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Abstract

Recent research has demonstrated that Deep Neural Networks
(DNNs) are vulnerable to adversarial patches which introduce
perceptible but localized changes to the input. Nevertheless,
existing approaches have focused on generating adversarial
patches on images, their counterparts in videos have been less
explored. Compared with images, attacking videos is much
more challenging as it needs to consider not only spatial cues
but also temporal cues. To close this gap, we introduce a novel
adversarial attack in this paper, the bullet-screen comment
(BSC) attack, which attacks video recognition models with
BSCs. Specifically, adversarial BSCs are generated with a
Reinforcement Learning (RL) framework, where the environ-
ment is set as the target model and the agent plays the role of
selecting the position and transparency of each BSC. By con-
tinuously querying the target models and receiving feedback,
the agent gradually adjusts its selection strategies in order to
achieve a high fooling rate with non-overlapping BSCs. As
BSCs can be regarded as a kind of meaningful patch, adding
it to a clean video will not affect people’s understanding of
the video content, nor will arouse people’s suspicion. We con-
duct extensive experiments to verify the effectiveness of the
proposed method. On both UCF-101 and HMDB-51 datasets,
our BSC attack method can achieve about 90% fooling rate
when attacking three mainstream video recognition models,
while only occluding <8% areas in the video. Our code is
available at https://github.com/kay-ck/BSC-attack.

Introduction
Deep Neural Networks (DNNs) have demonstrated supe-
rior performance in various video-related tasks (Song et al.
2021; Su et al. 2020; Han et al. 2021; Wang, Chen, and Jiang
2021), like video recognition (Karpathy et al. 2014; Carreira
and Zisserman 2017; Wu et al. 2016; Zhang et al. 2021),
video caption (Yang, Han, and Wang 2017; Liu, Ren, and
Yuan 2020) and video segmentation (Nilsson and Sminchis-
escu 2018; Wang et al. 2019), etc. However, recent works
have shown that DNNs are extremely vulnerable to video
adversarial examples which are generated by applying neg-
ligible perturbations to clean input samples (Wei et al. 2019).
The existence of video adversarial examples leads to secu-
rity concerns of Deep Learning-based video models in real-
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Figure 1: An illustration of adversarial BSC attacks. Given
a video, it can successfully fool the video recognition model
by adding BSCs.

world applications. Therefore, it has attracted increasing re-
search interest in recent years (Wei et al. 2021b,c, 2020).

Nevertheless, most of the existing works focus on
perturbation-based attacks, which introduce imperceptible
changes to the clean input samples. The perturbations are
constrained to have a small Lp norm and applied to the
whole input. While perturbation-based attacks have been
demonstrated to be effective in attacking the video recogni-
tion models, they are typically difficult to apply in the phys-
ical world. In contrast, patch-based attacks generate adver-
sarial patches by modifying the pixels within a restricted re-
gion without any limitations on the range of changes. There-
fore, patch-based attacks are stronger and more effective in
the physical world. Nevertheless, existing works on patch-
based attacks are mostly focused on images, patch-based at-
tacks on videos have seldom been explored.

This paper investigates patch-based attacks on videos in
the black-box setting, where the adversary can only access
the output of the target model. The challenges of this task
mainly come from two aspects. First, a video is a sequence
of images on which the adjacent frames are closely cor-
related. If selecting several frames in the video as in the
case of perturbation-based video attacks (Wei et al. 2020)
to add adversarial patches, it will increase the perceptibility
of the attack. Second, compared to images, the dimension
of videos is much higher. If attaching adversarial patches
to each frame of the video, it will significantly increase the
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computation cost. Hence how to efficiently generate incon-
spicuous adversarial patches for video models in the black-
box setting is the main challenge.

To address the aforementioned challenges, we propose
a novel adversarial bullet-screen comment (BSC) attack
method against video recognition models. As BSCs are quite
popular when viewers watch videos online, people will be
less sensitive to such meaningful patches than the rectan-
gular patches (Yang et al. 2020) used in patch-based image
attacks. To make the BSCs attached to each video different
from each other, we introduce an image captioning model to
automatically generate BSCs. Then the position and trans-
parency of adversarial BSCs are selected based on two ob-
jectives. First, it should achieve a high fooling rate by plac-
ing the BSCs with selected transparencies on the selected
positions. Second, BSCs should not overlap with each other
in order to avoid obscuring the details of the video signif-
icantly. To this end, motivated by PatchAttack (Yang et al.
2020), we formulate the search over the position and trans-
parency of BSCs as a Reinforcement Learning (RL) problem
to find the optimal positions and transparencies efficiently,
resulting in a query efficient attack. Specifically, in RL, we
define the environment as the target model and the agent as
the role of position and transparency selection. By continu-
ously querying the target model and receiving the feedback,
the agent gradually adjusts its selection strategies in order to
achieve a high fooling rate and zero Intersection over Union
(IoU) between different BSCs. Figure 1 shows an example
of our adversarial BSC attack. As can be seen, the few BSCs
do not affect our understanding of the video but fool the
video recognition model successfully.

Figure 2 overviews our proposed attack framework. Given
a clean video sample, the content of BSCs is generated by an
image captioning model. Then the position and transparency
of BSCs are optimized through RL, where the agent adjusts
the positions and transparencies according to two rewards
(fooling rate and IoU between different BSCs) received from
the environment (target model). By continuously querying
the target model, the optimal positions and transparencies
are selected to generate the video adversarial example. For
the agent, we use a combination of a Long-Short Term Mem-
ory network (LSTM) and a fully connected (FC) layer. In
summary, our major contributions are as follows:

• We propose a novel BSC attack method against video
recognition models. By formulating the attacking process
with RL, our attack method achieves an efficient query.

• We design a novel reward function that considers the IoU
between BSCs to ensure that the added few BSCs do not
affect the understanding of videos.

• Extensive experiments on three widely used video recog-
nition models and two benchmark video datasets (UCF-
101 and HMDB-51) show that our proposed adversarial
BSC framework can achieve high fooling rates.

Related Work
In this section, we provide a short review of perturbation-
based attacks on video models and patch-based attacks.

Perturbation-based Attacks on Video Models
Perturbation-based attacks introduce imperceptible changes
to the input that are restricted to have a small Lp norm and
are typically applied to the whole. Perturbation-based at-
tacks on image models are firstly explored by Szegedy et
al. (Szegedy et al. 2013), where they add some impercep-
tible noises on clean images and mislead well-trained im-
age classification models successfully. Sparked by this work,
perturbation-based attacks on image models have been ex-
tensively studied (Goodfellow, Shlens, and Szegedy 2014;
Madry et al. 2017; Carlini and Wagner 2017; Chen et al.
2017; Ilyas et al. 2018; Wei et al. 2021a; Shi and Han 2021).
In the past years, perturbation-based attacks have been ex-
tended to video models. In terms of white-box attacks, where
the adversary has complete access to the target model such
as model parameters, model structure, etc, (Wei et al. 2019)
first proposes an L2,1 norm regularization-based optimiza-
tion algorithm to compute sparse adversarial perturbations
for videos. (Li et al. 2019) leverages Generative Adversarial
Network (GAN) to generate universal perturbations offline
against real-time video classification systems, and the per-
turbations work on unseen inputs. (Chen et al. 2021) pro-
poses to append a few dummy frames to a video clip and
then add adversarial perturbations only on these new frames.
For black-box attacks, (Jiang et al. 2019) first utilizes ten-
tative perturbations transferred from the image classifica-
tion model and partition-based rectifications estimated by
the Natural Evolutionary Strategies to obtain good adversar-
ial gradient estimates with fewer queries to the target model.
To boost the attack efficiency and reduce the query numbers,
(Wei et al. 2020) proposes to heuristically search a subset of
frames and adversarial perturbations are only generated on
the salient regions of selected frames. More recently, (Zhang
et al. 2020) proposes a motion-excited sampler to generate
sparked prior and obtain significantly better attack perfor-
mance. However, black-box perturbation-based attacks of-
ten require lots of queries and are difficult to apply in the
physical world.

Patch-based Attacks
Patch-based attacks superimpose adversarial patches onto
a small region of the input to create the adversarial ex-
ample, making the attack more effective and applicable in
the physical world by breaking the Lp norm limitations in
perturbation-based attacks. At present, patch-based attacks
are mainly focused on image models. Adversarial patches
are first proposed by (Brown et al. 2017), which fools im-
age classification models to ignore other scenery semantics
and make wrong predictions by superimposing a relatively
small patch onto the image. (Fawzi and Frossard 2016) intro-
duces the first black-box attack, which searches the position
and shape of rectangular patches using Metropolis-Hastings
sampling. (Ranjan et al. 2019) further extends adversarial
patches to optical flow networks and shows that such attacks
can compromise their performance. Although these exist-
ing adversarial patches have powerful attack ability, they are
highly conspicuous. To make adversarial patches be more in-
conspicuous, (Liu et al. 2019) introduces GAN to generate
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Figure 2: Overview of our black-box adversarial BSC attack method. We formulate the position, transparency selection and
attacking step into an end-to-end RL framework.

visually more natural patches. (Jia et al. 2020) further pro-
poses to camouflage malicious information as watermarks
to achieve adversarial stealthiness. This approach assumes
that people’s understanding of the image content is not af-
fected by such meaningful perturbations and hence will not
arouse people’s suspicion, which is the similar assumption
our approach is based on. In contrast, we disguise the adver-
sarial patches as BSCs to attack video recognition models.
As BSCs are meaningful and quite common, people will be
less sensitive to such type of adversarial patch.

Methodology
Problem Formulation
We denote the video recognition model as a function F (·),
where θF denotes the model parameters. Given a clean video
sample x ∈ X ⊂ RT×W×H×C , where X is the video space,
T , W , H , C denote the number of frames, frame width,
frame height, and the number of channels respectively. For
x, the associated ground-truth label y ∈ Y = {1, 2, ...,K},
where Y is the label space, K denotes the number of classes.
We use F (x) : X → Y to denote the prediction of the
video recognition model F (·) for an input video x. The
goal of adversarial attacks on video models is to generate
an adversarial video xadv that can fool the video recogni-
tion model. There are two types of adversarial attacks: untar-
geted attacks and targeted attacks. Untargeted attacks make
F (xadv) ̸= y, while targeted attacks make F (xadv) = yadv ,
where yadv ̸= y. In the case of untargeted attacks, we opti-
mize the following objective function:

argmin
xadv

−l(1y, F (xadv)). (1)

where 1y is the one-hot encoding of the ground truth la-
bel, l(·) is the loss between the prediction and the ground
truth label. In perturbation-based attacks, xadv is generated
by modifying each pixel of the clean video, and the modifi-
cation is constrained to have a small Lp norm. In contrast,
the only constraint for patch-based attacks is that the modi-
fication must be confined to a small region.

In our work, we disguise adversarial patches as mean-
ingful BSCs to achieve stealthiness. Specifically, the BSCs

are confined to a sequence of regions within the video
frames ϵ = {ϵ1, ..., ϵt, ..., ϵT }, where ϵt denotes the re-
gion of BSCs (i.e., the set of pixels belonging to the re-
gion of BSCs) in the t-th frame. ϵt can be determined by
giving the horizontal coordinate u and vertical coordinate
v of the BSC’s position in the first frame, the font size h,
and the font type T. Hence, the process of determining the
i-th BSC’s region in the first frame can be formalized as
ϵi1 = R(TEXT, ui, vi, h,T), i ∈ {1, ...,m}, where R(·)
is the function that determines the region of BSCs in the
video frames, TEXT is the content of BSCs generated by
the image captioning model, m is the number of BSCs.
To implement the BSCs floating from right to left across
the video, we translate ϵt along the horizontal axis to get
the region of BSCs in the t + 1-th frame. Thus, we have
ϵit+1 = R(TEXT, ui − t, vi, h,T), i ∈ {1, ...,m}.

To further mitigate the effect of BSCs on the video con-
tent, we use alpha blending in (Shen, Sethi, and Bhaskaran
1998) to generate BSCs. When (i, j) ∈ ϵt, the generation
for xadv is formulated as:

xadv(t, i, j) = (p ∗ α+ x(t, i, j) ∗ (255− α))/255. (2)

On the contrary, when (i, j) /∈ ϵt, xadv is formulated as:

xadv(t, i, j) = x(t, i, j), (3)

where (t, i, j) represents the position of the pixel in the
video, p represents the padding of the BSCs’ region which
is the color of the BSCs, α represents the value of the BSC’s
alpha channel which refers to the transparency of BSC’s re-
gion w.r.t. the video background.

Note that in our paper, we only focus on optimizing the
position and transparency of the BSC, instead of the color
and rotation, etc.

Position and Transparency Selection
We use BSCs as adversarial patches, and the generation of
video adversarial examples is only related to the position and
transparency of BSCs. Searching over the position and trans-
parency of BSCs can be formulated as an RL problem, since
RL is demonstrated to be much more effective and efficient
than random search strategies in (Yang et al. 2020).
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In the RL framework, the agent learns to select the po-
sition and transparency of adversarial BSCs by interacting
with an environment that provides the rewards and updat-
ing its actions to maximize the total expected reward. In our
work, the environment consists of x and F (·), and an agent
A is trained to sequentially search the position and trans-
parency of BSCs. The searching space of BSCs’ potential
position and transparency is defined as:

S = {u1, v1, α1..., ui, vi, αi..., um, vm, αm},
ui ∈ [−w,W ], vi ∈ [0, H − h], αi ∈ [127, 255]. (4)

where w is the width of the BSC, which depends on the con-
tent of the BSC. From Equation 4, it can be observed that S
has 3m dimensions, we set the agent A to take 3m actions in
sequence to generate a ∈ S and a = {a1, ..., a3m}. Similar
to (Yang et al. 2020), we define the agent A to be a LSTM
topped with a FC layer, its parameters are denoted by θA.
The generation of actions is formulated as:

a0 = 0, (5)
P = 1, (6)
ht = LSTM(ht−1, Embedding(at−1)), t = {1, ..., 3m}.

(7)
p(at|(a1, ..., at−1)) = softmax(θW × ht). (8)
at = Categorical(p(at|(a1, ..., at−1))). (9)
P = P · p(at|(a1, ..., at−1)). (10)

where the initial input a0 is set as 0, the hidden state
ht ∈ R30 of LSTM evolves over step t, θW represents
the weight of the FC layer. The FC layer that ends with
the sigmoid function predicts the probability distribution
p(at|(a1, ..., at−1)) over the possible actions for step t, and
then one action at are sampled via a Categorical function
and records the probability of the sampled action with P .
The generated at is fed back into LSTM in the next step,
which drives the LSTM state transition from ht to ht+1.
This process is repeated until we have drawn a complete ac-
tion of 3m steps.

To generate adversarial and non-overlapping BSCs, we
define a reward that contains two components: the reward
from the feedback of the target model rattack and the re-
ward from the IoU between different BSCs rIoU . The reward
rattack and rIoU complement each other and work jointly to
guide the learning of the agent:

r = rattack + λ · rIoU . (11)

The hyperparameter λ is set according to the parameter tun-
ing which will be discussed in Section 17. The former re-
ward rattack makes the agent generate actions with a higher
loss of the target model and is defined as:

rattack = log(1− 1y · F (xadv)). (12)

The reward rIoU avoids significantly obscuring the details
of the video due to the overlap of BSCs, which is defined as:

rIoU = −IoU(ϵ). (13)

IoU(·) calculates the intersection area over the union area
between different BSCs. In this way, rIoU not only con-

Algorithm 1: Adversarial BSC attack
Input : video recognition model F (·), clean

video x, ground-truth label y.
Output : adversarial video xadv .
Parameter: the number of BSCs m, the font size h,

the balancing factor λ, the font type T.
1 for i = 1 to epochs do
2 TEXT = I(x[0]) ;
3 a, P = A(0) ;
4 for t = 0 to T − 1 do
5 ϵmt+1 = R(TEXT, ui − t, vi, h,T), i ∈

{1, ...,m} ;
6 if (i, j) ∈ ϵt+1 then
7 xadv(t+ 1, i, j) =

(p ∗ α+ x(t+ 1, i, j) ∗ (255− α))/255
8 else
9 xadv(t+ 1, i, j) = x(t+ 1, i, j)

10 end
11 end
12 rattack = log(1− 1y · F (xadv)) ;
13 rIoU = −IoU(ϵ) ;
14 r = rattack + λrIoU ;
15 Update the agent A.
16 end
17 return xadv

strains the overlap between BSCs but also implicitly con-
strains the number of BSCs by regarding adversarial exam-
ples with overlapping BSCs as failures. Based on this re-
ward, we expect the agent A to generate non-overlapping
BSCs while successfully attack video recognition models.

Then, we employ the REINFORCE algorithm (Williams
1992) to optimize the parameters θA of the agent A by max-
imizing the expected reward J(θA) = EP [r]:

∇θAJ(θA) =
1

B

B∑
n=1

∇θArnlogPn, (14)

where B is the batch size and is set as 500. We optimize the
parameters via Adam with a learning rate of 0.03.

Overall Algorithm
The overall process of our adversarial BSC attack is summa-
rized in Algorithm 1. To enable automatically generate dif-
ferent BSCs for each video, a pre-trained image captioning
model I(·) takes the first frame of clean video x[0] as input
and outputs the description that used as the BSC. Then, the
agent generates an action sequence including position coor-
dinates and transparency of m BSCs, based on which the
BSCs can be attached to the video and the rewards are cal-
culated to optimize the agent finally. The attack process is
repeated until we find the adversarial BSC with rIoU = 0,
or the attack fails because the maximum query number is ex-
ceeded. Note that if there is more than one adversarial exam-
ple with rIoU = 0 in the batch, we will select the one with
the least salient region occluded by the BSCs. Intuitively,
salient regions, for example, the foreground of the frames,
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m FR(%) AOA(%) AOA∗(%) AQN

2 68.3 4.1 1.5 9084
3 72.3 5.5 1.8 8089
4 79.2 7.3 2.4 7005
5 79.2 8.9 3.0 7292
6 73.3 10.0 3.5 8233

Table 1: Effects of the number of BSCs m.

h FR(%) AOA(%) AOA∗(%) AQN

7 78.2 7.1 2.3 7193
8 79.2 7.3 2.4 7005
9 80.2 7.6 2.5 6718
10 81.2 8.4 2.8 6544
11 82.1 9.2 3.0 6263
12 81.2 10.6 3.7 6322
13 76.2 10.6 3.8 7441

Table 2: Effects of the font size h.

have a high probability to be the human‘s focus area. Gen-
erating adversarial BSCs on the salient regions will be more
likely to affect people’s understanding of the video content.
Our approach is implemented on a workstation with four
GPUs of NVIDIA GeForce RTX 2080 Ti.

Experiments
Experimental Setting
Datasets. We consider two popular benchmark datasets for
video recognition: UCF-101 (Su et al. 2009) and HMDB-
51 (Kuehne et al. 2011). UCF-101 is an action recogni-
tion dataset collected from YouTube, which contains 13,320
videos with 101 action categories. HMDB-51 is a dataset
for human motion recognition and contains a total of 7000
clips distributed in 51 action classes. Both datasets split 70%
of the videos as training set and the remaining 30% as test
set. We randomly sample 2 videos from each category of
the test dataset. During the test, 16-frame snippets are uni-
formly sampled from each video as input of target models.
Note that, the sampled video snippet can all be classified
correctly by target models.

Target Models. Three video recognition models, Long-
term Recurrent Convolutional Network (LRCN) (Donahue
et al. 2015), C3D (Hara, Kataoka, and Satoh 2018) and I3D-
Slow (Feichtenhofer et al. 2019) are used as our target mod-
els. LRCN exploits the temporal information contained in
successive frames, with Recurrent Neural Networks (RNNs)
capturing long-term dependencies on the features generated
by Convolutional Neural Networks (CNNs). In our imple-
mentation, Inception V3 (Szegedy et al. 2016) pre-trained
on ImageNet is utilized to extract features from video frames
and LSTM is utilized for video recognition; C3D applies 3D
convolution to learn spatio-temporal features from videos
with spatio-temporal filters for video recognition; I3D-Slow
preserves the slow pathway, which operates at the low frame

λ FR(%) AOA(%) AOA∗(%) AQN

1e−5 79.2 7.7 2.6 7253
1e−4 80.2 7.8 2.5 6970
1e−3 80.2 7.6 2.5 6718
1e−2 78.2 7.5 2.6 7169
1e−1 76.2 7.8 2.6 7579

Table 3: Effect of the balancing factor λ.

T(DejaV u) FR(%) AOA(%) AOA∗(%) AQN

Sans 78.2 7.5 2.4 7426
Serif 80.2 7.6 2.5 6718
SansMono 76.2 7.3 2.3 7753
SansCondensed 69.3 9.0 3.1 8797
SerifCondensed 67.3 8.8 3.0 9534

Table 4: Effect of the font type T.

rate and captures spatial semantics in the SlowFast (Feicht-
enhofer et al. 2019) framework. These three models are
the mainstream methods for video recognition. On UCF-
101, the recognition accuracies for C3D, LRCN and I3D-
Slow are 85.88%, 64.92% and 63.39% respectively, while on
HMDB-51, the recognition accuracies are 59.95%, 37.42%
and 34.9% respectively.

Image Captioning Model. For simplicity and efficiency,
we adopt an attention-based image captioning model(Xu
et al. 2015) that is pre-trained on Microsoft Common Ob-
jects in Context (MS COCO) (Lin et al. 2014) to automati-
cally generate the description for the first frame of videos.

Metrics. Three metrics are used to evaluate the perfor-
mance of our method on various sides. 1) Fooling rate (FR):
the ratio of adversarial videos that are successfully mis-
classified. 2) Average occluded area (AOA): the average
area percentage occluded by BSCs in the entire video. We
use AOA∗ to denote the average area percentage occluded
by BSCs in the salient region. 3) Average query number
(AQN ): the average number of querying the target models
to finish the attacks.

Effects of Hyperparameters
We conduct a large number of experiments to determine four
hyperparameters in Algorithm 1, including the number of
BSCs m, the font size h, the balancing factor λ in the reward,
and the font type T. We evaluate the attack performance of
our algorithm on the C3D model with different hyperparam-
eters. For the evaluation, we randomly sample 1 video per
category from the test set of UCF-101. The sampled videos
can be correctly classified by the C3D model. Then, we do a
grid search to find the most appropriate values for these four
hyperparameters.

Table 1 and Table 2 show the attack performance with
different number of BSCs and different font sizes, respec-
tively. The results show that when the number of BSCs m
increases, the AOA will increase while the FR will firstly
increase and then decrease. When the font size h increases,
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Figure 3: The top row is the clean frames and their cor-
responding heatmaps. The bottom row is the adversarial
frames and their corresponding heatmaps.

Figure 4: Examples of saliency detection for adversarial
patches. We can see that our BSC does not trigger the
saliency detection significantly.

AOA and FR show a similar trend. That is, as the number
of BSCs or the font size increases, more areas in the video
are occluded, hence achieves a higher fooling rate. However,
since we regard the adversarial examples with overlapping
BSCs as failures, BSCs are more likely to overlap when the
number of BSCs or the font size increases. To strike a bal-
ance between FR, AOA and AQN , we set m = 4 and
h = 9 to conduct subsequent experiments. Table 3 shows
the attack performance with different balancing factors in
the reward. As can be seen from the table, when λ increases,
FR decreases slightly while AOA remains relatively stable.
That is, when the reward rIoU has a larger weight, the model
tends to make the generated BSCs non-overlap rather than
optimize the attack success rate, hence results in a lower
fooling rate. Therefore, we set λ = 1e−3 so that adver-
sarial BSC attack can achieve the highest FR (%) and the
least AQN . Table 4 shows the attack performance with dif-
ferent DejaVu font types. According to the results, we set
T = DejaV uSerif to achieve the best attack performance
for the adversarial BSC attack.

Performance Comparison
We compare our method with PatchAttack(Yang et al. 2020),
which is originally proposed to attack image classification
models in the black-box setting. Since BSCs are usually in
white and untextured, for a fair comparison, we only con-

sider the white square patch in the comparison. Different
from the original setting of PatchAttack, we extend PatchAt-
tack to attack video models by selecting the position and
transparency of a white square patch with the same area as m
BSCs via RL. Besides, we also compare two variants of our
method. One variant uses Basin hopping (BH) (Wales and
Doye 1997) instead of RL to search over the position and
transparency of BSCs. BH is a stochastic optimization algo-
rithm that can be used to find the global minimum of a multi-
variate function. During each iteration, BH generates several
new variables with random perturbation, then finds the local
minimization, and finally accepts or rejects the new variables
according to the minimized function value. The other variant
randomly selects the position and transparency of the BSCs.
For a fair comparison, we set the number of random trials
equal to the query numbers of our method based on RL.

Table 5 lists the performance comparison against different
target models on UCF-101 dataset and HMDB-51 dataset.
From the results, we have the following observations. First,
compared to PatchAttack, our method that uses BSCs as ad-
versarial patches significantly reduces the occluded area. For
all models, the occluded area has been reduced by more than
52% on both datasets. It is not surprising that BSCs have
much smaller occluded areas since compared to a square
patch, BSCs are more scattered. Second, compared to BH,
RL is more effective in reducing the number of queries. For
C3D and LRCN models, the number of queries has been
reduced by more than 22% on both datasets. Besides, RL
achieves better performance than random selection under the
same query numbers. Third, in most cases, BSCs occlude
wider range contents of video than a square patch with the
same area and hence increases the fooling rate. Similar re-
sults are obtained by conducting experiments on Kinetics-
400 (Kay et al. 2017) dataset. In summary, using BSCs as ad-
versarial patches decreases the occluded areas and RL helps
to achieve a more effective and efficient attack.

Figure 3 shows two examples of adversarial frames gen-
erated by our proposed BSC attack method on UCF-101
dataset. In addition, we further visualize the discrimina-
tive regions in the video frames for the C3D model with
Gradient-weighted Class Activation Mapping (Grad-CAM)
(Selvaraju et al. 2017). From the generated heatmaps, it is
clear why the C3D model predicts the input frames as the
corresponding correct classes. And embedding the adversar-
ial BSCs into the frame can modify the distribution of the
maximum points on the generated heatmap.

To qualitatively evaluate the risks of adversarial patches
prone to spot, we use a visual saliency map to show the
human-simulated focus area when they take a glance at the
image. We compare the BSCs with the square patch, includ-
ing the original frame as the baseline. Note that both patches
occluded the same area of frame for fairness. An example
and its saliency map are shown in Figure 4. We can see that
the square patch can be easily highlighted in the saliency
map. This means adversarial patches have a high probability
to be spotted at people’s first glance. In contrast, the BSCs
are relatively inconspicuous under human observation at first
glance. Besides, even if they are detected, BSCs are less
likely to arouse people’s suspicion than square patches.
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Dataset Target Model Attack Method Metrics

FR(%) AOA(%) AOA∗(%) AQN

UCF-101

C3D

PatchAttack (Yang et al. 2020) 73.3 16.9 5.7 7299
Our method (BH) 65.8 8.8 2.9 10473
Our method (RL) 90.1 7.5 2.5 4273

Our method (Random) 68.8 9.0 3.5 -

LRCN

PatchAttack (Yang et al. 2020) 97.4 14.0 2.6 1166
Our method (BH) 97.4 8.5 2.8 1335
Our method (RL) 99.5 5.5 1.0 1673

Our method (Random) 97.4 8.6 2.8 -

I3D-Slow

PatchAttack (Yang et al. 2020) 92.1 14.6 4.6 2480
Our method (BH) 90.1 8.2 2.7 3468
Our method (RL) 96.5 5.8 1.9 1673

Our method (Random) 89.6 8.2 2.8 -

HMDB-51

C3D

PatchAttack (Yang et al. 2020) 92.2 13.5 3.5 2500
Our method (BH) 81.4 8.2 2.7 6358
Our method (RL) 91.2 6.4 1.5 3122

Our method (Random) 83.3 8.8 3.2 -

LRCN

PatchAttack (Yang et al. 2020) 96.9 12.1 1.6 1250
Our method (BH) 94.9 8.2 2.6 1617
Our method (RL) 99.0 4.8 0.7 980

Our method (Random) 93.9 8.0 2.5 -

I3D-Slow

PatchAttack (Yang et al. 2020) 100.0 11.5 3.5 760
Our method (BH) 91.1 8.5 2.8 3453
Our method (RL) 99.0 4.8 1.6 949

Our method (Random) 98.0 7.8 2.6 -

Table 5: Attack performance on UCF-101/HMDB-51 datasets against C3D/LRCN/I3D-Slow models.

Dataset Target Model Type of Patch FR(%)

UCF-101

C3D BSC 67.9
White Square Patch 54.2

LRCN BSC 81.7
White Square Patch 75.5

I3D-Slow BSC 84.7
White Square Patch 65.0

HMDB-51

C3D BSC 70.7
White Square Patch 59.8

LRCN BSC 88.3
White Square Patch 75.5

I3D-Slow BSC 93.9
White Square Patch 67.3

Table 6: Attack performance against the LGS defense.

We also evaluate the performance of our attack method
against the patch-based defense method - Local Gradient
Smoothing (LGS)(Naseer, Khan, and Porikli 2019). LGS
has shown the best adversarial accuracy on the ImageNet
dataset against patch-based attacks among the studied patch
defenses to date (Chiang et al. 2020). In order to evaluate
the robustness of adversarial patches with different types,

we compare the performance of BSCs and a square patch
against LGS defense in terms of the fooling rate. Since the
approach is designed for images, we apply the LGS defense
operation for each frame in the video. From Table 6, it is
clear that the BSCs are more robust than the square patch
against the LGS defense method. Since adversarial training
is difficult to apply on videos, an intuitively effective defense
method against our BSC attack is to use strong text removal
techniques to detect and remove BSCs.

Conclusion
In this paper, we proposed the BSC attack, a novel black-box
adversarial attack against video recognition models. As the
meaningful adversarial patch, few BSCs can not only attack
the video model easily but also don’t arouse people’s sus-
picion. We formulate the attacking process as an RL prob-
lem, where the agent is trained to superimpose BSCs onto
the videos in order to induce misclassification. Compared
to BH and random selection, RL is much more query effi-
cient and effective. We demonstrated by experiments that
compared with the previous PatchAttack, the BSC attack
achieves a higher fooling rate while requires fewer queries
and occludes smaller areas in the video. Moreover, we also
demonstrated that BSCs still have a higher fooling rate than
the same area square patch against the LGS defense method.
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