
Towards High-Fidelity Face Self-Occlusion Recovery via Multi-View
Residual-Based GAN Inversion

Jinsong Chen,1,2 Hu Han,1,2,3,* Shiguang Shan1,2

1 Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing
Technology, CAS, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Pengcheng National Laboratory, Shenzhen 518055, China

chenjinsong20@mails.ucas.ac.cn, {hanhu, sgshan}@ict.ac.cn

Abstract

Face self-occlusions are inevitable due to the 3D nature of
the human face and the loss of information in the projection
process from 3D to 2D images. While recovering face self-
occlusions based on 3D face reconstruction, e.g., 3D Mor-
phable Model (3DMM) and its variants provides an effective
solution, most of the existing methods show apparent limi-
tations in expressing high-fidelity, natural, and diverse facial
details. To overcome these limitations, we propose in this pa-
per a new generative adversarial network (MvInvert) for nat-
ural face self-occlusion recovery without using paired image-
texture data. We design a coarse-to-fine generator for pho-
torealistic texture generation. A coarse texture is computed
by inpainting the invisible areas in the photorealistic but in-
complete texture sampled directly from the 2D image using
the unrealistic but complete statistical texture from 3DMM.
Then, we design a multi-view Residual-based GAN Inver-
sion, which re-renders and refines multi-view 2D images,
which are used for extracting multiple high-fidelity textures.
Finally, these high-fidelity textures are fused based on their
visibility maps via Poisson blending. To perform adversar-
ial learning to assure the quality of the recovered texture, we
design a discriminator consisting of two heads, i.e., one for
global and local discrimination between the recovered tex-
ture and a small set of real textures in UV space, and the
other for discrimination between the input image and the re-
rendered 2D face images via pixel-wise, identity, and adver-
sarial losses. Extensive experiments demonstrate that our ap-
proach outperforms the state-of-the-art methods in face self-
occlusion recovery under unconstrained scenarios.

Introduction
Face imaging is the process of projecting a 3D human face
to a 2D plane. Therefore, some parts of the face can be
occluded by another part of the face during the projection
process. Self-occlusion seriously affects the performance of
succeeding face analysis, face recognition, and face reenact-
ment tasks.

Face self-occlusion recovery is an ill-posed problem be-
cause of insufficient constraints. Existing methods for self-
occlusion recovery are generally based on 3DMM (Blanz
and Vetter 1999) and its variants. The early approaches deal
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with face self-occlusion by using the statistically complete
texture represented by a linear combination of the basis tex-
ture vectors in 3DMM (Yin et al. 2006; Cao et al. 2013;
Koppen et al. 2018; Booth et al. 2016). While such a texture
is complete, it is not photorealistic compared with the input
face image; particularly it cannot express natural and diverse
face appearance details.

To resolve the unrealistic face texture issue, many latter
approaches propose to sample a texture from the input 2D
face image (UV texture map) to replace the linearly com-
bined texture (PCA-texture) in 3DMM. However, because
of self-occlusion, the UV sampled face texture is incom-
plete. To address this issue, some studies aim to generate a
complete and photorealistic face texture based on the incom-
plete one. The most common method is to learn a mapping
between incomplete UV sampled textures to real complete
textures, which usually relies on paired data such as 2D face
image and its corresponding complete face texture (Deng
et al. 2018). The complete face textures may come from 3D
scanning or computed from multi-view 2D face images via
photometric stereo. Apparently, such kinds of paired data are
still limited because of the high cost of data acquisition.

To overcome the above limitations, recent approaches
propose to leverage generative models, such as a GAN, to
model the distribution of the complete and high-fidelity fea-
ture textures (Gecer et al. 2019; Lee et al. 2020b). Specifi-
cally, a GAN can be trained using a complete high-fidelity
texture dataset so that it can generate arbitrary high-fidelity
textures by changing the latent vector. Then, instead of op-
timizing the linear texture combination coefficients in early
3DMM based approaches, a complete high-fidelity face tex-
ture can be generated to replicate the input 2D face image
by optimizing the latent vector. Another method to get rid of
the constraint of requiring paired data is to leverage the prior
knowledge in pre-trained models on large 2D face datasets
to perform inpainting in 2D face image space. For example,
(Gecer, Deng, and Zafeiriou 2021) proposed to render multi-
view 2D face images based on incomplete high-fidelity tex-
tures, and used StyleGAN (Karras, Laine, and Aila 2019)
to perform inpainting for the rendered 2D image so that the
corrupted part in these images can be recovered. Then, these
recovered 2D images can be merged, e.g., via alpha blend-
ing, to obtain a complete high-fidelity face texture. While
these face self-occlusion recovery methods can obtain high-
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Figure 1: Input portaits with self-occlusion and corresponding high-fidelity characters generated by our face self-occlusion
recovery method. Our method is robust to lighting and pose, and can faithfully restore personalized details like skin tone, and
wrinkles.

quality face texture, their computational costs are high com-
pared with the methods that learn a mapping between in-
complete UV texture to complete texture.

In this paper, we propose an efficient GAN-based face
self-occlusion recovery method which does not require
paired image-texture data for training. We first use a CNN-
based 3DMM model to obtain the 3D face shape and the
statistically complete face texture via a linear combination
of texture basis (PCA-texture). At the same time, we sam-
ple a UV face texture from the input 2D image, which
is photorealistic but corrupted in the self-occlusion areas.
Then, we compute a coarse face texture by performing in-
painting for the incomplete high-fidelity texture by using
the corresponding areas from the PCA-texture via Poisson
blending. Next, our coarse-to-fine texture generation lever-
ages multi-view rendering and residual-based GAN inver-
sion, followed by Poisson blending to obtain the final com-
plete and high-fidelity texture (see Fig. 1). We design our
discriminator with two heads, e.g., one for discrimination
between rendered and real face images, and the other be-
tween re-rendered 2D face images and real 2D face images.

The contributions of this work are as follows:
• While our approach falls into the second category of

methods, i.e., aiming at obtaining a complete high-
fidelity texture in UV space, our method differs from ex-
isting methods in that it does not require paired image-
texture data to perform fully supervised training, thus
making it possible to leverage face images in the wild
to perform face self-occlusion recovery.

• We propose a coarse-to-fine texture refinement approach,
which performs multi-view GAN inversion to obtain
high-fidelity 2D images and their textures, followed by
Poisson blending to obtain a complete and high-fidelity
face texture.

• We design our discriminator considering both texture-

level and image-level adversarial learning.
• We also design a differentiable screened Poisson blend-

ing equation solving method so that the whole network
can be trained end-to-end with significantly reduced
computational cost.

Related Work
3D Face Reconstruction
Face self-occlusion recovery is related to 3D face recon-
struction and image restoration. We briefly review the re-
lated methods below. As we summarized in the introduc-
tion, through 3D face reconstruction, a complete face tex-
ture can usually be obtained. For example, the early 3D face
reconstruction method 3D Morphable Model (3DMM) and
its variants usually use a PCA-based 3D shape model and a
texture model, as well as a spherical harmonics illumination
model to represent a 3D face. The early 3DMM methods
solve the shape, texture, illumination parameters via solving
a nonlinear optimization problem (Richardson et al. 2017;
Booth et al. 2017). This process is often slow and computa-
tionally expensive. With the development of Convolutional
Neural Networks, recent studies (Richardson et al. 2017;
Guo et al. 2018; Deng et al. 2019b; Shang et al. 2020) utilize
DCNN to predict 3DMM parameters.

Face Image Recovery
Face image recovery involves face image de-occlusion, in-
painting, denoising, super-resolution among others. Here,
we only briefly review the face de-occlusion and inpainting
methods related to face self-occlusion recovery. Because of
the great success of GAN in image generation and trans-
lation, GAN has also been used for face texture recovery,
de-occlusion, inpainting, etc (Deng et al. 2018; Gecer et al.
2019; Tran and Liu 2018; Lee and Lee 2020). Deng et
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Figure 2: The overall architecture of the proposed approach (MvInvert) for high-fidelity face self-occlusion recovery via multi-
view residual-based GAN inversion.

al. (Deng et al. 2018) obtain complete UV texture by fit-
ting a 3DMM to various multi-view images and train a GAN
to complete the self-occluded parts in UV texture. Gecer et
al. (Gecer et al. 2019) build a generative UV texture model
based on GAN, and use it to replace the PCA-based tex-
ture model in 3DMM. Although these methods can produce
high-fidelity textures, they require a large-scale dataset with
high-quality UV textures, which is often not publically avail-
able. Instead of using real UV texture, Tran et al. (Tran and
Liu 2018) utilize synthetic 3D face images to perform 3D
face recognition, where self-occluded textures are recovered
via interpolation.

Yin et al. (Yin et al. 2021) and Lin et al. (Lin, Yuan, and
Zou 2021) bypass the dependency on real UV textures by us-
ing pseudo UV textures for training. They use CNN-based
3DMM to predict the shape and pose coefficients for face
shape reconstruction on large-scale in-the-wild face images.
Then they sample from input images according to the 3D
vertexes - 2D image correspondence to obtain high-fidelity
but incomplete textures. To get a complete pseudo UV maps
without self-occlusions, Yin et al. (Yin et al. 2021) repair the
incomplete textures using the corresponding PCA-texture by
3DMM via seamless image blending, while Lin et al. (Lin,
Yuan, and Zou 2021) blend them with mean skin color com-
puted from the input face skin and fill in the occluded re-
gions using symmetry. Zhou et al. (Zhou et al. 2020) pro-
duce arbitrary face rotations from a single image to serve
as a strong self-supervision. While these methods do not re-
quire collecting real UV texture data for training, the recov-

ered face texture may have Gibbs artifacts because of the use
of pseudo UV textures. Lin et al. (Lin et al. 2020) make rad-
ical changes by replacing CNN with Graph Convolutional
Network (GCN) to refine the 3DMM texture from the fea-
tures extracted with a face recognition model. Though their
method is trained solely on in-the-wild face images, it is lim-
ited by the highly abstract nature of the identity features,
leading to a lack of details in the reconstructed textures.

GAN Inversion

Recent GANs (Karras et al. 2017; Brock, Donahue, and
Simonyan 2018; Karras, Laine, and Aila 2019; Zhu et al.
2017a,b) are able to generate considerably high-resolution
and more photorealistic images than the conventional DC-
GAN architecture (Yu et al. 2017). The high-quality image
generalization ability of their generators can be exploited by
learning a mapping from the image to the latent space of
the encoder (a.k.a. GAN inversion). These approaches can
be classified into three groups: optimization-based meth-
ods (Zhu et al. 2016; Ma, Ayaz, and Karaman 2019; Ab-
dal, Qin, and Wonka 2019; Shen et al. 2020; Abdal, Qin,
and Wonka 2020; Zhu et al. 2020), encoder-based meth-
ods (Richardson et al. 2021; Tov et al. 2021), and residual
encoder-based methods (Alaluf, Patashnik, and Cohen-Or
2021). Optimization-based methods project the input face
image to the latent space W by directly optimizing the la-
tent code until the reconstruction error between the input
face image and the generation produced by a generator is
minimized. Encoder-based methods learn an encoder to pre-
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dict the latent code from the face image. Residual encoder-
based methods learn the inverse mapping by minimizing the
disparity between the input image and the generation by
iteratively refining the residual codes predicted by an en-
coder. Although optimization-based methods can produce
the most realistic face UV map, they are usually complicated
and have high computational costs. By contrast, the resid-
ual encoder-based methods have much higher efficiency. For
example, while OSTec (Gecer, Deng, and Zafeiriou 2021)
takes 5 minute to generate a UV texture from a 2D face,
GANFit (Gecer et al. 2019) takes only 30 seconds.

Approach
Fig. 2 shows an overview of the proposed method, which
consists of three essential components: coarse texture gener-
ation, coarse-to-fine texture refinement, texture- and image-
level discrimination. We detail each component below.

Coarse Texture Generation via 3DMM
Given an input 2D face image I, we first recover the 3D
face elements such as shape (S3D), texture (TPCA), pose, etc,
by using a CNN-based 3DMM (Shang et al. 2020). CNN-
based 3DMM uses a CNN to predict the linear combination
coefficients, and uses the predicted coefficients to compute
the 3D shape and texture as follows:

S3D = S̄+CsSBase +CeEBase

TPCA = T̄+CTTBase

(1)

where Cs, Ce and CT denote the predicted linear combi-
nation coefficients for 3D shape, expression and texture re-
spectively. S̄ and T̄ denote the average 3D shape and tex-
ture respectively; SBase and TBase are the PCA bases of
the shape and texture, respectively.

Given such a 3D reconstruction result, we can also com-
pute a UV sampled face texture (TUV) based on the cor-
respondence between 3D face vertexes and 2D facial land-
marks. As we reviewed in the introduction, the UV sampled
face texture TUV is photorealistic but incomplete in the self-
occlusion areas. By contrast, the PCA face texture TPCA is
complete but not photorealistic. Therefore, we propose to
build a coarse texture Tcoarse by performing inpaining for
TUV by using the corresponding areas in TPCA via Poisson
blending (Arnaud Dessein and Richard C Wilson 2014).

Coarse-to-fine Texture Refinement via Multi-view
GAN Inversion
Multi-view GAN Inversion We propose a multi-view
GAN inversion (MvInvert) to perform coarse-to-fine texture
refinement for Tcoarse. Specifically, we first perform render-
ing using coarse texture under three different poses such
as frontal, left, and right, and obtain rendered 2D images
(IfR, IlR, and IrR) as shown in Fig. 2. Since the coarse tex-
ture Tcoarse is still not perfect, these rendered 2D images also
contain some artifacts such as blurriness, inconsistency, non-
natural, etc. For each rendered 2D face image, we then uti-
lize GAN inversion to exploit the prior image distribution
knowledge learned by generative GAN modes to recover

a high-quality image. Similar to ReStyle Encoder (Alaluf,
Patashnik, and Cohen-Or 2021), we also use a residual-
based latent encoder to predict the residuals instead of the
inverted latent code:

∆i = E(IiR)

wi ← ∆i +w0, i ∈ {f, l, r}
(2)

where E(·) is the residual-based encoder, ∆i is the predicted
latent residual corresponding to the rendered image with a
novel camera view, w0 denotes the mean latent code com-
puted from the large-scale face image dataset and wi is the
final latent parameter for each rendered image.

We then feed the learned latent parameters into the pre-
trained StyleGANv2 generator to obtain the high-fidelity
natural face images Iiinv for further view synthesis.

Iiinv = G(wi), i ∈ {f, l, r} (3)

where Iiinv has the same size as IiR.
Given the high-quality images, we perform UV sampling

again based on 3D vertexes and 2D image correspondence,
and obtain three texture images Tf

ref, T
l
ref, and Tr

ref. Since
Iiinv is expected to be perfect after GAN inversion, Ti

ref can
also be expected to have improved quality than Tcoarse.

Masking and Stitching The refined multi-view Tf
ref, T

l
ref,

and Tr
ref are complementary with other. Then, we can inte-

grate these refined textures to obtain a more complete face
texture with high quality.

In order to stitch the three textures under different novel
views, we first compute a visibility score map for each tex-
ture according to the estimated face shape and its pose. This
visibility score of each vertex can be defined in terms of the
angle between its normal and its coordinates Si relative to
the camera c. We take the dot product between the unitized
vertex normals and view vectors as the visibility score

Vi =

(
[Si − ci]

∥[Si − ci]∥2
· N (Si)

T

)
, i ∈ {f, l, r} (4)

where N denotes the normals of the vertices. If the vertex
is not visible in one view, i.e., the corresponding visibility
score is smaller than 0, the score is set to zero. We then
set a threshold distance of the occlusion boundary follow-
ing AlbedoMM (Smith et al. 2020). If the vertex is pro-
jected within the occlusion boundary’s threshold distance,
we set its visibility score to zero to avoid sampling back-
ground onto the mesh. We define the per-triangle confidence
value as the minimum per-vertex visibility score for all three
vertexes in the triangle. We define a selection matrix for each
view which selects a triangle if the view ci has the highest
weight for that triangle:(

Ṽtri
ci

)
j
= 1, if wci

j > wu
j , ∀u ∈ C\{ci},

i ∈ {f, l, r}, i ∈ {1 . . . t}
(5)

We also construct an additional selection matrix Ṽtri
ck+1

to
pick all triangles that are not chosen in any view to ensure
that each triangle is selected precisely once. We similarly
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define per-vertex selection matrices Ṽver
ci ∈ {0, 1}mc×n

that select the vertices for which view v has the highest
per-vertex weights. Thus, the screened Poisson equation for
the unknown per-vertex albedo maps Trefine ∈ Rn×3 can be
written as follow:

(
I3 ⊗ Ṽc1

)
G

...(
I3 ⊗ Ṽck

)
G

λṼc1

Trefine =



(
I3 ⊗ Ṽc1

)
GIc1

...(
I3 ⊗ Ṽck

)
GIck

03t×3

λṼc1I
c1


(6)

where ⊗ is the Kronecker product, I3 is the 3 × 3 identity
matrix and G ∈ R3t×n computes the per-triangle gradient
in the x, y and z directions of a function defined on the n
vertices of the mesh. We solve (6) using the least square
method so that Trefine seeks to match the selected gradi-
ents in each triangle. Triangles with no selected view are
assumed to have zero gradients. Original view v0 is chosen
as the reference to resolve color offset indeterminacies, and
λ is the screening weight. We use k = 3 views and we set
λ = 0.1 following (Smith et al. 2020).

Overall Loss
Within the training process, we design the loss functions
from two perspectives: image-level and texture-level.

Reconstruction Loss We use the pixel-level loss to en-
courage low-level semantic similarity in the visible part of
the image, i.e., between the real 2D face images and re-
rendered face images using our refined face texture Trefine.
Specifically, we compute a textured 3D face S3D with the
same expression, posture, and illumination as the input 2D
image. We then project it to 2D space and blend it with the
input face image I to get a reconstructed face image Irecon.
To this end, the ℓ2 loss can be computed as:

Lrec(I, Irecon) = ∥I− Irecon∥2 (7)

The reconstruction loss makes it possible to use self-
supervision to improve self-occlusion recovery results.

Perceptual Loss Besides the pixel-level reconstruction
loss, we also use a perceptual loss between the original 2D
image and the reconstructed image for self-supervision to
assure the other factors like skin tone remain unchanged. We
minimize the normalized Euclidean distance of intermediate
activation in a face recognition network (FaceNet (Schroff,
Kalenichenko, and Philbin 2015) pretrained on CASIA-
WebFace (Yi et al. 2014)) between two images:

Lperc(I, Irecon) =
n∑
j

∥Fj (I)− Fj (Irecon)∥2
HFj
×WFj

× CFj

(8)

where Fj(·) denotes j-th layer of the deep feature encoding
and the HFj

, WFj
and CFj

the height, weight and channel
number of the activation output respectively.

Identity Loss For identity loss, we compute the cosine
similarity between the deep feature vectors, extracted with
a pre-trained ArcFace (Deng et al. 2019a), of multiple ar-
bitrarily rendered 2D face images (with random expression,
pose, and lighting) from Trefine and the deep feature vector
of the input 2D images:

Lid(I,R∇) =
1

K

K∑
k=1

(
1−

Fn (I) .Fn
(
Rk

∇
)

∥Fn (I)∥2
∥∥Fn

(
Rk

∇
)∥∥

2

)
(9)

where R∇ are the K 2D images rendered with the random
pose, expression, and illumination. We calculate the average
identity loss between each rendered image Rk

∇ and the input
image I. Identity loss ensures that our texture completion
and refinement process do not change the identity.

Adversarial Loss To encourage more photorealistic re-
sults for our coarse-to-fine texture refinement via multi-view
GAN inversion, we design a two-head discriminator, includ-
ing one for global and local discrimination between the re-
covered UV textures (e.g., Ti

refine) and a set of real UV tex-
tures (e.g., Tk

real = 1K), and the other for discrimination
between a set of authentic face images in the wild (e.g.,
Ilreal = 1L) and the arbitrarily re-rendered face images R∇.
We train the discriminators to determine whether the gener-
ated outputs are real or false, while our generators are trained
to deceive the discriminators. The adversarial losses for the
two heads are defined as follows:

Ltex
adv = E[logDtex

glb(Treal)] + E[log(1−Dtex
glb(Trefine))]

+ E[logDtex
ctr (T

ctr
real)] + E[log(1−Dtex

ctr (T
ctr
refine))]

(10)
Limg

adv = E[logDface(Ireal)] + E[log(1−Dface(Irefine))]
(11)

where Dtex
glb and Dtex

ctr denote global and centeral textur dis-
criminators, and Dface face discriminator.

Implementation Details
Before training, all 2D face images are aligned following
the method of (Bulat and Tzimiropoulos 2017). Then, we
use a modified BiSeNet (Yu et al. 2018) pre-trained on
CelebAMask-HQ dataset (Lee et al. 2020a) for face seg-
mentation and facial region mask prediction. The face image
datasets we used for training are CelebA (Liu et al. 2018)
and FFHQ dataset collected by (Karras, Laine, and Aila
2019). We use the 3D morphable face model of Basel Face
Model (Blanz and Vetter 1999) in 3D shape and coarse tex-
ture generation, and a CNN-based 3DMM regressor which
is pre-trained in (Shang et al. 2020). We use the weights of
pre-trained Restyle Encoder (Alaluf, Patashnik, and Cohen-
Or 2021) to initialize our residual-based latent encoder. For
the face generator, we use the off-the-shelf pre-trained Style-
GANv2 generator (Karras et al. 2020). We set the input im-
age size to 224 × 224 and the number of vertices and tri-
angle faces to 35, 709 and 70, 897 respectively, the same as
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Figure 3: Qualitative result comparisons between our method and the state-of-art methods: (Lin et al. 2020), (Yin et al. 2021),
(Deng et al. 2019b) and (Gecer et al. 2019) in MoFA-Test dataset (zoom in for better comparison). Please also see our dynamic
results in supplementary material.

(Shang et al. 2020). The overall training loss is:

L =λrec (Lrec(I0, Irecon)) + λperc (Lperc(I0, Irecon))

+ λid (Lperc(I0, R∇))

+ λadv

(
Ltex

adv + L
face
adv

) (12)

We set hyper-parameters λrec = 1.9, λperc = 0.2 follow-
ing (Deng et al. 2019b), and the other hyper-parameters em-
pirically: λid = 0.8, λadv = 0.1. We implement our method
with torch(1.7.1) and PyTorch3D (v0.4.0), and run our ex-
periments on NVIDIA 1080Ti GPUs with Intel 2.1GHz
CPUs. During inference, our network takes 3.7s to produce
a refined UV texture of 35, 709× 3.

Experiments Results
Qualitative Results
We compare our method with several state-of-art methods,
including 3D Face GCN (Lin et al. 2020), Deep 3D Face Re-
constrution (Deng et al. 2019b), GANFit (Gecer et al. 2019)
and the method in (Yin et al. 2021) on a small subset of
MOFA-test dataset (shown in Fig. 3), which are widely used
by existing methods. The method of (Lin et al. 2020) re-
leased the training code; so we can use the same settings
to train their method. The rest of the above methods do not
release their code or pre-trained models. Therefore, we can
only be able to compare with the results reported in their pa-
pers. The results are shown in Fig. 3. Among the baselines,
the results by (Lin et al. 2020) give the best visual qual-
ity. However, compared to state-of-the-art algorithms, our
method can better retain the original input image’s facial de-
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Figure 4: Zoomed-in comparison with 3D Face GCN (Lin
et al. 2020) in terms of facial detail preservation.

Method (Deng et al. 2019b) (Lin et al. 2020) Ours
L1 distance ↓ 0.052 0.034 0.028

PSNR ↑ 26.58 29.69 30.78
SSIM ↑ 0.826 0.894 0.897

evoLVe ↑ 0.641 0.848 0.878
LightCNN ↑ 0.724 0.900 0.926

Table 1: Quantitative comparison with two SOTA methods
in terms of reconstruction and identity-preserving abilities.

tails like wrinkles, local component shapes, and with fewer
checkerboard artifacts. Some baseline methods like (Yin
et al. 2021) may cause inconsistent texture colors and are
not able to handle foreign object occlusion.

Quantitative Results
Due to the lack of ground-truth 3D face data, we follow
the widely used metrics defined based on reconstructed 2D
face images and the original face images. We evaluate our
approach in two folds: the reconstruction ability and the
identity-preserving ability.

With regards to reconstruction ability, we calculate the
L1 distance, peak signal-to-noise ratio (PSNR), and struc-
tural similarity index (SSIM) on CelebA. As for the identity-
preserving ability, we calculate the cosine similarity of
feature vectors corresponding to the input face images
and the re-rendered face images, which are extracted by
a pre-trained LightCNN-29 (Wu et al. 2018) and evoLVe
model (Zhou et al. 2019). Comparison results are shown in
Tab. 1. We can notice that our method greatly outperforms
the baseline methods in both aspects. This suggests that our
method has big potential in wide application scenarios.

Input Images
w/o face
discriminator

w/o global
texture

discriminator

Our full modelw/o central
texture

discriminator

Figure 5: Qualitative comparisons of the results in ablation
study.

L
os

se
s Reconstruction Loss ✓ ✓ ✓ ✓

Perceptual Loss ✓ ✓ ✓
Identity Loss ✓ ✓ ✓

Adversarial Loss ✓ ✓ ✓

PSNR ↑ 28.10 27.83 29.34 30.78
SSIM ↑ 0.831 0.817 0.865 0.897

Table 2: Quantitative comparisons of the results in ablation
study.

Ablation Study

We perform an ablation study of our method in terms of
multi-view GAN inversion, and the two heads in discrimi-
nation. A qualitative comparison is shown in Fig. 5, from
which we can see that the essential components in our
method help improve the image quality.

Conclusion

In this paper, we present a novel method (MvInvert) for face
self-occlusion recovery. Our method produces a textured 3D
face faithfully reconstructing the input portrait with good
identity-preserving capability. Instead of using expensive
paired image-texture data, we propose to leverage face pri-
ori encoded in a generative model to recover the incomplete
UV textures with high-fidelity by using multi-view GAN
inversion. In addition, we implement a CUDA-accelerated
Poisson blending equation solver which largely reduces the
running time of rendering. Quantitative and qualitative eval-
uations demonstrate that our method outperforms the state-
of-art methods.
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