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Abstract
We present an extremely simple Ultra-Resolution Style
Transfer framework, termed URST, to flexibly process arbi-
trary high-resolution images (e.g., 10000×10000 pixels) style
transfer for the first time. Most of the existing state-of-the-art
methods would fall short due to massive memory cost and
small stroke size when processing ultra-high resolution im-
ages. URST completely avoids the memory problem caused
by ultra-high resolution images by (1) dividing the image
into small patches and (2) performing patch-wise style trans-
fer with a novel Thumbnail Instance Normalization (TIN).
Specifically, TIN can extract thumbnail features’ normaliza-
tion statistics and apply them to small patches, ensuring the
style consistency among different patches.
Overall, the URST framework has three merits compared to
prior arts. (1) We divide input image into small patches and
adopt TIN, successfully transferring image style with arbi-
trary high-resolution. (2) Experiments show that our URST
surpasses existing SOTA methods on ultra-high resolution
images benefiting from the effectiveness of the proposed
stroke perceptual loss in enlarging the stroke size. (3) Our
URST can be easily plugged into most existing style transfer
methods and directly improve their performance even without
training. Code is available at https://git.io/URST.

Introduction
With the development of deep learning, neural style trans-
fer has achieved remarkable success (Johnson, Alahi, and
Fei-Fei 2016; Lu et al. 2017; Shen, Yan, and Zeng 2018;
Sanakoyeu et al. 2018; Li et al. 2019), but ultra-high resolu-
tion style transfer is rarely explored in these works. In nat-
ural scenes, ultra-high resolution images are often seen in
large posters, photography works, and ultra-high definition
(e.g., 8K) videos. There are two main challenges when styl-
izing ultra-high resolution images: (1) The massive memory
cost of ultra-high resolution images may exceed the GPU
memory capacity. (2) Small stroke size may cause unpleas-
ant dense textures in ultra-high resolution results.

First, for the memory limitation, the existing methods
mainly use lightweight network architecture (Jing et al.
2020), model pruning (An et al. 2020), and knowledge distil-
lation (Wang et al. 2020) to reduce memory cost. However,
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Figure 1: GPU memory comparison of different style trans-
fer methods. The hollow markers indicate that images of
these resolutions cannot be rendered on a 12GB GPU (Ti-
tan XP) due to memory limitation. By contrast, our URST
not only can process images of unconstrained resolution, but
also achieves a 15× reduction in memory when stylizing an
ultra-high resolution image of 10000×10000 pixels by using
the model of (Wang et al. 2020).

most of these methods are palliatives. As shown in Figure 1,
with the growth of the input resolution, the memory cost of
the distillation-based method (Wang et al. 2020) increases
sharply and finally runs out of the GPU memory (12GB in
Titan XP). This phenomenon motivates us to design a more
effective strategy for stylizing ultra-high resolution images.

The second problem is that the brush strokes in ultra-high
resolution stylized results are relatively small. As shown in
Figure 2(b), when given a high-resolution input, the model
with small brush strokes would produce unpleasant dense
textures. Enlarging the stroke size is a widely-used approach
to address this problem. At present, the existing methods can
be roughly divided into two categories. One is to train or in-
ference with large style images (Jing et al. 2019; Li et al.
2017b; Zhang and Dana 2018). Another solution is to en-
large the receptive field of the style transfer network (Jing
et al. 2018; Wang et al. 2017). However, most of these meth-
ods tend to take extra inference time and memory, are not
suitable for ultra-high resolution style transfer.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

393



(a) Content & Style (b) IN (c) IN + Patch-wise (d) TIN + Patch-wise + ℒ!" (ours)

GPU Cost: 3.44GB

Small Brush Strokes Style Inconsistency Avoid Small Strokes 
& Style Inconsistency

GPU Cost: 23.06GB GPU Cost: 3.44GB

Figure 2: Ultra-high resolution stylized results (4000×4000 pixels) generated by different methods. (a) Content image and style
image. (b) Result produced by the original instance normalization (IN), which costs 23.06GB GPU memory. Compared with
our result (d), its brush strokes are relatively small. (c) Result produced by patch-wise style transfer with IN, which only costs
3.44GB, but its stylized patches are inconsistent in style. (d) Result produced by patch-wise style transfer with the proposed
thumbnail instance normalization (TIN) and stroke perceptual loss Lsp, which also costs 3.44GB. Benefiting from these two
designs, we can obtain ultra-high resolution stylized results with large brush strokes under limited memory resources.

To compensate the above limitations, this work proposes
an Ultra-Resolution Style Transfer framework, termed
URST. Different from previous methods (Jing et al. 2018;
An et al. 2020; Wang et al. 2020, 2017), our method (1) takes
small patches instead of a full image as input, which makes
it possible to process arbitrary high-resolution images un-
der limited memory resources. (2) We replace the original
instance normalization (IN) (Ulyanov, Vedaldi, and Lempit-
sky 2016) by the proposed thumbnail instance normaliza-
tion (TIN), to ensure the style consistency among different
patches. As shown in Figure 2(c), if we perform patch-wise
style transfer with IN directly, style inconsistency among
different patches would make them cannot be assembled into
a pleasing image. (3) We propose a stroke perceptual loss as
an auxiliary loss for neural style transfer, motivating style
transfer networks to keep large brush strokes.

Overall, the proposed URST has three advantages:
(1) Our framework can process arbitrary high-resolution

images with limited memory. As shown in Figure 1, when
stylizing an ultra-high resolution image of 10000×10000
pixels based on (Wang et al. 2020), our framework only
requires 1.94GB memory, while the original method needs
30.25GB, 15 times larger. To our knowledge, it is the first
unconstrained resolution style transfer method.

(2) Our framework achieves high-quality style transfer of
ultra-high resolution images. As shown in Figure 2(d), our
method uses larger brush strokes to depict the scene, which
is much better than the effects presented in Figure 2(b).

(3) Our framework can be easily plugged into most exist-
ing style transfer methods. Even without training, our frame-
work can also obtain high-resolution results.

Related Work
Neural Style Transfer. Inspired by the success of convo-
lutional neural networks (CNNs), (Gatys, Ecker, and Bethge
2016) first proposed a CNN-based style transfer algorithm,
which opened up the new research field. To accelerate neu-
ral style transfer, (Johnson, Alahi, and Fei-Fei 2016) and
(Ulyanov et al. 2016) attempted to train a feed-forward net-
work to learn a specific artistic style. In recent years, to im-
prove the efficiency of transferring new styles, researchers
have proposed many multiple style transfer (Chen et al.
2017; Dumoulin, Shlens, and Kudlur 2017; Li et al. 2017a;
Zhang and Dana 2018) and arbitrary style transfer (Gu et al.
2018; Huang and Belongie 2017; Deng et al. 2020; Lu et al.
2019; Sheng et al. 2018; Yao et al. 2019) methods. Nowa-
days, neural style transfer has achieved great progress, but
due to massive memory cost and small stroke size, ultra-high
resolution style transfer is still challenging.

High-Resolution Neural Style Transfer. GPU memory
is the main factor that restricts high-resolution style trans-
fer. (An et al. 2020) proposed ArtNet, a lightweight network
pruned from GoogLeNet (Szegedy et al. 2015) for neural
style transfer. (Jing et al. 2020) developed a MobileNet-
based lightweight network, significantly reducing the com-
putation complexities compared with the original VGG en-
coder. (Wang et al. 2020) proposed a distillation-based
method, which used the pre-trained VGG19 (Simonyan and
Zisserman 2014) as the teacher and a small encoder as the
student, successfully rendering high-resolution images up to
6000×6000 pixels on a single 12GB GPU. Although these
methods reduce the memory consumption, they will still ex-
haust the GPU memory when processing ultra-high resolu-
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Figure 3: Overall architecture of URST. Its pipeline is divided into three stages: dividing, stylization, and assembling. The
core idea of URST is to divide the ultra-high resolution (UHR) content image into small patches and perform patch-wise style
transfer with the proposed TIN. The style transfer network in our framework can be different methods. In addition to the original
loss Lo of the selected method, our URST includes an auxiliary loss termed stroke perceptual loss Lsp, to enlarge the stroke
size. Thanks to the above key designs, we built an unconstrained resolution style transfer system for the first time.

tion images (e.g., 10000×10000 pixels).

Stroke Size Control in Neural Style Transfer. Stroke
size is an important perceptual factor highly related to the
quality of style transfer results. Typically, a stylized result
with large brush strokes tends to have a better appearance
than the one with small brush strokes. (Gatys et al. 2017)
first presented that the stroke size is related to the recep-
tive field of the loss network, and they proposed a coarse-
to-fine method to generate stylized results with large brush
strokes. (Wang et al. 2017) proposed a hierarchical network
to enlarge the stroke size and trained it with multiple losses
of increasing scales. (Jing et al. 2018) presented a style-
specific network with multiple stroke branches, supervised
by multi-scale style images. (Zhang and Dana 2018) devel-
oped a multi-style generative network (MSG-Net), which
controls the stroke size by scaling the style image for in-
ference. Nevertheless, these stroke size control methods are
mainly designed for the style transfer under common image
resolution (e.g., 1000×1000 pixels), which are difficult to
apply in ultra-high resolution scenarios.

Proposed Method
Overall Architecture
The goal of the URST framework is to overcome the diffi-
culties in GPU memory limit and small brush strokes when
processing ultra-high resolution images. It consists of three
key designs: (1) A flexible pipeline termed patch-wise style
transfer that can convert a high-cost style transfer task to
multiple low-cost patch stylization. (2) A novel thumbnail
instance normalization (TIN) layer that can extract thumb-
nail features’ normalization statistics and apply them to
small patches, ensuring the style consistency among differ-
ent patches. (3) A carefully defined stroke perceptual loss
that focuses on the perceptual differences in brush strokes,
encouraging style transfer networks to keep large stroke size.
Benefiting from these versatile designs, our URST can be
easily plugged into most existing methods to perform ultra-
high resolution style transfer.

An overview of the URST framework is depicted in Fig-
ure 3. Taking an ultra-high resolution content image Ic as
input, the pipeline of the URST can be divided into three
stages: dividing, stylization, and assembling. (1) In the di-
viding stage, we first generate a thumbnail image It for each
content image, and then divide the content image Ic into a
sequence of small patches {Iip | i = 1, 2, ..., N}. (2) In the
stylization stage, the thumbnail image It is the first to be
fed into the style transfer network, to collect the normaliza-
tion statistics across the network. Then, these normalization
statistics are applying to stylize the small patches, obtain-
ing the stylized patches {Îip | i = 1, 2, ..., N}. Here, our
style transfer network is not specific. Most existing IN-based
methods can be used as the style transfer network. (3) In the
assembling stage, all stylized patches are assembled into an
ultra-high resolution stylized image Îc.

Since the style transfer network in our framework can be
different methods (e.g., AdaIN (Huang and Belongie 2017)
and LinearWCT (Li et al. 2019)) whose loss functions are
various, for convenience, we define the loss of the selected
method as the original loss Lo. During training, we first op-
timize the network with the original loss calculated on the
stylized thumbnail. In addition, URST introduces an auxil-
iary loss, termed stroke perceptual loss, to further improve
the quality of ultra-high resolution style transfer. Its core
idea is to penalize the perceptual differences in brush strokes
between the stylized patch Îp and the upsampled patch Îtp
that cropped from the stylized thumbnail Ît. It should be no-
ticed that the upsampled patch Îtp plays a role of the learn-
ing target. Therefore, the gradient flow of Îtp is detached.

Patch-wise Style Transfer
To process ultra-high resolution images, we propose patch-
wise style transfer. Given an ultra-high resolution content
image Ic, we use a K ×K pixels sliding window with a
stride of S to divide the content image Ic into multiple over-
lapping patches {Iip | i = 1, 2, ..., N}. Considering limited
GPU memory resources, these patches will be fed to the net-
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Figure 4: A simple example of IN and the proposed TIN. (a) We normalize the input as a whole. (b) We divide the input into
four patches and normalize them individually. (c) We apply thumbnail’s normalization statistics to these four patches, obtaining
a similar output as (a). These results show that IN is not applicable to patch-wise style transfer.

work in batches. After the loop of patch stylization, we ob-
tain a sequence of stylized patches {Îip | i = 1, 2, ..., N}.
Finally, we discard the overlapping regions on these stylized
patches and assemble them into a complete image Îc.

Compared with previous methods (An et al. 2020; Wang
et al. 2020) that use a full image as input, this patch-wise
manner can flexibly process arbitrary high-resolution im-
ages, and also be easily plugged into most existing style
transfer methods, such as AdaIN (Huang and Belongie
2017), WCT (Li et al. 2017b), and LinearWCT (Li et al.
2019). However, it is evident that the style of stylized
patches is inconsistent (see Figure 2(c)), due to the indi-
vidual normalization statistics calculated from each patch.
Therefore, we propose the thumbnail instance normalization
(TIN) to address this problem.

Thumbnail Instance Normalization
IN is a widely-used normalization layer in neural style trans-
fer. Given an input tensor x ∈ RN×C×H×W , IN can be for-
mulated as:

IN(x) = γ

(
x− µ(x)
σ(x)

)
+ β, (1)

where µ(x), σ(x) ∈ RN×C are channel-wise statistics;
γ, β ∈ RC are trainable affine parameters. However, we
found that IN is not applicable to patch-wise style trans-
fer, because stylized patches generated by the IN-based net-
work are inconsistent in style. As demonstrated in Figure 4,
we take a simple example to illustrate this problem. In Fig-
ure 4(a), we normalize the input as a whole. In Figure 4(b),
we divide the input into four patches and normalize them in-
dividually. Comparing these two results reveals that the un-
derlying cause of style inconsistency is the individual nor-
malization statistics calculated from each patch.

Based on the above analysis, we propose a simple variant
to IN, termed thumbnail instance normalization (TIN). Our
TIN receives a patch x ∈ RN×C×H×W and a thumbnail
t ∈ RN×C×Ht×Wt as input, and it can be formulated as:

TIN(x, t) = γ

(
x− µ(t)
σ(t)

)
+ β. (2)

Different from IN, here µ(t), σ(t) ∈ RN×C are channel-
wise mean and standard deviation of the thumbnail input t.
In this way, our TIN is able to ensure the style consistency
among different patches, as shown in Figure 4(c).

Similarly, instance whitening (IW) (Pan et al. 2019) has
the same problem, which is a standardization method based
on second-order statistics (i.e., covariance matrix). It is also
widely used in many neural style transfer methods (Li et al.
2019, 2017b; Wang et al. 2020; Yoo et al. 2019). Our TIN
can be generalized to thumbnail instance whitening (TIW)
with minor modifications. We will discuss this in the sup-
plementary material.

Stroke Perceptual Loss
Based on the proposed TIN, we present an auxiliary loss for
enlarging the stroke size, termed stroke perceptual loss:

Lsp(Îp, Îtp) =
∥∥∥Fl(Îp)−Fl(Îtp)

∥∥∥2 , (3)

where Fl is the output feature map of the layer l in the VGG
network. Îp is a stylized patch with small brush strokes, and
Îtp is a stylized patch that cropped and upsampled from the
stylized thumbnail Ît, which has large brush strokes.

Thanks to the proposed TIN, the input pair (Îp, Îtp) has
similar content and style, but the stroke size is different.
Therefore, Lsp can mainly measure the perceptual differ-
ences in brush strokes. In other words, optimizing this loss
is to encourage the style transfer network to generate brush
strokes as large as that of the target Îtp.

Total Loss
As mentioned above, we define the loss function used in
the selected method as the original loss Lo. On this basis,
we add the stroke perceptual loss Lsp as an auxiliary loss.
Therefore, the total loss is expressed as:

L = Lo + λLsp, (4)

where λ is a weight to balance Lo and Lsp. In our experi-
ments, λ is set to 1.0 by default.
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Figure 5: Stylization comparison of different pipelines and normalization methods (3000×3000 pixels). To verify the versatility
of our approach, we conduct experiments on 6 representative style transfer methods, incluing Johnson et al. (Johnson, Alahi, and
Fei-Fei 2016), MSG-Net (Zhang and Dana 2018), AdaIN (Huang and Belongie 2017), WCT (Li et al. 2017b), LinearWCT (Li
et al. 2019), and Wang et al. (Wang et al. 2020). The style image and content image are the same with Figure 2. (a) shows the
results directly generated by IN-based networks, which cost massive GPU memory. (b) and (c) show the results of patch-wise
style transfer with IN and the proposed TIN, which cost much less memory than (a). Note that our results (c) are as high-quality
as (a), which demonstrates the effectiveness of our TIN.

Experiments
Implementation Details
To verify the versatility of our URST, we apply it to 6
representative style transfer methods, including Johnson et
al. (Johnson, Alahi, and Fei-Fei 2016), MSG-Net (Zhang
and Dana 2018), AdaIN (Huang and Belongie 2017), WCT
(Li et al. 2017b), LinearWCT (Li et al. 2019), and Wang et
al. (Wang et al. 2020).

In the testing phase, we perform ultra-high resolution
style transfer on photography works collected from pex-
els.com. We use a 1064×1064 pixels sliding window with
a stride of 1000 to divide the input image, and the style im-
age used in our framework is 1024×1024 pixels. Besides,
we scale the shorter side of the input image to 1024 pixels,
as the thumbnail.

During training, our stroke perceptual loss is computed at
the relu4 1 layer of the VGG network. Following common
practices (Chen and Schmidt 2016; Deng et al. 2020; Li et al.
2019), we use MS-COCO dataset (Lin et al. 2014) as content
images and WikiArt dataset (Nichol 2016) as style images,
both of which contain roughly 80,000 training samples. Fol-
lowing previous methods, we adopt a VGG19 (Simonyan
and Zisserman 2014) pre-trained on ImageNet (Deng et al.
2009) as the loss network. All models are trained with a
batch size of 8 on a Titan XP GPU, and other training set-

tings are the same as the original settings in the selected style
transfer methods (Huang and Belongie 2017; Li et al. 2019).

Ablation Study
Thumbnail Instance Normalization. As discussed, con-
sistent normalization statistics are important for patch-wise
style transfer. To verify this, we conduct experiments of
patch-wise style transfer with IN and the proposed TIN, re-
spectively. From Figure 5(b), we can observe that IN leads
to the style inconsistency among different patches. Differ-
ently, our method avoids this problem by adopting TIN (see
Figure 5(c)). In addition, we find that our results are as high-
quality as the results demonstrated in Figure 5(a), while our
memory consumption is less than 5GB, showing that TIN
can approximate the IN statistics of the original ultra-high
resolution image, enabling the low memory cost ultra-high
resolution style transfer.

Moreover, we compare the stylized results generated by
the model with our TIN and the model with random nor-
malization statistics in Figure 7. Although using random
normalization statistics can also keep the style consistency
among different patches, it destroys the style information
extracted from the style image, resulting in the unexpected
styles as shown in Figure 7(c). In contrast, using TIN not
only ensures the style consistency among different patches,
but also maintains the information of the target style.
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(a) Content & Style (b) AdaIN (c) AdaIN + ℒ!" (ours) (d) LinearWCT (e) LinearWCT + ℒ!" (ours)

Figure 6: Ablation study of the proposed stroke perceptual loss Lsp. Comparison of these stylized images (3000×3000 pixels)
indicates that our Lsp can significantly enlarge the stroke size of the existing style transfer methods.

(a) Content & Style (b) Thumbnail Statistics (c) Random Statistics

Figure 7: Thumbnail statistics vs. random statistics. This
comparison demonstrates that using the normalization statis-
tics of thumbnail features is the key to the success of patch-
wise style transfer.

Thumbnail Size. To further study the relationship be-
tween normalization statistics and thumbnail size, we resize
an ultra-high resolution image (8192×8192 pixels) to the
thumbnails of different scales, and calculate their normal-
ization statistics in the style transfer network. Specifically,
we first feed these thumbnails to the encoder (i.e., VGG19)
of the style transfer network and obtain the output feature
maps of relu1 1, relu2 1, relu3 1, and relu4 1. Then,
we calculate the mean and standard deviation of these fea-
ture maps, and plot them in Figure 8. Note that when the
thumbnail scale is equal to 8192×8192, the normalization
statistics is the IN statistics. We see that with the growth of
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Figure 8: Mean and standard deviation of feature maps of the
VGG19 network under different thumbnail scales. It shows
that with the growth of the thumbnail scale, the normaliza-
tion statistics of feature maps tend to be stable.

the thumbnail scale, the normalization statistics of feature
maps tend to be stable. When the thumbnail scale is larger
than 1024×1024 pixels, the TIN statistics are very close to
IN statistics. This indicates that TIN can well approximate
IN when the thumbnail scale is larger than 1024×1024. In
addition, we also conduct a qualitative ablation study for the
thumbnail size in the supplementary material, from which
the same conclusion can be drawn. To balance speed and
style transfer quality, we set the shorter side of the thumb-
nail to 1024 pixels by default.

Stroke Perceptual Loss. As shown in Figure 6, using the
proposed stroke perceptual loss Lsp as an auxiliary loss for
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Figure 9: An ultra-high resolution stylized result (12000×8000 pixels), took about 2.5GB memory on a single 12GB GPU
(Titan XP). On the upper left are the content image and style image. Six close-ups (660×330 pixels) are shown on the right side
of the stylized result. More ultra-high resolution stylized results are provided in the supplementary material.

neural style transfer can significantly enlarge the stroke size
of these existing methods. Compared with the baseline re-
sults (see Figure 6(b)(d)), with the guidance of Lsp, these
models learned to use thicker lines and sparser textures to
depict the scenery, which helps to improve the quality of
ultra-high resolution style transfer (see Figure 6(c)(e)).

Discussion
Different from previous methods (An et al. 2020; Wang et al.
2020), URST is a versatile framework that can be easily
plugged into most existing IN/IW-based methods. Moreover,
with the growth of the input resolution, its GPU memory
overhead hardly increases. Theoretically, URST supports
style transfer of arbitrary resolution images.

To further demonstrate the effectiveness of URST, we
evaluate it on an ultra-high resolution image of 12000×8000
pixels (i.e., 96 megapixels), as shown in Figure 9. This result
is produced based on AdaIN (Huang and Belongie 2017)
and only costs 2.5GB of GPU memory. It also shows that
our URST has achieved superior performance in producing
large brush strokes due to the effectiveness of the stroke per-
ceptual loss. In conclusion, to our knowledge, this is the first
time to build an unconstrained resolution style transfer sys-
tem on a single 12GB GPU (Titan XP).

Limitation
One limitation of URST is that it can not be applied to the
optimization-based methods, such as Gatys et al. (Gatys,

Ecker, and Bethge 2016) and STROTSS (Kolkin, Salavon,
and Shakhnarovich 2019), because these methods do not
adopt IN (Ulyanov, Vedaldi, and Lempitsky 2016) or IW
(Pan et al. 2019). But we think that “containing IN or IW” is
a loose premise, since most existing style transfer methods
can meet this prerequisite. In addition, we’d like to point out
that these optimization-based methods are relatively slow,
which always take more than 100 seconds to stylize an im-
age of 1000×1000 pixels, are not the best choice for ultra-
high resolution style transfer.

Conclusion
In this work, we propose URST, a simple yet effective
framework for arbitrary high-resolution style transfer. We
perform patch-wise style transfer to process ultra-high reso-
lution input under limited GPU memory resources, and de-
velop a thumbnail instance normalization (TIN) layer to en-
sure the style consistency among different patches. More-
over, to enlarge the brush strokes in ultra-high resolution
stylized results, the stroke perceptual loss Lsp is introduced
as an auxiliary loss for neural style transfer. Extensive ex-
periments show that our URST surpasses existing SOTA
methods on ultra-high resolution images and can be easily
plugged into most existing IN/IW-based methods. Although
we mainly study neural style transfer in this work, instance
normalization is also widely used in other low-level vision
tasks. Therefore, the application of our TIN on other tasks is
worth exploring in the future.
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