wang et al. 2020), the authors
proposed a TSRN containing two BLSTMs. STT (Chen, Li,
and Xue 2021a) contains two text-focused modules includ-
ing a position-aware module and a content-aware module
providing text priors. TPGSR (Ma, Guo, and Zhang 2021)
combines text priors in the encoder and employs an iterative
manner to enhance low-resolution images. However, these
methods usually view characters as the smallest units with-
out considering the more fine-grained details like strokes.

Scene Text Recognition
Traditional methods usually adopt a bottom-up approach to
recognize text images (Wang and Belongie 2010; Wang,
Babenko, and Belongie 2011; Neumann and Matas 2012).
Specifically, they first detect and classify separated charac-
ters and then compose them into text lines with the guidance
of language models or lexicons. In the deep learning era,
CRNN (Shi, Bai, and Yao 2016) combines CNN and RNN as
the encoder and employs a CTC-based decoder (Graves et al.
2006) to maximize the probability of paths that can reach
the ground truth. ASTER (Shi et al. 2018) introduces a Spa-
tial Transformer Network (STN) (Jaderberg et al. 2015) to
rectify irregular text images in an unsupervised manner for
better recognition. SEED (Qiao et al. 2020) tries to capture
global semantic features of text images with the guidance of
a pre-trained fastText model. Although the semantics-based
methods are capable of tackling those images with local
missing details such as occlusion, they still have difficulty in
recognizing low-resolution images with global missing de-
tails. Therefore, a preprocessor is required for recovering the
details of low-resolution images.

Methodology
In this section, we introduce two modules and the way to
decompose characters. At last, we introduce the overall loss
function. The overall architecture is shown in Figure 2.

Pixel-wise Supervision Module
The existing super-resolution backbones usually follow this
design: (1) Employ a series of stacked CNN layers to build
up a backbone for extracting features, whose height and
width are the same as the original images while contain-
ing more channels; (2) Utilize a pixel shuffle module con-
taining multiple CNN layers to reshape the generated maps.
Consequently, a super-resolution image is generated with
a larger size. The widely used backbones contain SRCNN
(Dong et al. 2014), SRResNet (Ledig et al. 2017), TSRN
(Wang et al. 2020), TBSRN (Chen, Li, and Xue 2021a), etc.
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Figure 2: The overall architecture of our method. It contains two modules, including a Pixel-wise Supervision Module (PSM)
to recover the color and contour of text images and a Stroke-Focused Module (SFM) to highlight the details of stroke regions.

Please note that there may exist a misalignment problem be-
tween LR-HR pairs (Wang et al. 2020). For example, in the
TextZoom dataset, since the pairs are manually cropped and
matched by humans, there are several pixel-level offsets that
pose difficulties for the super-resolution methods. Hence, we
follow (Wang et al. 2020) to append a STN (Jaderberg et al.
2015) before the backbone to alleviate this problem. Finally,
the PSM module is supervised by an L2 loss. We denote the
HR images as IHR and the generated SR images as ISR. The
loss is calculated as follows:

LPSM = ||ISR − IHR||22 (1)

Stroke-Level Decomposition
Strokes are the atomic units of characters whatever the lan-
guage it is. In this section, we try to decompose each char-
acter into a stroke sequence and construct stroke-level text
labels for English characters, digits, and Chinese characters.

Decompose Chinese characters. According to Unicode
Han Database, there are five basic strokes of Chinese charac-
ters including horizontal, vertical, left-falling, right-falling,
and turning. Each character has a unique stroke sequence
and some examples are shown in Figure 3(b).

Decompose English letters and digits. Derived from the
approaches to decomposing Chinese characters, we attempt
to create stroke encoding for English characters and digits:
(1) Break down the characters and digits in more simplified
structures, i.e., nine basic strokes (see Figure 3(c)). We re-
duce the total category number for the recognition models
to generate better-learned and fine-grained supervision. (2)
Represent each character as a sequence of these basic strokes
(see Figure 3(d)) (3) Concatenate the stroke sequences of
each character and pad a stop symbol “eos” in the end (see
Figure 3(e)). Please note that we use the category ‘0’ to rep-
resent the stop symbol. In this way, we can better make some
similar characters distinguishable, e.g., ‘1’ and ‘7’ may look
similar in some written cases. However, with our stroke en-
coding, we can denote the character ‘1’ with stroke encod-
ing “Vertical” and ‘7’ with stroke encoding “Horizontal +
Vertical”, which can tell the SR model a more fine-grained
knowledge for reconstruction.

Stroke-Focused Module

Strokes perform a significant role in the recognition pro-
cess. When we see a low-resolution text image, we usually
try to capture stroke-level details to infer the appearance
of the whole characters in our brain according to Gestalt
Psychology (Köhler 1967). Inspired by this, we try to de-
sign a module that can provide stroke-level guidance for the
super-resolution model. We observe that the existing rec-
ognizers (Shi, Bai, and Yao 2016; Cheng et al. 2017; Shi
et al. 2018; Qiao et al. 2020) usually regard characters as the
smallest units, i.e., each character corresponds to a unique
class in the alphabet. In this context, recognizers can only
attend to coarse-grained character regions at each time step.
To exploit more fine-grained attention maps, we pre-train
a Transformer-based recognizer on two synthetic datasets,
including Synth90k (Jaderberg et al. 2016) and SynthText
(Gupta, Vedaldi, and Zisserman 2016) with stroke-level la-
bels following (Chen, Li, and Xue 2021b). More specifically,
given the character-level labels cGT = {c1, c2, ..., ct}, we de-
compose each character and concatenate them to construct
the stroke-level labels sGT = {s1, s2, ..., st′}, where t and
t′ denote the maximum length of labels at two different lev-
els (t ≤ t′). During pre-training, following (Vaswani et al.
2017; Shi et al. 2018), we use the force teaching strategy to
accelerate the training procedure by employing right-shifted
stroke-level label sGT′ = {s<start>, s1, s2, ..., st′−1} as in-
put, where s<start> denotes the start symbol. We follow the
basic design of (Chen, Li, and Xue 2021a) and more de-
tails of the encoder and decoder are shown in Supplementary
Material. When reaching convergence, we discard the se-
quence prediction ypred supervised with cross-entropy loss
during training, and only leverage the sequence of stroke-
level attention maps generated from the Multi-Head Self-
Attention Module as stroke-level positional clues. Please
note that the parameters in this model are frozen after pre-
training. Specifically, we denote the attention maps of HR
images as AHR = {A1

HR,A2
HR, ...,At′

HR} and SR images as
ASR = {A1

SR,A2
SR, ...,At′

SR}, then employ an L1 loss to con-
strain these two maps as follows:

LSFM = ||ASR −AHR||1 (2)
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Figure 3: Decomposition of Chinese characters, English characters, and digits. See more examples in Supplementary Material.

Overall Loss Function
Finally, we construct the overall loss function as follows:

L = LPSM + λSFMLSFM (3)

where λSFM balances the weight of these two loss functions.

Experiments
In this section, we first introduce the datasets, some evalu-
ation metrics, and implementation details. Then we discuss
the choices of parameters. At last, we demonstrate the ex-
perimental results.

Datasets. The datasets used in this paper are as follows:
TextZoom (Wang et al. 2020) The images in TextZoom

originate from RealSR (Cai et al. 2019) and SR-RAW
(Zhang et al. 2019). These datasets involve LR-HR pairs
which are taken by digital cameras in real scenes. Specif-
ically, TextZoom contains 17, 367 LR-HR pairs for train-
ing and 4, 373 pairs for testing. In terms of different fo-
cal lengths of digital cameras, the test set is divided into
three subsets, including 1, 619 LR-HR pairs for the easy sub-
set, 1, 411 LR-HR pairs for the medium subset, and 1, 343
LR-HR pairs for the hard subset. LR images are resized
to 16 × 64 and HR images are sized to 32 × 128, re-
spectively. Different from handcraft degradation, the LR im-
ages in TextZoom suffer from more complicated real-scene
degradation, which is more challenging for a certain model
to perform the SR text image recovery.

IC15 (Karatzas et al. 2015) contains 1, 811 images orig-
inated from natural scenes. It is a challenging benchmark
with 352 images with resolution lower than 16 × 64.

Degraded-IC13 is constructed based on IC13-HCCR
(Yin et al. 2013), which contains 224,419 offline handwrit-
ten images covering 3,755 commonly-used Level-1 Chinese
characters. Details of the construction are shown in the sub-
section of Experimental on Degraded-IC13.

Evaluation metrics. We remove all the punctuations and
convert uppercase letters to lowercase letters for calculat-
ing recognition accuracy, which follows the setting of (Wang
et al. 2020) for a fair comparison. In addition, we use Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM) to evaluate the quality of SR images.

Implementation details. Our model is implemented in
PyTorch. All experiments are conducted on one NVIDIA
GTX 1080Ti GPU with 11GB memory. The model is trained
using Adam (Kingma and Ba 2014) optimizer with learn-
ing rate set to 10−4. The batch size is set to 16. After pre-
trained on Synth90k (Jaderberg et al. 2016) and SynthText
(Gupta, Vedaldi, and Zisserman 2016), the parameters of the
Transformer-based recognizers are frozen. SFM is a plug-
gable module that is only used when training, i.e., only the
PSM is used to upsample LR images in the test phase.

Choices of Parameters
The experiments in this section are all conducted on the
TextZoom dataset and we employ CRNN for validation.
Specifically, we utilize TSRN as the backbone.

Choices of λSFM. λSFM performs an important role to bal-
ance the weight of two loss terms. The higher its value, the
more our model focuses on the stroke-level details. We ex-
plore the value of λSFM ranging from {0, 0.1, 1, 10, 50, 100}
and the experimental results are shown in Table 1. When
λSFM is set to 50, the recognition accuracy reaches the best
and it boosts the average accuracy by 7.5% compared with
the baseline (λSFM=0). When it values at a lower level such
as 0.1, SFM does not bring much guidance for the module.
So we set λSFM to 50 in the following experiments.

Choices of L1 loss and L2 loss. Empirically, L1 loss and
L2 loss are interchangeable in super-resolution tasks. To fur-
ther validate the impact of these two losses on the generated
images, we conduct experiments on four combinations of
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λSFM Easy Medium Hard Average
0 52.5% 38.2% 31.4% 41.4%

0.1 56.5% 40.9% 32.9% 44.2%
1 58.9% 43.7% 34.9% 46.6%

10 58.9% 46.1% 34.4% 47.2%
50 61.2% 47.6% 35.5% 48.9%
100 60.6% 47.7% 34.3% 48.4%

Table 1: Experiments on the choices of λSFM.

LPSM LSFM Easy Medium Hard Average
L1 L1 59.5% 46.9% 33.9% 47.6%
L1 L2 56.0% 42.8% 33.3% 44.8%
L2 L1 61.2% 47.6% 35.5% 48.9%
L2 L2 58.9% 45.6% 34.2% 47.0%

Table 2: Experiments on four combinations of two losses.

them (see Table 2). The experimental results show that the
performance reaches the best when LPSM uses L2 loss and
LSFM uses L1 loss. We notice that LSFM is usually a rela-
tively small value with the order of magnitudes near 10−3.
Hence, it will produce a much smaller gradient when using
L2 loss, which is inefficient to supervise the SR learning.

Experimental Results
In this section, we first conduct the experiments on
TextZoom, IC15, and Degraded-IC13. When conducting the
experiments on TextZoom and IC15, we test with six recog-
nizers of different categories, including CTC-based CRNN
(Shi, Bai, and Yao 2016), rectification-based MORAN
(Luo, Jin, and Sun 2019) and ASTER (Shi et al. 2018),
Transformer-based NRTR (Sheng, Chen, and Xu 2019),
semantics-based SEED (Qiao et al. 2020), as well as NAS-
based AutoSTR (Zhang et al. 2020b), all of which are avail-
able on GitHub in terms of source code and pre-trained
weights. When experimenting on Degraded-IC13, we man-
ually train a recognizer on HWDB1.0-1.1 (Liu et al. 2013).

Experiments on TextZoom. The experimental results are
shown in Table 3. We notice that the proposed SFM can in-
deed provide positive guidance to boost recognition accu-
racy. When using TBSRN as the backbone and CRNN for
evaluation, the model armed with SFM is capable of boost-
ing the accuracy by 5.5% and 0.6% compared with non-
focused and character-focused settings. Since the proposed
SFM enhances the HR recovery mainly by concentrating on
stroke regions, which may result in less fidelity to the back-
ground of the original HR image. Thus, the evaluation met-
rics like SSIM and PSNR are not stably improved in our
cases (see Supplementary Material). To determine the ex-
perimental evidence in this situation, we further analyze the
trend of LPSM. LPSM can drop fastly and converge at a rela-
tively lower degree in the absence of SFM. Based on these
observations, we come to the following conclusion: (1) PSM
usually pays attention to all pixels in given images. More-
over, PSM can perform even better to decrease the super-
resolution loss without SFM, thus achieving better scores
in terms of two image quality metrics; (2) SFM mainly fo-

cuses on stroke-level details, which are separate from back-
ground pixels. Intuitively, when we set SFM to large weight
(λSFM = 50), the model concentrates more on stroke regions
while caring less about background pixels, resulting in lower
scores on PSNR and SSIM. However, our aim is to recover
recognition-friendly and visual-pleasing text images. The
visualization and loss analysis also demonstrate that good
PSNR and SSIM scores are not equivalent to well-recovered
text images. Moreover, one can clearly see in Figure 4 that,
the SR model with SFM supervision demonstrates supe-
rior SR text image recovery compared with those without
SFM. We also explore the ability of SFM when combined
with other character-focused methods, e.g., STT (Chen, Li,
and Xue 2021a) and TPGSR (Ma, Guo, and Zhang 2021)
(See Table 4). We observe that the guidance at character and
stroke levels are complementary and the performance can be
boosted further when combining text priors at two levels.

Experiments on IC15. IC15 (Karatzas et al. 2015) is one
of the widely used English scene text recognition bench-
marks. Compared with other datasets such as IC03 (Lu-
cas et al. 2005) and CUTE80 (Risnumawan et al. 2014),
this dataset contains more incidentally captured images with
low resolution, which is a great challenge for the exist-
ing recognizers. We manage to validate the ability of the
proposed method as a pre-processor. We extract 352 low-
resolution images (i.e., resolution lower than 16 × 64) from
IC15 as a subset named IC15-352 and test on six recogniz-
ers. Please note that we do not use the full dataset since the
high-resolution image themselves can be well recognized
without super-resolution. We follow three settings, includ-
ing training TSRN without focus, with character-level focus,
and with stroke-level focus. The experimental results are
shown in Supplementary Material. The model with stroke-
level guidance boosts the accuracy of 3.1% compared with
the model focusing on the character level when evaluated
on CRNN. Moreover, when using the guidance of SFM, the
accuracy reaches the best in most cases.

Experiments on Degraded-IC13. Compare to English
characters, hieroglyph character like Chinese is structured
in more complex shape. However, with stroke prior in SFM,
we can also equip the SR model capability to recover such
complicated characters. To validate the performance of our
method on Chinese characters, we construct the Degraded-
IC13 dataset in the following ways: (1) We randomly divide
IC13-HCCR (Liu et al. 2013) into two subsets. Specifically,
179,535 images (80%) are chosen for training and 44,884
images (20%) for testing. We first resize them to 64 × 64; (2)
For each image, we randomly select n from 1,2,3,4,5 as the
number of blurred operations; (3) We blur the original im-
ages for n times. For each time, the blurred type is randomly
chosen from four choices, which are demonstrated in Figure
5; (4) We resize the blurred image to 32 × 32 as LR images
using bicubic interpolation. Several examples of the gener-
ated HR-LR pairs are demonstrated in Figure 5(b). Follow-
ing the setting of experiments on English datasets, we pre-
train a Chinese recognizer for evaluation and a Transformer-
based recognizer that provides stroke-level guidance on the
HWDB1.0-1.1 dataset (Liu et al. 2013). The experimental
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Method Focus CRNN (Shi, Bai, and Yao 2016) MORAN (Luo, Jin, and Sun 2019) ASTER (Shi et al. 2018)
Easy Med Hard Ave Easy Med Hard Ave Easy Med Hard Ave

LR - 36.4% 21.1% 21.1% 26.8% 60.6% 37.9% 30.8% 44.1% 67.4% 42.4% 31.2% 48.2%
HR - 76.4% 75.1% 64.6% 72.4% 91.2% 85.3% 74.2% 84.1% 94.2% 87.7% 76.2% 86.6%

SRCNN
None 41.1% 22.3% 22.0% 29.2% 63.9% 40.0% 29.4% 45.6% 70.6% 44.0% 31.5% 50.0%
Char 41.7% 25.4% 23.1% 30.7% 66.2% 44.4% 31.3% 48.4% 70.2% 49.4% 32.5% 51.9%

Stroke 46.5% 30.8% 25.2% 34.9% 65.2% 46.4% 32.2% 49.0% 68.8% 47.7% 33.1% 51.0%

SRResNet
None 45.2% 32.6% 25.5% 35.1% 66.0% 47.1% 33.4% 49.9% 69.4% 50.5% 35.7% 53.0%
Char 50.0% 36.2% 28.4% 38.9% 70.4% 53.9% 37.9% 55.1% 72.6% 57.1% 38.7% 57.2%

Stroke 55.5% 42.5% 31.2% 43.8% 72.9% 54.1% 36.8% 55.7% 74.7% 56.2% 38.3% 57.6%

TBSRN
None 54.2% 40.6% 32.7% 43.2% 71.1% 55.2% 39.5% 56.3% 75.2% 56.8% 40.2% 58.5%
Char 59.6% 47.1% 35.3% 48.1% 74.1% 57.0% 40.8% 58.4% 75.7% 59.9% 41.6% 60.1%

Stroke 61.3% 47.2% 35.0% 48.7% 73.6% 57.7% 40.3% 58.2% 77.4% 59.0% 41.3% 60.4%

TSRN
None 52.5% 38.2% 31.4% 41.4% 70.1% 55.3% 37.9% 55.4% 75.1% 56.3% 40.1% 58.3%
Char 54.3% 40.4% 31.7% 42.9% 72.3% 55.6% 39.8% 56.9% 74.3% 59.7% 39.6% 58.9%

Stroke 61.2% 47.6% 35.5% 48.9% 75.8% 57.8% 41.4% 59.4% 77.9% 60.2% 42.4% 61.3%

Table 3: The experimental results on TextZoom (The results of NRTR, SEED, and AutoSTR are in Supplementary Material).
The module can generate more recognizable text images with the guidance of SFM. The underlined numbers indicate the best
average accuracy using the specific backbone and recognizer for evaluation. The bold numbers denote the best accuracy.

Model SFM Easy Medium Hard Average

TPGSR - 63.1% 52.0% 38.6% 51.8%
✓ 64.2% 53.2% 38.9% 52.9%

STT - 61.2% 47.6% 35.5% 48.9%
✓ 62.3% 48.1% 35.2% 49.4%

Table 4: Results of combining TPGSR and STT with SFM.
We use TSRN as the backbone and CRNN for evaluation.

Setting Easy Medium Hard Average
(1) Baseline 45.3% 25.4% 18.5% 30.6%
(2) Blur-Aug 53.3% 32.7% 22.7% 37.3%
(3) Train+TZ 52.1% 33.1% 22.5% 36.9%
(4) Finetune+TZ 55.4% 35.9% 23.6% 39.3%
(5) Preprocessor 54.8% 40.1% 28.1% 41.9%

Table 5: Experimental results on the necessity of the prepro-
cessor. “TZ” denotes the training set of TextZoom.

results for the none-focused, character-focused, and stroke-
focused are 83.4%, 84.6%, 86.1%, respectively. We notice
that the model with SFM can boost the accuracy by al-
most 3% when focusing on stroke regions compared with the
non-focused setting. Several examples are shown in Figure
6. Through the visualizations, we observe that the images
generated with the guidance of SFM have relatively clearer
strokes, thus achieving better accuracy on the recognizer.

Discussions
Deep insight in pre-trained stroke-level recognizer. To
provide stroke-level attention maps, the pre-trained recog-
nizer should employ stroke-level text labels unfolded by
character-level labels. Before unfolding, the average length
of character-level text labels in the training set of TextZoom
is 5.0 and the average length of stroke-level text labels
reaches 10.9. In fact, attention-based recognizers are eas-
ier to suffer from the attention drift problem (Cheng et al.

Setting CRNN
Easy Medium Hard Average

(1) Correct 61.4% 47.2% 34.4% 48.5%
(2) All 61.2% 47.2% 35.5% 48.9%

(3) Wrong 52.5% 35.9% 28.6% 39.8%

Table 6: Experiments on the effect of noise.

2017) when predicting longer sequences. In addition, we no-
tice that after pre-trained on two Synthetic datasets, the rec-
ognizer can only achieve 78.0% recognition accuracy on the
training set of TextZoom. Specifically, wrong predictions are
usually accompanied by drifted attention maps, which may
provide noise for the super-resolution model. To deeply an-
alyze the effect of noise on the SR model, we experiment
in three settings: (1) Use attention maps only with Correct
predictions. (2) Use All attention maps. (3) Use attention
maps only with Wrong predictions. We employ TSRN as
the backbone and CRNN for validation. The experimental
results are shown in Table 6. Interestingly, we observe that
the average accuracy of settings (1) and (2) do not show
many differences (48.5% v.s. 48.9%). Based on the result of
setting (3), we notice that the performance drops drastically
with the wrong guidance. Hence, we come to the conclusion
that the stroke-level guidance indeed boosts the performance
and the model is robust to resist some disturbances.

Can pre-processor be replaced by training strategies?
As is mentioned before, the proposed method can indeed
boost the recognition performance of existing recognizers
on either TextZoom or IC15 datasets. However, here comes
a question: What if the recognizers for evaluation are better
trained to adapt to low-quality TextZoom test sets? To an-
swer this question, we retrain CRNN with Synth90k (Jader-
berg et al. 2016) and SynthText (Gupta, Vedaldi, and Zis-
serman 2016) as the baseline (Setting 1), and utilize some
training strategies, including randomly blur synthesize im-
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Figure 4: Examples of the generated images. “None” means no text priors are taken into account, while “Char” and “Stroke”
denote the model is trained with character-level guidance and stroke-level guidance. We choose TSRN as the backbone.

Figure 5: Manually design LR-HR pairs to construct
Degraded-IC13. The upper row are four types of blur and
the lower row are some examples of LR-HR pairs.

Figure 6: Examples of the generated Chinese characters.

ages for data augmentation (Setting 2), combine the HR-LR
pairs in the training set of TextZoom with two synthesize
datasets for training (Setting 3), fine-tune CRNN with HR-
LR pairs in the training set of TextZoom (Setting 4). As is
shown in Table 5, we observe that the performance reaches
the best when the super-resolution model is used as the pre-
processor (Setting 5). The reasons may be two folds: (1) The
downsampling strategy by algorithms can not simulate the
situation in the real scene. (2) By training an additional pre-
processor, the model can perceive the degradation pattern of
text images, so it can better generalize to the test dataset.

Can the SR model be extended to other languages? We
have also conducted experiments on the Korean character
dataset PE92 (KIM et al. 1996) following the same set-
tings for tackling Chinese characters. The stroke-level de-
composition of Korean characters is available in the pub-
licly available code. The accuracy of the Korean recognizer
is 90.74% (none-focused), 90.32% (character-focused),

Figure 7: Visualization of some failure cases.

Backbone SFM Parameters FLOPs

SRResNet - 2.5M 0.7G
✓ 2.5M + 62.0M 0.7G + 13.6G

TSRN - 2.8M 0.9G
✓ 2.8M + 62.0M 0.9G + 13.6G

Table 7: Parameters and FLOPs for two backbones.

92.37% (stroke-focused), respectively. It further validates
the superiority of our method in other languages.

Computational cost. In the test phase, we evaluate the
time efficiency of our super-resolution method using TSRN
as the backbone. To run a batch, the model takes 0.16 sec-
onds without SFM and 0.57 seconds with SFM. The details
about parameters and FLOPs are shown in Figure 7. In par-
ticular, SFM does not bring any time overhead during testing
since it is only used in the training phase to provide stroke-
level positional clues.

Failure cases. Some failure cases are demonstrated in Fig-
ure 7. We observe that our super-resolution method are weak
to tackle images with long text since the stroke details are
not clear i.e., mix with adjacent strokes. Additionally, the
oblique text images and images with uneven illumination
also bring difficulties to our methods.

Conclusion
In this paper, we propose a Stroke-Aware Scene Text Im-
age Super-Resolution method inspired by Gestalt Psychol-
ogy, highlighting the details on stroke regions. The proposed
method can indeed generate more distinguishable super-
resolution text images. As is demonstrated in the experimen-
tal results, the proposed SFM is capable of achieving state-
of-the-art performance on TextZoom and Chinese handwrit-
ten datasets without introducing additional time overhead.
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