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Abstract

Zero-shot learning (ZSL) aims to recognize novel classes by
transferring semantic knowledge from seen classes to unseen
ones. Semantic knowledge is learned from attribute descrip-
tions shared between different classes, which act as strong
priors for localizing object attributes that represent discrim-
inative region features, enabling significant visual-semantic
interaction. Although some attention-based models have at-
tempted to learn such region features in a single image, the
transferability and discriminative attribute localization of vi-
sual features are typically neglected. In this paper, we pro-
pose an attribute-guided Transformer network, termed Tran-
sZero, to refine visual features and learn attribute localization
for discriminative visual embedding representations in ZSL.
Specifically, TransZero takes a feature augmentation encoder
to alleviate the cross-dataset bias between ImageNet and ZSL
benchmarks, and improves the transferability of visual fea-
tures by reducing the entangled relative geometry relation-
ships among region features. To learn locality-augmented vi-
sual features, TransZero employs a visual-semantic decoder
to localize the image regions most relevant to each attribute in
a given image, under the guidance of semantic attribute infor-
mation. Then, the locality-augmented visual features and se-
mantic vectors are used to conduct effective visual-semantic
interaction in a visual-semantic embedding network. Exten-
sive experiments show that TransZero achieves the new state
of the art on three ZSL benchmarks. The codes are available
at: https://github.com/shiming-chen/TransZero.

Introduction
Inspired by human cognitive competence, zero-shot learning
(ZSL) was proposed to recognize new classes during learn-
ing by exploiting the intrinsic semantic relatedness between
seen and unseen classes (Larochelle, Erhan, and Bengio
2008; Palatucci et al. 2009; Lampert, Nickisch, and Harmel-
ing 2009). In ZSL, there are no training samples available
for unseen classes in the test set, and the label spaces for the
training set and test set are disjoint from each other. Thus,
the key task for ZSL is to learn discriminative visual fea-
tures for conducting effective visual-semantic interactions
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Figure 1: Motivation illustration. (a) Existing attention-
based ZSL methods simply learn region embeddings (e.g.,
the whole bird body), neglecting the transferability and dis-
criminative attribute localization (e.g., the distinctive bird
body parts) of visual features; (b) Our TransZero reduces
the entangled relationships among region features to im-
prove their transferability and localizes the object attributes
to represent discriminative region features, enabling signifi-
cant visual-semantic interaction.

based on the semantic information (e.g., sentence embed-
dings (Reed et al. 2016), and attribute vectors (Lampert,
Nickisch, and Harmeling 2014)), which are shared between
the seen and unseen classes employed to support the knowl-
edge transfer. According to their classification range, ZSL
methods can be categorized into conventional ZSL (CZSL),
which aims to predict unseen classes, and generalized ZSL
(GZSL), which can predict both seen and unseen classes
(Xian, Schiele, and Akata 2017).

To enable visual-semantic interactions, early ZSL meth-
ods attempt to build an embedding between seen classes and
their class semantic vectors, and then classify unseen classes
by nearest neighbor search in the embedding space. Since
the embedding is only learned by seen class samples, these
embedding-based methods usually overfit to seen classes un-
der the GZSL setting (known as the bias problem). To tackle
this problem, many generative ZSL methods have been pro-
posed to generate samples of unseen classes by leveraging
generative models (e.g., variational autoencoders (VAEs)
(Arora et al. 2018; Schönfeld et al. 2019; Chen et al. 2021b),
generative adversarial nets (GANs) (Xian et al. 2018, 2019;
Chen et al. 2021a), and generative flows (Shen, Qin, and
Huang 2020)) for data augmentation. Thus the ZSL task is
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converted into a supervised classification problem.
Although these methods have achieved progressive im-

provement, they rely on global visual features which are
insufficient for representing the fine-grained information of
classes (e.g., red-legged of Kittiwake), since the discrimina-
tive information is contained in a few regions corresponding
to a few attributes. Thus, the visual feature representations
are limited, resulting in poor visual-semantic interactions.
More recently, some attention-based models (Xie et al. 2019,
2020; Zhu et al. 2019; Xu et al. 2020; Yu et al. 2018; Liu
et al. 2019) have attempted to learn more discriminative re-
gion features with the guidance of the semantic information,
as shown in Fig. 1(a). However, these methods are limited
in: i) They directly take the entangled region (grid) features
for ZSL classification, which hinders the transferability of
visual features from seen to unseen classes; ii) They sim-
ply learn region embeddings (e.g., the whole bird body),
neglecting the importance of discriminative attribute local-
ization (e.g., the distinctive bird body parts). Thus, properly
improving the transferability and localizing the object at-
tributes for enabling significant visual-semantic interaction
in ZSL has become very necessary.

To tackle the above challenges, in this paper, we propose
an attribute-guided Transformer, termed TransZero, which
reduces the entangled relationships among region features
to improve their transferability and localizes the object at-
tributes to represent discriminative region features in ZSL,
as shown in Fig. 1(b). Specifically, TransZero consists of
an attributed-guided Transformer (AGT) that learns locality-
augmented visual features and a visual-semantic embedding
network (VSEN) that conducts visual-semantic interactions.
In AGT, we first take a feature augmentation encoder to i)
alleviate the cross-dataset bias between ImageNet and ZSL
benchmarks, and ii) reduce the entangled relative geome-
try relationships between different regions for improving the
transferability from seen to unseen classes. They are ignored
by existing ZSL methods. To learn locality-augmented vi-
sual features, we employ a visual-semantic decoder in AGT
to localize the image regions most relevant to each attribute
in a given image, under the guidance of semantic attribute in-
formation. Then, the locality-augmented visual features and
semantic vectors are used to enable visual-semantic interac-
tion in VSEN. Extensive experiments show that TransZero
achieves the new state of the art on three ZSL benchmarks.
The qualitative results also demonstrate that TransZero re-
fines visual features and provides attribute-level localization.

The main contributions of this paper are summarized as: i)
We introduce a novel ZSL method, termed TransZero, which
employs an attribute-guided Transformer to refine the visual
features and learn the attribute localization for discrimina-
tive visual embedding representations. To the best of our
knowledge, TransZero is the first work extending the Trans-
former to the ZSL task. ii) We propose a feature augmen-
tation encoder to i) alleviate the cross-dataset bias between
ImageNet and ZSL benchmarks, and ii) reduce the entangled
relative geometry relationships between different regions
to improve the transferability from seen to unseen classes.
They are ignored by existing ZSL methods. iii) Extensive
experiments demonstrate that TransZero achieves the new

state of the art on three ZSL benchmarks. We further qual-
itatively show that our TransZero refines the visual features
and accurately localizes fine-grained parts for discriminative
feature representations.

Related Work
Zero-Shot Learning. Early ZSL methods (Song et al.
2018; Li et al. 2018; Xian et al. 2018, 2019; Yu et al. 2020;
Min et al. 2020; Han et al. 2021; Chen et al. 2021a; Chou,
Lin, and Liu 2021; Han et al. 2021) focus on learning a
mapping between the visual and semantic domains to trans-
fer semantic knowledge from seen to unseen classes. They
typically extract global visual features from pre-trained or
end-to-end trainable networks. Typically, end-to-end mod-
els achieve better performance than pre-trained ones because
they fine-tune the visual features, thus alleviating the cross-
dataset bias between ImageNet and ZSL benchmarks (Chen
et al. 2021a; Xian et al. 2019). However, these methods still
usually yield relatively undesirable results, since they can-
not efficiently capture the subtle differences between seen
and unseen classes. More relevant to this work are the re-
cent attention-based ZSL methods (Xie et al. 2019, 2020;
Zhu et al. 2019; Xu et al. 2020; Liu et al. 2021) that uti-
lize attribute descriptions as guidance to discover the more
discriminative region (or part) features. Unfortunately, They
simply learn region embeddings (e.g., the whole bird body)
neglecting the importance of discriminative attribute local-
ization (e.g., the distinctive bird body parts). Furthermore,
the end-to-end attention models are also time-consuming
when it comes to fine-tuning the CNN backbone. In contrast,
we propose an attribute-guided Transformer to learn the at-
tribute localization for discriminative region feature repre-
sentations under non end-to-end ZSL model.

Transformer Model. Transformer models (Vaswani et al.
2017) have recently demonstrated excellent performance on
a broad range of language and computer vision tasks, e.g.,
machine translation (Ott et al. 2018), image recognition
(Dosovitskiy et al. 2021), video understanding (Gabeur et al.
2020), visual question answering (Zhang et al. 2021), etc.
The success of Transformers can be mainly attributed to self-
supervision and self-attention (Khan et al. 2021). The self-
supervision allows complex models to be trained without the
high cost of manual annotation, which in turn enables gener-
alizable representations that encode useful relationships be-
tween the entities presented in a given dataset to be learned.
The self-attention layers take the broad context of a given
sequence into account by learning the relationships between
the elements in the token set (e.g., words in language or
patches in an image). Some methods (Gabeur et al. 2020;
Cornia et al. 2020; Huang et al. 2019; Pan et al. 2020) have
also shown that the transformer architecture can better cap-
ture the relationship between visual features and process se-
quences in parallel during training. Motivated by these, we
design an attribute-guided Transformer that reduces the re-
lationships among different regions to improve the transfer-
ability of visual features and learns the attribute localization
for representing discriminative region features.

331



CNN Backbone

Attribute-Guided Transformer (AGT)

Visual-Semantic Decoder

Red

long

Small

…

Visual-Semantic Embedding Network (VSEN)

…

Encoder
Layer 1

Encoder
Layer 2

…

Encoder
Layer L

Decoder
Layer 1

Decoder
Layer 2

…

Decoder
Layer L

Feature Augmentation Encoder

一

Visual Features
Region Geometry Features

0.8

0.6

0.9

……

…

Language 
Model

Figure 2: The architecture of the proposed TransZero model. TransZero consists of an attribute-guided Transformer (AGT) and
a visual-semantic embedding network (VSEN). AGT includes a feature augmentation encoder that alleviates the cross-dataset
bias between ImageNet and ZSL benchmarks and reduces the entangled geometry relationships between different regions for
improving the transferability from seen to unseen classes, and a visual-semantic decoder that learns locality-augmented visual
features based on the semantic attribute information. VSEN is used to enable significant visual-semantic interaction.

Proposed Method
We first introduce some notations and the problem defini-
tion. Assume that we have Ds = {(xsi , ysi )} as training data
with Cs seen classes, where xsi ∈ X denotes the image i,
and ysi ∈ Ys is the corresponding class label. Another set of
unseen classes Cu has unlabeled samplesDu = {(xui , yui )},
where xui ∈ X are the unseen class images, and yui ∈ Yu

are the corresponding labels. A set of class semantic vec-
tors of the class c ∈ Cs ∪ Cu = C with A attributes
zc = [zc1, . . . , z

c
A]
>

= φ(y) helps knowledge transfer from
seen to unseen classes. Note that we also use the semantic
attribute vectors of each attribute VA = {va}Aa=1 learned
by a language model (i.e., GloVe (Pennington, Socher, and
Manning 2014)) according to each word in attribute names.
ZSL aims to predict the class labels yu ∈ Yu and y ∈ Y =
Ys∪Yu in the CZSL and GZSL settings, respectively, where
Ys ∩ Yu = ∅.

In this paper, we propose an attribute-guided Transformer
network (termed TransZero) to refine the visual features and
localize the object attributes for representing the discrimi-
native region features under a non end-to-end model. This
enables significant visual-semantic interaction in ZSL. As
illustrated in Fig. 2, our TransZero includes an attribute-
guided Transformer (AGT) and visual-semantic embedding
network (VSEN). AGT refines the visual feature using a fea-
ture augmentation encoder, and learns locality-augmented
visual features using a visual-semantic decoder. VSEN en-
ables visual-semantic interaction for ZSL classification.

Attribute-Guided Transformer
Feature Augmentation Encoder. Since there is a cross-
dataset bias between ImageNet and ZSL benchmarks (Chen
et al. 2021a), we introduce a feature augmentation encoder
to refine the visual features of ZSL benchmarks. Addition-
ally, previous ZSL methods typically flatten the grid fea-
tures (extracted from a CNN backbone) into a feature vector,

which is further used for generative models or embedding
learning. However, such a feature vector implicitly entangles
the feature representations among various regions in an im-
age, which hinders their transferability from one domain to
other domains (e.g., from seen to unseen classes) (Xu et al.
2020; Atzmon et al. 2020; Chen et al. 2021c). As such, we
propose a feature-augmented scaled dot-product attention to
further enhance the encoder layer by reducing the relative
geometry relationships among the grid features.

To learn relative geometry features (Herdade et al. 2019;
Zhang et al. 2021), we first calculate the relative center coor-
dinates (vcen

i , tcen
i ) based on the pair of 2D relative positions

of the i-th grid
{(
vmin
i , tmin

i

)
, (vmax

i , tmax
i )

}
:

(vcen
i , tcen

i ) =

(
vmin
i + vmax

i

2
,
tmin
i + tmax

i

2

)
, (1)

wi =
(
vmax
i − vmin

i

)
+ 1, (2)

hi =
(
tmax
i − tmin

i

)
+ 1, (3)

where (vmin
i , tmin

i ) and (vmax
i , tmax

i ) are the relative position
coordinates of the top left corner and bottom right corner of
the grid i, respectively.

Then, we construct region geometry featuresGij between
grid i and grid j:

Gij = ReLU
(
wT

g gij
)
, (4)

where

gij = FC (rij) , rij =

 log

(
|vcen

i −v
cen
j |

wi

)
log

(
|tcen

i −t
cen
j |

hi

)
 , (5)

where rij is the relative geometry relationship between grids
i and j, FC is a fully connected layer followed by a ReLU
activation, and wT

g is a set of learnable weight parameters.
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Finally, we substract the region geometry features from
the visual features in the feature-augmented scaled dot-
product attention to provide a more accurate attention map,
formally defined as:

Qe = UW e
q ,K

e = UW e
k , V

e = UW e
v , (6)

Zaug = softmax

(
QeKe>

√
de
−G

)
V e, (7)

U ← U + Zaug, (8)

where Q, K, V are the query, key and value matrices,
W e

q , W e
k , W e

v are the learnable matrices of weights, de is
a scaling factor, and Zaug is the augmented features. U ∈
RHW×C are the packed visual features, which are learned
from the flattened features embedded by a fully connected
layer followed by a ReLU and a Dropout layer.

Visual-Semantic Decoder. Following the standard Trans-
former (Vaswani et al. 2017), our visual-semantic decoder
takes a multi-head self-attention layer and feed-forward net-
work (FFN) to build the decoder layer. The decoding pro-
cess continuously incorporates visual information under the
guidance of semantic attribute features VA. Thus, our visual-
semantic decoder can effectively localize the image regions
most relevant to each attribute in a given image. The multi-
head self-attention layer uses the outputs of the encoder U
as keys (Kd

t ) and values (V d
t ) and a set of learnable semantic

embeddings VA as queries (Qd
t ). It is defined as:

Qd
t = VAW d

qt,K
d
t = UW d

kt, V
d
t = UW d

vt, (9)

headt = softmax

(
Qd

tK
d>

t√
dd

)
V d
t , (10)

F̂ = ‖Tt=1(headt)Wo, (11)

whereW d
qt,W

d
kt,W

d
vt are the learnable weights, dd is a scal-

ing factor, and ‖ is a concatenation operation. Then, an FFN
with two linear transformations followed a ReLU activation
in between is applied to the attended features F̂ :

F = ReLu
(
F̂W1 + b1

)
W2 + b2, (12)

where W1, W2, b1 and b2 are the weights and biases of the
linear layers respectively, and F are the locality-augmented
visual features.

Visual-Semantic Embedding Network
After generating locality-augmented visual features, we fur-
ther map them into the semantic embedding space. To en-
courage the mapping to be more accurate, we take the se-
mantic attribute vectors VA = {va}Aa=1 as support, based
on a mapping function (M). Specifically, M matches the
locality-augmented visual features F with the semantic at-
tribute information vA:

ψ(xi) =M(F ) = V>AWF, (13)

where W is an embedding matrix that embeds F into the
semantic attribute space. In essence, ψ(xi)[a] is an attribute

score that represents the confidence of having the a-th at-
tribute in the image xi. Given a set of semantic attribute vec-
tors VA = {va}Aa=1, TransZero attains a mapped semantic
embedding ψ(xi).

Model Optimization
To achieve effective optimization, we employ the attribute
regression loss, attribute-based cross-entropy loss and self-
calibration loss to train TransZero.

Attribute Regression Loss. To encourage VSEN to accu-
rately map visual features into their corresponding seman-
tic embeddings, we introduce an attribute regression loss to
constrain TransZero. Here, we regard visual-semantic map-
ping as a regression problem and minimize the mean square
error between the ground truth attribute zc and the embed-
ded attribute score ψ(xsi ) of a set of sample {xsi}

nb
i=1:

LAR = − 1

nb

nb∑
i=1

‖ψ(xsi )− zc‖22. (14)

Attribute-Based Cross-Entropy Loss. Since the associ-
ated image embedding is projected near its class semantic
vector zc when an attribute is visually present in an image,
we take the attribute-based cross-entropy loss LACE to op-
timize the parameters of the TransZero model, i.e., the dot
product between the visual embedding and each class se-
mantic vector is calculated to produce class logits. This en-
courages the image to have the highest compatibility score
with its corresponding class semantic vector. Given a batch
of nb training images {xsi}

nb
i=1 with their corresponding class

semantic vectors zc, LACE is defined as:

LACE = − 1

nb

nb∑
i=1

log
exp (ψ(xsi )× zc)∑

ĉ∈Cs exp (ψ(x
s
i )× zĉ)

. (15)

Self-Calibration Loss. Since LAR and LACE optimize the
model on seen classes, TransZero inevitably overfits to these
classes, as also observed in (Zhu et al. 2019; Huynh and El-
hamifar 2020a; Xu et al. 2020). To tackle this challenge,
we further introduce a self-calibration loss LSC to explic-
itly shift some of the prediction probabilities from seen to
unseen classes. LSC is thus formulated as:

LSC = − 1

nb

nb∑
i=1

Cu∑
c′=1

log
exp

(
ψ(xsi )× zc

′
+ I[c′∈Cu]

)
∑

ĉ∈C exp
(
ψ(xsi )× zĉ + I[ĉ∈Cu]

) ,
(16)

where I[c∈Cu] is an indicator function (i.e., it is 1 when
c ∈ Cu, otherwise -1). Intuitively, LACE encourages non-
zero probabilities to be assigned to the unseen classes during
training, which allows TransZero to produce a (large) non-
zero probability for the true unseen class when given test
samples from unseen classes.

Finally, we formulate the overall loss function of Tran-
sZero:

Ltotal = LACE + λARLAR + λSCLSC , (17)

where λAR and λSC are the weights to controle their corre-
sponding loss terms.
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Methods
CUB SUN AWA2

CZSL GZSL CZSL GZSL CZSL GZSL
acc U S H acc U S H acc U S H

End-to-End
QFSL (Song et al. 2018) 58.8 33.3 48.1 39.4 56.2 30.9 18.5 23.1 63.5 52.1 72.8 60.7

LDF (Li et al. 2018) 67.5 26.4 81.6 39.9 – – – – 65.5 9.8 87.4 17.6
SGMA∗ (Zhu et al. 2019) 71.0 36.7 71.3 48.5 – – – – 68.8 37.6 87.1 52.5
AREN∗ (Xie et al. 2019) 71.8 38.9 78.7 52.1 60.6 19.0 38.8 25.5 67.9 15.6 92.9 26.7

LFGAA∗ (Liu et al. 2019) 67.6 36.2 80.9 50.0 61.5 18.5 40.0 25.3 68.1 27.0 93.4 41.9
APN∗ (Xu et al. 2020) 72.0 65.3 69.3 67.2 61.6 41.9 34.0 37.6 68.4 57.1 72.4 63.9

Non End-to-End
Generative Methods

f-CLSWGAN (Xian et al. 2018) 57.3 43.7 57.7 49.7 60.8 42.6 36.6 39.4 68.2 57.9 61.4 59.6
f-VAEGAN-D2 (Xian et al. 2019) 61.0 48.4 60.1 53.6 64.7 45.1 38.0 41.3 71.1 57.6 70.6 63.5

OCD-CVAE (Keshari, Singh, and Vatsa 2020) – 44.8 59.9 51.3 – 44.8 42.9 43.8 – 59.5 73.4 65.7
E-PGN (Yu et al. 2020) 72.4 52.0 61.1 56.2 – – – – 73.4 52.6 83.5 64.6

Composer (Huynh and Elhamifar 2020b) 69.4 56.4 63.8 59.9 62.6 55.1 22.0 31.4 71.5 62.1 77.3 68.8
GCM-CF (Yue et al. 2021) – 61.0 59.7 60.3 – 47.9 37.8 42.2 – 60.4 75.1 67.0
FREE (Chen et al. 2021a) – 55.7 59.9 57.7 – 47.4 37.2 41.7 – 60.4 75.4 67.1
HSVA (Chen et al. 2021b) 62.8 52.7 58.3 55.3 63.8 48.6 39.0 43.3 – 59.3 76.6 66.8
Non-Generative Methods

SP-AEN (Chen et al. 2018) 55.4 34.7 70.6 46.6 59.2 24.9 38.6 30.3 58.5 23.3 90.9 37.1
PQZSL (Li et al. 2019) – 43.2 51.4 46.9 – 35.1 35.3 35.2 – 31.7 70.9 43.8

IIR (Cacheux, Borgne, and Crucianu 2019) 63.8 30.4 65.8 41.2 63.5 22.0 34.1 26.7 67.9 17.6 87.0 28.9
TCN (Jiang et al. 2019) 59.5 52.6 52.0 52.3 61.5 31.2 37.3 34.0 71.2 61.2 65.8 63.4
DVBE (Min et al. 2020) – 53.2 60.2 56.5 – 45.0 37.2 40.7 – 63.6 70.8 67.0

DAZLE∗ (Huynh and Elhamifar 2020a) 66.0 56.7 59.6 58.1 59.4 52.3 24.3 33.2 67.9 60.3 75.7 67.1
TransZero (Ours) 76.8 69.3 68.3 68.8 65.6 52.6 33.4 40.8 70.1 61.3 82.3 70.2

Table 1: Results (%) of the state-of-the-art CZSL and GZSL modes on CUB, SUN and AWA2, including end-to-end and non
end-to-end methods (generative and non-generative methods). The Symbol “–” indicates no results. The Symbol “*” denotes
attention-based methods.

Zero-Shot Prediction
After training TransZero, we first obtain the embedding fea-
tures of a test instance xi in the semantic space i.e., ψ(xi).
Then, we take an explicit calibration to predict the test label
of xi, which is formulated as:

c∗ = arg max
c∈Cu/C

ψ(xi)× zc + I[c∈Cu]. (18)

Here, Cu/C corresponds to the CZSL/GZSL setting respec-
tively.

Experiments
Dataset Our extensive experiments are conducted on
three popular ZSL benchmarks, including two fine-grained
datasets (e.g., CUB (Welinder et al. 2010) and SUN (Pat-
terson and Hays 2012)) and a coarse-grained dataset (e.g.,
AWA2 (Xian, Schiele, and Akata 2017)). CUB has 11,788
images of 200 bird classes (seen/unseen classes = 150/50)
depicted with 312 attributes. SUN includes 14,340 images
from 717 scene classes (seen/unseen classes = 645/72) de-
picted with 102 attributes. AWA2 consists of 37,322 images
from 50 animal classes (seen/unseen classes = 40/10) de-
picted with 85 attributes.

Evaluation Protocols Following (Xian, Schiele, and
Akata 2017), we measure the top-1 accuracy both in the
CZSL and GZSL settings. In the CZSL setting, we simply
predict the unseen classes to compute the accuracy of test
samples, i.e., acc. In the GZSL setting, we compute the ac-
curacy of the test samples from both the seen classes (de-
noted as S) and unseen classes (denoted as U ). Meanwhile,

their harmonic mean (defined as H = (2×S×U)/(S+
U)) is also employed for evaluation in the GZSL setting.

Implementation Details We use the training splits pro-
posed in (Xian et al. 2018). We take a ResNet101 pre-trained
on ImageNet as the CNN backbone for extracting the feature
map without fine-tuning. We use the SGD optimizer with
hyperparameters (momentum = 0.9, weight decay = 0.0001)
to optimize our model. The learning rate and batch size are
set to 0.0001 and 50, respectively. We empirically set λSC

to 0.3 and λAR to 0.005 for all datasets. The encoder and
decoder layers are set to 1 with one attention head.

Comparison with State of the Art
Conventional Zero-Shot Learning. Here, we first com-
pare our TransZero with the state-of-the-art methods in
the CZSL setting. As shown in Table 1, our TransZero
achieves the best accuracies of 76.8% and 65.6% on CUB
and SUN, respectively. This shows that TransZero effec-
tively learns the attribute-augmented region feature repre-
sentations for distinguishing various fine-grained classes. As
for the coarse-grained dataset, TransZero still obtains com-
petitive performance, with a top-1 accuracy of 70.1%. Com-
pared with other attention-based methods (e.g., SGMA (Zhu
et al. 2019), AREN (Xie et al. 2019), APN (Xu et al. 2020)),
TransZero obtains significant gains of over 4.8% and 4.0%
on CUB and SUN, respectively. This demonstrates that the
attribute localization representations learned by our Tran-
sZero are more discriminative than the region embeddings
learned by the existing attention-based methods.

334



(a
)A

R
E

N
(b

)T
ra

ns
Z

er
o

Figure 3: Visualization of attention maps for the attention-based method (i.e, AREN (Xie et al. 2019)) and our TransZero.

Method CUB SUN
acc H acc H

TransZero w/o FAE 67.3 56.8 61.2 32.1
TransZero w/o FA 74.0 66.5 63.8 38.5
TransZero w/o DEC 62.3 53.7 58.3 31.6
TransZero w/o LSC 74.8 58.1 64.2 37.4
TransZero w/o LAR 74.5 67.3 64.1 39.1
TransZero (full) 76.8 68.8 65.6 40.8

Table 2: Ablation studies for different components of Tran-
sZero on the CUB and SUN datasets. “FAE” is the feature
augmentation encoder, “FA” means feature augmentation,
and “DEC” denotes visual-semantic decoder.

Generalized Zero-Shot Learning. Table 1 shows the re-
sults of different methods in the GZSL setting. The results
show that the unseen accuracy (U ) of all methods is usually
lower than the seen accuracy (S) on the CUB and AWA2
datasets, i.e., U < S. Meanwhile, U > S on the SUN
dataset since the number of seen classes is much larger than
the number of unseen classes.

We can see that most state-of-the-art methods achieve
good results on seen classes but fail on unseen classes,
while our method generalizes better to unseen classes with
high unseen and seen accuracies. For example, TransZero
achieves the best performance with harmonic mean of
68.8% and 70.2% on CUB and AWA2, respectively. We ar-
gue that the benefits of TransZero come from the fact that
i) the feature augmentation encoder in AGT improves the
discriminability and transferability of visual features, and
ii) the self-calibration mechanism alleviates the bias prob-
lem. Finally, our TransZero also outperforms the attention-
based methods by harmonic mean improvements of at least
1.6%, 3.2% and 3.1% on CUB, SUN and AWA2, respec-
tively. This demonstrates the superiority and great potential
of our attribute-guided Transformer for the ZSL task.

Ablation Study
To provide the further insight into TransZero, we conduct
ablation studies to evaluate the effects of the feature aug-
mentation encoder (denoted as FAE), feature augmenta-

tion in FAE (denoted as FA), visual-semantic decoder (de-
noted as DEC), self-calibration loss (i.e., LSC) and at-
tribute regression loss (i.e., LAR). Our results are shown
in Table 2. TransZero performs significantly worse than
its full model when no feature augmentation encoder is
used, i.e., the acc/harmonic mean drops by 9.5%/12.0%
on CUB and 4.4%/8.7% on SUN. If we incorporate the
encoder of the standard Transformer without feature aug-
mentation, TransZero again achieves poor results compared
to its full model, i.e., the acc/harmonic mean drops by
2.8%/2.3% and 1.8%/2.3% on CUB and SUN, respectively.
When TransZero without visual-semantic decoder, its per-
formances decreases dramatically on all datasets. Moreover,
the self-calibration mechanism can effectively alleviate the
bias problem, resulting in improvements in the harmonic
mean of 10.7% and 3.4% on CUB and SUN, respectively.
The attribute regression constraint further improves the per-
formance of TransZero by directing VSEN to conduct effec-
tive visual-semantic mapping.

Qualitative Results
Visualization of Attention Maps. To intuitively show
the effectiveness of our TransZero at learning locality-
augmented visual features, we visualize the attention maps
learned by the existing attention-based methods (e.g., AREN
(Xie et al. 2019)) and TransZero. As shown in Fig. 3, AREN
simply learns region embeddings for visual representations,
e.g., the whole bird body, neglecting the fine-grained seman-
tic attribute information. In contrast, our Transzero learns
discriminative attribute localization for visual features by as-
signing high positive scores to key attributes (e.g., the ‘bill
shape all purpose’ of the Acadian Flycatcher in Fig. 3).
Thus, TransZero achieves significant performance both in
seen and unseen classes.

t-SNE Visualizations. As shown in Fig. 4, we present the
t-SNE visualization (Maaten and Hinton 2008) of visual fea-
tures for (a) seen classes and (b) unseen classes on CUB,
learned by the CNN backbone, TransZero encoder w/o FA,
TransZero encoder, and TransZero decoder. When we incor-
porate the standard encoder into our TransZero, the visual
features learned by the encoder are significantly improved
compared to the original visual features extracted from the
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Figure 4: t-SNE visualizations of visual features for (a) seen classes and (b) unseen classes, learned by the CNN backbone,
TransZero encoder w/o FA, TransZero encoder, and TransZero decoder. The 10 colors denote 10 different seen/unseen classes
randomly selected from CUB.

(a) CUB (b) SUN

Figure 5: The effects of λAR.

CNN Backbone (e.g., ResNet101). When we use the feature
augmentation encoder to refine the original visual features,
the quality of the unseen features is further enhanced. These
results demonstrate that the encoder of TransZero effectively
alleviates the cross-dataset bias problem and reduces the en-
tangled relative geometry relationships among different re-
gions, improving the transferability. Moreover, the visual-
semantic decoder learns locality-augmented visual features
for improving visual feature representations.

Hyperparameter Analysis

Effects of Loss Weight. λAR is employed to weigh the
importance of the attribute regression loss, which directs
the VSEN to conduct effective visual-semantic interaction.
We try a wide range of λAR evaluated on CUB and SUN,
i.e., λAR = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. Results are
shown in Fig. 5. When λAR is set to a large value, all eval-
uation protocols tend to drop. This is because the loss value
of the attribute regression loss is too large, and thus the con-
tributions of other losses are mitigated. When λAR is set to
0.005, our TransZero achieves the best performance.

(a) CUB (b) SUN

Figure 6: The effects of λSC .

Effects of Loss Weight. λSC adjusts the weight of the
self-calibration loss, which effectively alleviates the bias
problem. As shown in Fig. 6, the accuracy on seen classes in-
creases and the accuracy on unseen classes decreases when
we increase λSC . Meanwhile, TransZero is insensitive to the
self-calibration loss in the CZSL setting. We investigate a
wide range of λSC on CUB and SUN to find an appropriate
setting for λSC . Based on the results, we set λSC to 0.3 for
all datasets.

Conclusion
In this paper, we propose a novel attribute-guided Trans-
former network for ZSL (termed TransZero). First, our Tran-
sZero employs a feature augmentation encoder to improve
the discriminability and transferability of visual features by
alleviating the cross-dataset problem and reducing the en-
tangled region feature relationships. Meanwhile, a visual-
semantic decoder is introduced to learn the attribute localiza-
tion for locality-augmented visual feature representations.
Secondly, a visual-semantic embedding network is used
to enable effective visual-semantic interaction between the
learned locality-augmented visual features and class seman-
tic vectors. Extensive experiments on three popular bench-
mark datasets demonstrate the superiority of our approach.
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We believe that our work also facilitates the development
of other visual-and-language learning systems, e.g., natural
language for visual reasoning.
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