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Abstract

Real-world data often follows a long-tailed distribution,
which makes the performance of existing classification algo-
rithms degrade heavily. A key issue is that samples in tail cat-
egories fail to depict their intra-class diversity. Humans can
imagine a sample in new poses, scenes, and view angles with
their prior knowledge even if it is the first time to see this cat-
egory. Inspired by this, we propose a novel reasoning-based
implicit semantic data augmentation method to borrow trans-
formation directions from other classes. Since the covariance
matrix of each category represents the feature transformation
directions, we can sample new directions from similar cate-
gories to generate definitely different instances. Specifically,
the long-tailed distributed data is first adopted to train a back-
bone and a classifier. Then, a covariance matrix for each cat-
egory is estimated, and a knowledge graph is constructed to
store the relations of any two categories. Finally, tail samples
are adaptively enhanced via propagating information from all
the similar categories in the knowledge graph. Experimental
results on CIFAR-100-LT, ImageNet-LT, and iNaturalist 2018
have demonstrated the effectiveness of our proposed method
compared with the state-of-the-art methods.

Introduction
Deep neural networks have achieved dramatic performance
when high-quality annotated and balance-distributed train-
ing data is provided (Krizhevsky, Sutskever, and Hinton
2012; He et al. 2016; Huang et al. 2017). However, in real-
world scenarios, data is usually long-tail distributed, where
many tail categories occupy a small number of samples and
most samples belong to a few head categories. It is a great
challenge to train deep models on long-tail distributed data.
On the one hand, the separating hyperplane will be heavily
skewed to the tail classes because of their weak statistical
ability. More importantly, tail classes are easily overfitted as
their samples fail to describe their intra-class diversity.

To strengthen the effect of tail classes in training, a typi-
cal and intuitive strategy is re-balancing, including data re-
sampling and loss re-weighting. Data re-sampling achieves
training fairness by balancing the data distribution through
sampling, while loss re-weighting pays more attention to tail
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Figure 1: An illustration of imagining new samples by rea-
soning. people can imagine a kingfisher in various view an-
gles, poses, and backgrounds with their prior knowledge.

categories by assigning higher penalties to the loss of tail
classes. Although these methods can alleviate hyperplane
skewness, over-fitting on tail categories is still a big issue
because of the limited intra-class diversity.

Data augmentation is an efficient way to enrich tail cat-
egories, where cropping, rotation, mixup, and generative
adversarial network are adopted to generate new samples
(Simonyan and Zisserman 2015; He et al. 2016; Ratner
et al. 2017; Bowles et al. 2018). Nevertheless, with the in-
creasing number of augmented examples, the training speed
is sharply slowed down. Fortunately, ISDA (Wang et al.
2019) propose an instance-based implicit data augmentation
method to reduce the computation cost, where new instances
can be generated by changing the original instance to se-
mantic transformation directions sampled from the feature
covariance matrix. However, for tail classes, it is incapable
to estimate a diversified covariance matrix (Li et al. 2021).

We argue that humans can imagine a rare animal in dif-
ferent poses, colors, and backgrounds with prior knowledge,
though we have only seen one picture of this animal. For
instance (shown in Figure ??), as “Kingfisher” is similar to
“Sparrow” in humans’ prior knowledge, we can easily imag-
ine a “Kingfisher” with an open mouth when we have seen a
“Sparrow” with an open mouth. Inspired by this, tail classes
can borrow semantic transformations from other classes.

In this paper, in order to mimic the human reasoning pro-
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cess, we propose an effective Reasoning-Based Implicit Se-
mantic Data Augmentation (RISDA) method for long-tailed
classification. It enriches a tail instance by transferring se-
mantic transformation directions from similar categories to
expand the intra-class diversity. Specifically, we first train a
network with the long-tail distributed data. Then, a covari-
ance matrix for each category is estimated, which represents
all the possible transformation directions of a category. Af-
ter that, for each tail category whose covariance matrix is
limited, we enhance it with similar categories. To recognize
similar categories, a knowledge graph is constructed, where
each non-diagonal element indicates the similarity of two
categories. Finally, sufficient instances can be generated by
augmenting a tail instance via propagating transformation
directions from similar categories. Nevertheless, to ensure
the tail instance contains all the features to transfer, we also
complement it with features from similar categories. There-
fore, our method can generate instances that are definitely
different from the training data. The contributions of this pa-
per are summarized as follows.

• We propose a reasoning-based implicit data augmenta-
tion method, which transfers semantic transformation di-
rections from other classes to enhance tail classes. It can
largely enrich the intra-class diversity for tail categories.
To the best of our knowledge, this is the first time to
transfer feature transformations from similar categories
for augmentation.

• We construct a learnable knowledge graph so that our
method can adaptively select similar categories for dif-
ferent samples to make the reasonable transformation.

• The proposed RISDA1 outperforms current state-of-the-
art methods on long-tailed datasets, such as CIFAR-100-
LT, ImageNet-LT, and iNaturalist 2018.

Related Work
Re-Balance
A common re-balance strategy is re-sampling, which aims
to achieve a balanced data distribution, including over-
sampling (Buda, Maki, and Mazurowski 2018; Byrd and
Lipton 2019) and under-sampling (He and Garcia 2009;
Buda, Maki, and Mazurowski 2018). However, over-
sampling may cause over-fitting by duplicating tail data,
while under-sampling will damage feature representation
when abandoning head data. Recently, some decoupling
methods are developed, which adopt different sampling
strategies in representation learning and classifier train-
ing(Kang et al. 2020; Zhou et al. 2020; Wang et al. 2021).

Another strategy is re-weighting the loss to give more
attention to tail classes. An intuitive way is to re-weight
the loss of each class inversely proportional to the number
of samples (Huang et al. 2016). Then, class-balance loss
(Cui et al. 2019) is proposed to emphasize the effective
number of samples. Thereafter, meta-class-weight (Jamal
et al. 2020) estimates class weights by meta-learning, while
LDAM (Cao et al. 2019) uses class-level re-weighting op-
timization schedule to train a label-distribution-aware loss.

1Code is available at https://github.com/xiaohua-chen/RISDA

In addition, some fine-grained instance-level re-weighting
methods are studied. Such as Focal Loss (Lin et al. 2017)
reduces the weights of easy samples to make the model fo-
cus on hard samples in training. L2RW (Ren et al. 2018)
and meta-weight-net (Shu et al. 2019) assign instance-wise
weights on the gradient direction.

Although re-balance methods have achieved great im-
provements, the intra-class diversity for tail categories is still
limited, making them easily over-fitted.

Data Augmentation
To enhance the intra-class diversity for tail categories, data
augmentation methods are explored. A direct way is to gen-
erate samples by combining other samples in a tail class
linearly (He et al. 2008; Zhang et al. 2018). However, the
combination may be meaningless. To address this issue,
GAN (Bowles et al. 2018) is introduced. The above methods
are explicit data augmentation methods. With the increasing
number of samples, the convergence speed is sharply slowed
down. ISDA (Wang et al. 2019) is a great way to handle
this problem, which uses the class-wise covariance matrix
and instance-wise feature to formulate a Gaussian distribu-
tion, thus infinite samples can be generated. But ISDA fails
for tail classes where the insufficient samples are incapable
of estimating a diversified covariance matrix. MetaAug (Li
et al. 2021) tries to find an optimal covariance matrix that
generalizes well on unseen samples. However, it still suffers
from limited diversity for tail classes as the covariance ma-
trix is calculated with samples at hand.

Fortunately, tail classes can borrow information from
other categories (Chu et al. 2020; Liu et al. 2020; Xiao et al.
2021). As head categories are sufficiently diversified, some
methods propose to transfer knowledge from head to tail.
For example, Liu et al. model each category into a “feature
cloud” and expand tail categories by transferring the intra-
class angular distribution from head categories (Liu et al.
2020). Chu et al. generate new high-level features for tail
categories by merging class-specific features of the head cat-
egories and class-generic features of the tail categories (Chu
et al. 2020). However, the “head to tail” is defined by the
number of samples, transferring variations based on this re-
lation may be meaningless. For example, if “Apple” is a head
class, and “Kingfisher” is a tail class, then transferring color
variations from “Apple” to “Kingfisher” is unreasonable.

Our method follows the idea of implicit data augmenta-
tion and tries to borrow variations from other categories to
enrich tail categories. However, different from other meth-
ods, we transfer variations from all the related classes in a
knowledge graph other than the head categories.

The Proposed Method
A classifier usually performs worse for tail classes. To en-
hance their diversity, we propose to borrow variations from
other categories as shown in Figure 2.

In stage-I, we use all the samples to train a feature subnet-
work and a classifier. Subsequently, we use the extracted fea-
tures to calculate the covariance matrix and the prototype for
each category, where the covariance matrix represents all the
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Figure 2: The framework of RISDA. In Stage-I, all training data is used to train a feature subnet and a classifier. Subsequently, we
calculate the covariance matrix and the prototype for each category with the feature extracted with the subnet. Then, the classifier
is used to construct a knowledge graph. In Stage-II, we augment each tail instance with a semantic transformation direction
sampled from the covariance matrix. For tail classes, the covariance matrix is limited, so we refine it with similar classes defined
in the knowledge graph. What’s more, to ensure the tail instance contains all the features to transfer, we complement it with the
prototypes from similar categories. Finally, unlimited instances can be sampled to calculate the L∞.

feature semantic transformation directions of each category,
and the prototype contains its specific features. Then, the
classifier is adopted to construct a knowledge graph, which
stores the similarity of any two categories. In stage-II, a tail
sample is first propagated to the feature subnetwork to get
semantic features. Then, we aim to augment it with the se-
mantic transformations sampled from the covariance matrix
of its category. However, the covariance matrix of tail cate-
gories is limited, so we refine it with similar classes defined
in the knowledge graph. What’s more, the tail instance may
miss some features to transfer. Thus, to ensure it contains all
the features, we complement it with the features from similar
categories. Consequently, unlimited instances can be gener-
ated by changing an instance with infinite semantic transfor-
mation directions from the refined distribution. Finally, an
upper bound of the CE loss on unlimited data is derived to
fine-tune the network.

In the following, we will describe how a tail sample is
implicitly augmented by reasoning, and the loss function to
fine-tune the network with unlimited generated data.

Implicit Data Augmentation

Given a long-tail distributed dataset {xi, yi}Ni=1 , where yi ∈
L = {l1, l2, ..., lC}, C is the number of categories. Inspired
by the observation that instance-balanced sampling learns
better generalizable representations (Kang et al. 2020), we
use the original distribution to train a feature extractor F
and a classifier H in Stage-I.

For a sample xi in a tail class lc, we extract its feature
with fi = F (xi). Inspired by ISDA, we can randomly sam-
ple along N (0, βΣc) to generate features with different se-
mantic transformations, i.e., f̃i ∼ N (fi, βΣc).

As the semantic transformation directions of different cat-
egories are different, we need to compute a covariance ma-
trix for each category. To get the covariance matrix, we first
need to calculate each class prototype by averaging features

of all the samples in a class, as shown in Equation (1):

µc =
1

Nc

Nc∑
i=1

fi, (1)

where c ∈ [1, C], Nc is the number of samples in class lc,
and fi represents feature of the i-th sample in lc. Secondly,
we calculate each element in a covariance matrix with:

Σc (m,n) =
ΣNc

i=1 (f
m
i − µm

c ) (fn
i − µn

c )

Nc − 1
. (2)

After that, the covariance matrixes of all classes Σ =
{Σ1,Σ2, · · · ,ΣC} can be obtained. However, covariance
matrixes for tail classes contain limited variations. To al-
leviate this issue, we propose a novel reasoning module to
transfer plentiful variations from other classes.

Reasoning-Based Implicit Data Augmentation
In this section, we elaborate on the process of transferring
knowledge to augment a tail sample. With the constructed
knowledge graph, we can enrich the covariance matrixes of
tail classes by reasoning.

Knowledge Graph Construction Current methods usu-
ally transfer variations from head classes to the tail ones.
Instead, our approach tries to transfer knowledge from sim-
ilar categories. To achieve this, we use the classifier H to
construct a knowledge graph, which is built with the confu-
sion matrix on the training data. Actually, it is a category-to-
category directed graph ⟨V, ε⟩, where V are category nodes
and ε ∈ RC×C . Each element εij represents the similarity
of li and lj , which can be calculated as follows:

εij =

∑Ni

i=1 1 (H(fi) = lj ∧ yi = li)

Ni
, (3)

where 1 is the indicator function. εij represents the ratio of
the number of samples in li predicted into lj .

358



Reasoning-Based Semantic Transformation We pro-
pose to refine the covariance matrix of each tail class with
those of its similar classes. Intuitively, different categories
are similar because they have similar appearances or living
environments. For example, because “Kingfisher” and “Par-
rot” are very similar, when we see a flying “Parrot”, we can
imagine a flying “Kingfisher” even if we haven’t seen a fly-
ing “Kingfisher”. Therefore, we can infer a better intra-class
covariance for tail classes by transferring semantic transfor-
mations from similar classes:

Σr
c =

C∑
i=1,i ̸=c

εc,iΣi. (4)

Ideally, we need to compute the reasoning-based class-
conditional covariance matrix with entire training samples
in each epoch. It is cost-expensive. So we use an online pro-
cess to update and transfer covariance matrix batch by batch.

With the reasoning-based covariance matrix, we can
change an instance with a more diversified semantic direc-
tion. However, an instance may miss some features that are
necessary for a reasoning-based transformation direction.
For example, only when the mouth is detected in a “King-
fisher”, we can change the pose of its mouth. Therefore, to
ensure a tail instance contains all the features to transfer, we
complement it with features from similar categories:

µr
c =

C∑
i=1,i ̸=c

εc,iµi. (5)

After the feature distribution of each tail sample is re-
fined by a reasoning prototype and a reasoning covari-
ance matrix. Then, fi can perform various semantic trans-
formations along the random direrctions sampled from
N (αµr

c , β (Σc +Σr
c)) and generate the augmented feature

f̃i during trainning with Equation (6):

f̃i ∼ N (fi + αµr
c , β (Σc +Σr

c)) , (6)

where α and β are positive coefficients to control the
strength of reasoning-based semantic data augmentation. In
the experiment, both α and β are decayed by t/T , where t
and T represent the current number of epochs and the num-
ber of total epochs, respectively.

Optimization

With our data augmentation method, a straightforward way
to train a classifier is to generate samples for tail classes
with Equation (6) untill they have comparable samples
with head classes. Assume each sample in tail class lc is
augmented M times, then we can obtain a new data set{(

f1
i , yi

)
,
(
f2
i , yi

)
, ...,

(
fM
i , yi

)}Nc

i=1
, where fk

i sampled
from f̃i is the k-th augmented feature of fi.

Thereafter, we can use the traditional cross-entrory loss to
train a classifier:

LM(θF ,W , b) =∑
c∈TC

1

Nc

Nc∑
i=1

1

M

M∑
k=1

− log

(
ew

T
yi

fk
i +byi∑C

j=1 e
wT

j fk
i +bj

)

+
∑

c∈HC

1

Nc

Nc∑
i=1

− log

(
ew

T
yi

fi+byi∑C
j=1 e

wT
j fi+bj

)
,

(7)

where TC represents the set of tail classes, HC is the
set of head classes, W = [w1,w2, ...,wC ]

T and b =
[b1, b2, ..., bC ]

T are the weight matrixes and biases corre-
sponding to the last fully connected layer, respectively.

However, for the tail category, when sampling M times,
the sampling variance is unstable and limited. An ideal way
is to generate as much data as possible. But the increasing M
can lead to additional calculations. To simplify computation
while generating more data, we plan to implicitly generate
unlimited features. When M is close to infinity, we can de-
rive an easy upper-bound loss following the Law of Large
Numbers. In detail, when M → ∞, we take into account all
possible enhanced samples, and then the loss for tail cate-
gories can be defined as:

LM→∞ =
∑
c∈TC

1

Nc

Nc∑
i=1

Ef̃i

[
−log

(
ew

T
yi

f̃i+byi∑C
j=1 e

wT
j f̃i+bj

)]

=
∑
c∈TC

1

Nc

Nc∑
i=1

Ef̃i

log( C∑
j=1

e(w
T
j −wT

yi
)f̃i+(bj−byi )

 .

(8)
Nevertheless, the above equation is difficult to calculate

accurately. With the help of Jensen’s inequality E[logX] ≤
logE[X], we can derive its upper bound as follows:
LM→∞ ≤∑
c∈TC

1

Nc

Nc∑
i=1

log

Ef̃i

 C∑
j=1

e(w
T
j −wT

yi
)f̃i+(bj−byi )


=
∑
c∈TC

1

Nc

Nc∑
i=1

log

 C∑
j=1

Ef̃i

[
e(w

T
j −wT

yi
)f̃i+(bj−byi )

] .

(9)
Because of f̃i ∼ N

(
fi + αµr

yi
, β
(
Σyi

+Σr
yi

))
, we

can obtain that (wT
j − wT

yi
)f̃i + (bj − byi

) is also a
Gaussian random variable, i.e. (wT

j − wT
yi
)f̃i + (bj −

byi) ∼ N
(
(wT

j −wT
yi
)(fi + αµr

yi
) + (bj − byi), σ

j
i

)
,

where σj
i = β(wT

j −wT
yi
)
(
Σyi

+Σr
yi

)
(wj −wyi

).
After that, we use the moment-generating function:

E[etX ] = e
tµ+

1

2
σt2

, X ∼ N(µ, σ) (10)
Finally, we can get Equation (11):

LM→∞ ≤ L∞ = −
∑
c∈TC

1

Nc

Nc∑
i=1

log
eZ

yi
i∑C

j=1 e
Zj

i

, (11)
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Imbalance factor (λ) 200 100 50 20 10

Cross-Entropy† 65.30 61.54 55.98 48.94 44.27
Mixup† (Zhang et al. 2018) - 60.46 55.01 - 41.98
L2RW† (Ren et al. 2018) 67.00 61.10 56.83 49.25 47.88
Class-balanced CE† (Cui et al. 2019) 64.44 61.23 55.21 48.06 42.43
Class-balanced fine-tuning† (Cui et al. 2018) 61.34 58.50 53.78 47.70 42.43
Meta-weight net† (Shu et al. 2019) 63.38 58.39 54.34 46.96 41.09
Meta-class-weight with cross-entropy loss† (Jamal et al. 2020) 60.69 56.65 51.47 44.38 40.42
BBN∗ (Zhou et al. 2020) - 57.44 52.98 - 40.88
Hybrid-PSC∗ (Wang et al. 2021) - 55.03 51.07 - 37.63
Bag of Tricks∗ (Zhang et al. 2021) - 52.17 48.31 - -
MetaSAug with cross-entropy loss∗ (Li et al. 2021) 60.06 53.13 48.10 42.15 38.27
RISDA 55.24 49.84 46.16 41.33 37.62

Table 1: Error rate (%) of ResNet-32 on CIFAR-100-LT under different imbalance factors.

where Zj
i = ŷji + α(wT

j −wT
yi
)µr

j +
σj
i

2
, and ŷji is the j-th

logits of the output for xi. Essentially, Equation (11) pro-
vides a surrogate loss for our reasoning implicit data aug-
mentation method, through optimizing upper bound L in-
stead of minimizing the exact loss function L∞. This new
loss can effectively adjust the classification decision bound-
ary with the reasoning-based augmented features.

But when we generate unlimited samples for tail cate-
gories, the data distribution is still unbalanced where the
head categories become “tail categories”. Therefore, simi-
lar to the tail class, we also make infinite enhancements for
head classes. In this way, we find that head categories are
still dominant because the augmentation results rely on the
training samples and the head class has most of the samples.
To solve this problem, we introduce the re-weighting strat-
egy by setting different weights to different classes, which
are defined as ρc ≈ (1 − γ)/(1 − γNc), where γ is a hype-
parameter. With the re-weighting strategy, we can modify
the loss function as follows:

LM→∞ ≤ L∞ = −
C∑

c=1

1

Nc

Nc∑
i=1

ρclog
eZ

yi
i∑C

j=1 e
Zj

i

. (12)

Our reasoning module can generate more diversified sam-
ples by reasoning features and transformations from other
classes, which is shown in the experiment. In addition, the
proposed novel robust loss can be easily adopted as a plug-in
module for other methods.

Experiment
Datasets
We conduct experiments on three long-tailed datasets:
CIFAR-100-LT, ImageNet-LT, and iNaturalist 20182.

CIFAR-100 is a balanced dataset containing 60,000 im-
ages from 100 categories. In our experiment, an imbalance
factor λ, which is the ratio of sample numbers of the most
frequent and least frequent classes, is used to generate dif-
ferent training sets for CIFAR-100-LT (Cui et al. 2019; Cao

2https://github.com/visipedia/inat comp

et al. 2019). By varying λ ∈ {200, 100, 50, 20, 10}, we can
obtain five training sets.

ImageNet-LT is constructed from ImageNet by discard-
ing some training samples (Liu et al. 2019). It has 115,846
training images, 20,000 validation images, and 50,000 test-
ing images. The most frequent class contains 1,280 images,
while the least frequent one only has 5 samples.

The iNaturalist 2018 is a large-scale species dataset with
an extremely imbalanced distribution, where the imbalance
factor is 500. It contains 437,513 training images and 24,426
validation images from 8,142 classes.

Results on CIFAR-100-LT
For CIFAR-100-LT, we use ResNet-32 as our backbone,
which is trained by standard stochastic gradient descent
(SGD) with a momentum of 0.9 and a weight decay 5 ×
10−4. We train the model for 200 epochs with a batch size
of 100. The initial learning rate is set to 0.10, and the linear
warm-up learning rate schedule is adopted. Besides, we de-
cay the learning rate by 0.01 at the 160th and 180th epochs.
For the hyperparameters α and β, we select them from
{0.25, 0.50, 0.75, 1.00, 1.25, 1.50}. Different λ have differ-
ent optimal α and β, which are shown in Table 2. We com-
pare our RISDA with some state-of-the-art methods. The re-
sults are shown in Table 1, where “∗” indicates the results
reported in the original paper, and “†” indicates the results
reported in (Li et al. 2021).

λ 200 100 50 20 10

α 0.50 0.50 0.75 0.75 0.50
β 1.00 0.75 1.00 0.75 0.50

Table 2: Optimal α and β under different λ

We can draw the following conclusions: Firstly, our
method can achieve the best performance compared with
existing state-of-the-art methods. Secondly, the more un-
balanced the data set is, the more our method improves.
For example, when the λ is 200 and 100, the error rate is
reduced by 4.82% and 3.29 % compared with MetaSAug.
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Method Error rate (%)

Cross-Entropy † 61.12
Class-balanced CE† (Cui et al. 2019) 59.15
OLTR† (Liu et al. 2019) 59.64
LDAM† (Cao et al. 2019) 58.14
LDAM-DRW† (Cao et al. 2019) 54.26
Meta-class-weight† (Jamal et al. 2020) 55.08
MetaSAug∗ (Li et al. 2021) 52.61
Bag of Tricks∗ (Zhang et al. 2021) 56.87
RISDA 49.31

Table 3: Results on ImageNet-LT of different methods.

While, when the λ is 20, the error rate is reduced by 0.82%.
However, when the λ is 10, the error rate is only reduced
by 0.65%. We believe that this situation occurs because the
fewer samples, the worse the covariance matrix learned by
the tail category. Then, the variations transferred from sim-
ilar categories can better improve the feature diversity of a
tail category. Therefore, we can conclude that our method is
more suitable for dealing with extremely imbalanced data.

Results on ImageNet-LT
For fairness, we use ResNet-50 as the backbone. Concretely,
the ResNet-50 is trained for 100 epochs by SGD with a
momentum of 0.9 and a weight decay 2 × 10−4. We set
the initial learning rate to 0.1 and use the linear warm-up
learning rate schedule for the first five epochs. Then, we de-
cay the learning rate by 0.1 at the 60th and 80th epochs.
Due to GPU memory limitation, we only transfer the co-
variance, so we augment a sample fi during training with
N (fi, β (Σc +Σr

c)). We set β = 7.5. To recognize tail
classes for augmentation, we define classes with more than
100 images as head classes, otherwise are the tail classes.

We compare our RISDA with the following meth-
ods: 1)Cross-Entropy(CE), class-balanced loss, meta-class-
weight, LDAM-DRW, OLTR, and Bag of Tricks. 2)Mixup
and MetaSAug. The experimental results are shown in Ta-
ble 3. We can see that the error rate of RISDA is reduced
to 49.31%. More importantly, the error rate is reduced by
3.30% compared with MetaSAug, which shows that the di-
versity depicted by tail classes is limited, and can be greatly
enriched by borrowing transformations from other classes.

Results on iNaturalist 2018
For iNaturalist 2018, we also implement ResNet-50 to
achieve better classification results. We train the network
with a batch size 128 for 120 epochs by SGD with a mo-
mentum of 0.9 and a weight decay 1 × 10−4. The learning
rate is initialized to 0.05. We adopt the linear warm-up learn-
ing rate schedule (Goyal et al. 2017) and decay the learning
rate by 0.1 at 60th and 80th epochs. Referring to the set-
ting in paper (Liu et al. 2019), we split the classes into head
classes (with more than 100 images) and tail classes (with
less than or equal to 100 images). Due to GPU memory lim-
itation, we also only transfer the covariance, so a sample fi

is augmented during training with N (fi, β (Σc +Σr
c)).

Method Error rate (%)

Cross-Entropy† 34.24
Class-balanced CE† (Cui et al. 2019) 33.57
Class-balanced focal∗ (Cui et al. 2019) 38.88
cRT∗ (Kang et al. 2020) 32.40
LDAM∗ (Cao et al. 2019) 35.42
LDAM-DRW∗ (Cao et al. 2019) 32.00
BBN∗ (Zhou et al. 2020) 33.71
Meta-class-weight∗ (Jamal et al. 2020) 32.45
MetaSAug∗ (Li et al. 2021) 31.25
Hybrid-PSC∗ (Wang et al. 2021) 31.90
Bag of Tricks∗ (Zhang et al. 2021) 29.13
RISDA 30.85

Table 4: Results on iNaturalist 2018 of different methods.

We compare our RISDA with the following methods:
1) CE, class-balanced with CE and focal loss, meta-class-
weight, and LDAM-DRW. 2) BBN, decoupling, and Hybrid-
PSC. 3)Bag of Tricks and MetaSAug. The experimental re-
sults are shown in Table 4. The average error rate of our
method is reduced to 30.85%.

Analysis
In this section, we conduct experiments to study the effect
of different components of the proposed RISDA and discuss
the parameter sensitivity on CIFAR-100-LT.

Ablation Study To verify the effect of each part of our
method, we do experiments by removing the re-weighting
(w/o w) or the reasoning (w/o r) component from our
RISDA. Results shown in Table 5 demonstrate that: (1) Re-
weighting is important in our RISDA. Although we aim to
generate unlimited samples through the Gaussian distribu-
tion, augmentation is implemented in each sample. There-
fore, re-weighting plays a significant role to achieve fairness
in training. (2) The reasoning module can effectively refine
the feature and the covariance matrix to improve the accu-
racy of classification. (3) In addition, when λ is 200, the
reasoning module decreased by 1.73%, and when the λ is
10, the reasoning module decreased by 0.81%, which proves
again that our reasoning module is more suitable for dealing
with extremely unbalanced data.

λ 200 100 50 20 10

w/o w 36.82 42.76 46.98 54.40 58.60
w/o r 56.97 51.09 47.60 42.60 38.43

RISDA 55.24 49.84 46.16 41.33 37.62

Table 5: Results of RISDA on CIFAR-100-LT under differ-
ent imbalance factors.

Sensitivity of α and β For the Gaussian distribution
N (αµc, β (Σc +Σr

c)) constructed by the reasoning mod-
ule, the multivariate of sampling includes two significant
componets: reasoning-based complementary feature αµc
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Original Restored Augmented  Images Training Images

Figure 3: Visualization of the semantically augmented images for the four tail classes on ImageNet-LT: Wagon, Dunlin, White
Stork, and Miniature Schnauzer. “Original” represents the original training sample. “Restored” is the image reconstructed by a
generator with features of the corresponding training sample. And “Augmented Images” are generated with features sampled
from our refined feature distribution. Our method can generate samples with semantic transformations that are not found in the
original training set in terms of color, angle, pose, background, etc. These samples are highlighted in green boxes.
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Figure 4: The influence of different α and β on CIFAR-100-
LT with λ = 100 and λ = 200.

and the reasoning-based covariance matrix β (Σc +Σr
c).

We analyze the influence of the transformation strength α,
β ∈ {0.25, 0.50, 0.75, 1.00, 1.25, 1.50}.

As shown in Figure 4, we can see that: (1) α = 0.50 can
achieve the best performance with λ = 100, and 200. Then,
when α increases, the performance drops. It indicates that
features of other classes can help to complement the feature
of a tail instance. (2) β = 1.00 achieves best results on λ =
200, and β = 0.75 performs best on λ = 100. We can con-
clude that the more unbalanced, the larger β is better.

Effect of Head Categories Head categories are expected
to have rich diversity. Transferring transformations from
other classes may damage their representation, reducing the
overall performance. Therefore, we explore the influence of
head categories by varying the number in {10, 20, 30, 40}.

As shown in Figure 5, the green bar on the left and the
orange bar on the right shows the results with the different
number of head categories on λ = 200 and λ = 100, respec-
tively. We can see that when the top 20 categories are re-
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Figure 5: Results with different number of head categories.

garded as head categories, the best performance is achieved.
When it increases, categories with limited diversity are un-
derrepresented. However, when it decreases, the representa-
tion of some rich categories is damaged.

Qualitative Analysis
To intuitively show that our RISDA can generate more var-
ious samples, we implement the visualization method pro-
posed in ISDA to show some implicitly generated sam-
ples. As shown in Figure 3, we can see that our RISDA
can generate samples with different backgrounds, view an-
gles, and poses. More importantly, images in green boxes
are quite different from those in training sets. For example,
the “Wagon” changes the background, view angle, and color
while the “Dunlin” changed the posture, background, view
angle. These changes are not available in the training data,
and we believe they are delivered from similar categories.
Therefore, it can be concluded that our RISDA can transfer
more meaningful transformations than ISDA.

Conclusion and Future Work
In this paper, we have proposed a novel reasoning-based
implicit semantic data augmentation method to effectively
enrich the intra-class diversity for tail categories. By trans-
ferring transformation directions from other classes, an in-
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Imbalance factor (λ) 200 100 50 20 10

Cross-Entropy 34.13 29.86 25.06 17.56 13.82
Mixup† (Zhang et al. 2018) - 26.94 22.18 - 12.90
L2RW† (Ren et al. 2018) 33.75 27.77 23.55 18.65 17.88
Class-balanced CE† (Cui et al. 2019) 31.23 27.32 21.87 15.44 13.10
Class-balanced fine-tuning† (Cui et al. 2018) 33.76 28.66 22.56 16.78 16.83
Meta-weight net† (Shu et al. 2019) 32.80 26.43 20.90 15.55 12.45
Meta-class-weight with cross-entropy loss† (Jamal et al. 2020) 29.34 23.59 19.49 13.54 11.15
BBN∗ (Zhou et al. 2020) - 20.18 17.82 - 11.68
Hybrid-PSC∗ (Wang et al. 2021) - 21.18 14.64 - 9.94
Bag of Tricks∗ (Zhang et al. 2021) - 19.97 16.41 - -
MetaSAug with cross-entropy loss∗ (Li et al. 2021) 23.11 19.46 15.97 12.36 10.56
RISDA 26.00 20.11 15.76 13.02 10.64

Table 6: Error rate (%) of ResNet-32 on CIFAR-10-LT under different imbalance factors.

stance from tail categories can be augmented with definitely
different semantics. Experimental results have shown that
our proposed method can improve the performance of long-
tail classification. Besides, the visualization experiment has
demonstrated that our augmentation method can generate
samples that are quite different from those in the training
data. In the future, we will work on some fine-grained trans-
formations to achieve more reasonable augmentation.
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Appendix

Details about Baselines on CIFAR

In the CIFAR-100-LT and CIFAR-10-LT experiment, we
compare with the following methods: (1) Cross-Entropy
(CE): we train the model with vanilla cross-entropy loss.
(2)Re-weighting (RW): we train the model with two
re-weighting strategies: class-level and instance-level re-
weighting. Class-level re-weighting assign different weights
to different classes according to the number of samples
in loss function, including class-balanced loss (Cui et al.
2019) , meta-class-weight (Jamal et al. 2020), and LDAM-
DRW (Cao et al. 2019). Instance-level re-weighting allo-
cate weights to samples, including Focal loss (Lin et al.
2017), L2RW (Ren et al. 2018) and meta-weight-net (Shu
et al. 2019). (3)Data augmentation method improves classi-
fication performance by enhancing data diversity, including
mixup (Zhang et al. 2018) and MetaSAug (Li et al. 2021).
(4)Two-stage learning splits the learning procedure into fea-
ture representation learning and classifier training, such as
BBN (Zhou et al. 2020), decoupling (Kang et al. 2020) and
Hybrid-PSC (Wang et al. 2021). In addition, we also com-
pare with Bag of Tricks(Zhang et al. 2021), which integrates
the commonly used training tricks in long-tail classification.

Results on CIFAR-10-LT
CIFAR-10 is a balanced dataset containing 60,000 images
from 10 categories, and the training set has 5000 images per
class. By varying λ ∈ {200, 100, 50, 20, 10}, we can obtain
five training sets. A long-tail distribution usually contains
many classes. As CIFAR-10-LT only contains 10 classes,
we leave out its experiments in the main body.

Experimental results on CIFAR-10-LT are shown in Ta-
ble 6. We can see that our RISDA is better than most base-
line methods, but achieves comparable performance with
MetaSAug. We believe that this situation occurs because
our method is good at dealing with large-scale long-tailed
classification problem. With more categories, there are rich
similarity relations to make reasonable transformatnion. In
addition, the CIFAR-10-LT dataset contains a large number
of samples in each category. Even in the most unbalanced
case, there are 25 samples for the least tail categories. Con-
sequently, the diversity of samples learned in each category
is rich enough. Therefore, although RISDA performs better,
we argue that it is more suitable to deal with many classes.

λ 200 100 50 20 10

CE† 65.30 61.54 55.98 48.94 44.27
ISDA 64.48 58.65 54.35 47.25 42.84
ISDA+w 56.97 51.09 47.60 42.60 38.43
RISDA 55.24 49.84 46.16 41.33 37.62

Table 7: Error rate (%) on CIFAR-100-LT.

Comparison with ISDA
Our RISDA is developed from ISDA to achieve implicitly
data augmentation. However, ISDA fails on long-tail dis-
tributed data. Firstly, the diversity of augmented data for
tail classes is quite limited because ISDA enhances a sam-
ple with the covariance of its class. As tail classes only own
a few samples, their covariance is limited. Secondly, ISDA
lacks strategies to achieve balance training. For the sake
of fairness, we show the results of ISDA and ISDA with
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reweighting in Table 7. We can see that even if equipped
with reweighting, ISDA is still worse than RISDA because
of the limited diversity.

Our RISDA diversify tail classes from two aspects: (1) We
transfer covariance from similar classes to tail classes to ex-
pand the variations. Therefore, RSIDA can imagine a flying
bird when there are only birds on the roost in the training
set(the flying is transferred from similar classes). (2) A tail
sample may miss some features since tail classes are under-
fitted. If a bird’s wing features can’t be extracted, the corre-
sponding semantic changes will not work. In RSIDA, we can
infer some missing features through the knowledge graph, so
as to achieve more variations for a specific sample.
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