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Abstract

Weakly supervised object localization (WSOL) aims to learn
object localizer solely by using image-level labels. The con-
volution neural network (CNN) based techniques often result
in highlighting the most discriminative part of objects while
ignoring the entire object extent. Recently, the transformer
architecture has been deployed to WSOL to capture the long-
range feature dependencies with self-attention mechanism
and multilayer perceptron structure. Nevertheless, transform-
ers lack the locality inductive bias inherent to CNNs and
therefore may deteriorate local feature details in WSOL. In
this paper, we propose a novel framework built upon the
transformer, termed LCTR (Local Continuity TRansformer),
which targets at enhancing the local perception capability
of global features among long-range feature dependencies.
To this end, we propose a relational patch-attention mod-
ule (RPAM), which considers cross-patch information on a
global basis. We further design a cue digging module (CDM),
which utilizes local features to guide the learning trend of
the model for highlighting the weak local responses. Finally,
comprehensive experiments are carried out on two widely
used datasets, i.e., CUB-200-2011 and ILSVRC, to verify the
effectiveness of our method.

Introduction
Deep learning based methods have achieved unprecedented
success in locating objects under a fully supervised set-
ting (Liu et al. 2016; Bochkovskiy, Wang, and Liao 2020;
Sun et al. 2021; Wang et al. 2021). However, these methods
rely on a large number of bounding box annotations, which
are expensive to acquire. Recently, the research on weakly
supervised object localization (WSOL) has gained a signifi-
cant momentum (Zhou et al. 2016; Zhang et al. 2018a; Gao
et al. 2021) since it can learn object localizers using only
image-level labels.

The pioneering work (Zhou et al. 2016) aggregated fea-
tures from classification networks to generate class activa-
tion maps (CAM) for object localization. Unfortunately, im-
age classifiers tend to focus only on the most discriminative
features to achieve high classification performance. There-
fore, the spatial distribution of feature responses may only
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Figure 1: Comparison of localization results on different
methods: (a) Original images. (b) CNN-based method tends
to be dominated by the most discriminative region. (c)
Transformer-based method maintains coarse long-range de-
pendencies while ignoring the local feature details (light yel-
low line). (d) The proposed LCTR not only considers finer
local details but also retains global information. The pre-
dicted bounding boxes are in red. Best viewed in color.

cover the most discerning regions instead of the whole object
range, which limits localization accuracy with large mar-
gins, as shown in Figure 1(b).

To address this critical problem, many CAM-based ap-
proaches have been proposed, such as graph propaga-
tion (Zhu et al. 2017), data augmentation (Kumar Singh and
Jae Lee 2017; Yun et al. 2019), adversarial erasing (Zhang
et al. 2018a; Choe and Shim 2019; Chen et al. 2021) and
spatial relation activation (Xue et al. 2019; Zhang, Wei, and
Yang 2020; Guo et al. 2021). However, those approaches do
alleviate the partial activation issue, but in a compromised
manner — the essential philosophy behind it is first obtain-
ing local features and then attempting to recover the non-
salient regions to get full object extent. In fact, the funda-
mental root of this issue is determined by the intrinsic nature
of convolution neural networks (CNNs). The CNN features
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with the local receptive field only capture small-range fea-
ture dependencies.

More recently, the transformer architecture (Vaswani
et al. 2017) has been developed in the field of computer
vision (Dosovitskiy et al. 2020; Wu et al. 2020; Yuan
et al. 2021; Touvron et al. 2021; Jiang, Chang, and Wang
2021), which shows that pure transformers can be as ef-
fective in feature extraction for image recognition as CNN-
based architectures. Notably, transformers with multi-head
self-attention capture long-range dependencies, and retain
more detailed information without downsampling operators,
which naturally handles the partial activation problem in
WSOL. TS-CAM (Gao et al. 2021) proposed token seman-
tic coupled attention map from transformer structure, which
captured long-range feature dependency among pixels for
WSOL. However, transformer-based methods lack the lo-
cality inductive bias inherent to CNNs, ignoring the local
information, which leads to weak local feature response on
the target object, as shown in Figure 1(c). Therefore, how
to precisely mine local features in global representations for
WSOL still remains an open problem.

In this paper, we propose a novel Local Continuity TRans-
former (LCTR) for discovering entire objects of interest
via end-to-end weakly supervised training. The key idea of
LCTR is to rearrange local-continuous visual patterns with
global-connective self-attention maps, thereby bringing lo-
cality mechanism to transformer-based WSOL. To this end,
we first propose a relational patch-attention module (RPAM)
to construct a powerful patch relation map, which takes ad-
vantage of the patch attention maps under the guidance of a
global class-token attention map. The RPAM maintains the
cross-patch information and models a global representation
with more local cues. Second, a cue digging module (CDM)
is designed succinctly to induce the model to highlight the
weak local features (e.g., blurred object boundaries) by a
hide-and-seek manner under a local view. In the CDM, to
reward the weak response parts, we propose to employ the
erased strategy, and induce the learnable convolutional ker-
nels to be weighted by the weak local features. To validate
the effectiveness of the proposed LCTR, we conduct a series
of experiments on the challenging WSOL benchmarks.

Collectively, our main contributions are summarized as:
• We propose a simple LCTR for WSOL, which greatly

enhances the local perception capability of global self-
attention maps among long-range feature dependencies.

• We design a relational patch-attention module (RPAM)
by considering cross-patch information, which facilitates
global representations.

• We introduce a cue digging module (CDM) that encodes
weak local features by learnable kernels to highlight the
local details of global representations.

• LCTR achieves new state-of-the-art performance on
CUB-200-2011 and ILSVRC dataset with 79.2% and
56.1% Top-1 localization accuracy, respectively.

Related Work
CNN-based Methods for WSOL. WSOL aims to learn ob-
ject localizers with solely image-level supervision. There are

many state-of-the-art methods based on the CNN structure.
A representative pipeline of CNN-based WSOL is to aggre-
gate deep feature maps with a class-specific fully connected
layer to produce class attention maps (CAMs), from which
final predicted bounding boxes are extracted (Zhou et al.
2016). Later on, the last fully connected layer is dropped for
simplifying (Hwang and Kim 2016). Unfortunately, CAMs
tend to be dominated by the most discriminative object part.
Therefore, different extensions (Selvaraju et al. 2017; Chat-
topadhay et al. 2018; Xue et al. 2019; Zhang, Wei, and
Yang 2020) have been proposed to improve the generation
process of localization maps in order to recover the non-
salient regions. HaS (Kumar Singh and Jae Lee 2017) and
CutMix (Yun et al. 2019) adopted a random-erasing strat-
egy from input images to force the classification networks
to focus on relevant parts of objects. ACoL (Zhang et al.
2018a) introduced two adversarial classification classifiers
to locate different object parts and discovered the comple-
mentary regions belonging to the same objects or categories.
ADL (Choe and Shim 2019) further promoted the localiza-
tion maps by applying dropout on multiple intermediate fea-
ture maps. Besides the erasing strategy, DANet (Xue et al.
2019) used a divergent activation method to learn better lo-
calization maps. SPG (Zhang et al. 2018b) and I2C (Zhang,
Wei, and Yang 2020) introduced the constraint of pixel-
level correlations into the WSOL network. SPA (Pan et al.
2021) leveraged structure information incorporated in con-
volutional features for WSOL. Some other methods (e.g.,
GC-Net (Lu et al. 2020), PSOL (Zhang, Cao, and Wu 2020),
SPOL (Wei et al. 2021) and SLT-Net (Guo et al. 2021))
divided WSOL into two independent sub-tasks, including
classification and the class-agnostic localization.

These studies alleviate the problem by extending from lo-
cal activations to global ones in an implicit way, which is
difficult to balance the image classification and the object lo-
calization. In fact, CNNs are prone to capture partial seman-
tic features with local receptive fields, which belongs to the
principal problem of CNNs. The problem of how to explore
global cues from local receptive fields still exists. In this pa-
per, we introduce a transformer-based structure, where the
local-continuity and long-range feature dependencies can be
simultaneously activated.

Transformer-based Methods for WSOL. The trans-
former model (Vaswani et al. 2017) is proposed to handle
sequential data in the field of natural language processing.
Recent studies also reveal its effectiveness for computer vi-
sion tasks (Dosovitskiy et al. 2020; Beal et al. 2020; Carion
et al. 2020; Zheng et al. 2021; Hu et al. 2021). Since the
local information extracted by the CNNs is deficient, vari-
ous methods adopt the self-attention mechanism to capture
the long-range feature dependencies. ViT (Dosovitskiy et al.
2020) applied the pure transformer directly to sequences of
image patches for exploring spatial correlation on the image
classification task. DETR (Carion et al. 2020) employed a
transformer encoder-decoder architecture for the object de-
tection task. As a pioneered work in WSOL, TS-CAM (Gao
et al. 2021) proposed a semantic coupling strategy based on
Deit (Touvron et al. 2021) to fuse the patch tokens with the
semantic-agnostic attention map to achieve semantic-aware
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Figure 2: Overview of the proposed LCTR, which consists of vision transformer backbone for feature extraction, relational
patch-attention module (RPAM) and cue digging module (CDM).

localization results, which has inspired many scholars to
study transformer in weakly supervised object localization.

Despite of the progress, TS-CAM is relatively rough as
it single-mindedly tries to get the long-range features but
ignores the local information. Compared with the existing
methods, our LCTR retains long-dependent features while
mining for detailed feature cues based on the transformer
structure for WSOL.

Methodology
We first present the overview of the proposed LCTR, then
give a detailed description of RPAM and CDM, and finally
incorporate them with the transformer structure in a joint
optimization framework, as shown in Figure 2.

Overview
In accordance with the long-range info-preserving ability of
the transformer architecture, LCTR is designed to offer pre-
cise localization maps for WSOL. We denote the input im-
ages as I = {(Ii, yi)}M−1i=0 , where yi ∈ {0, 1, . . . , C − 1}
indicates the label of the image Ii, M and C are the number
of images and classes, respectively. We first split Ii into N
same-sized patches xp ∈ R1×D, where D denotes the di-
mension of each patch. We set N = w × h, w = W/P and
h = H/P , where P is the width/height of a patch,H andW
denote image height and width. For simplicity, we omit the
mini-batch dimension. A learnable class token xcls ∈ R1×D

is embedded into the patches. These patches are flattened
and linearly projected before being fed to L sequential trans-
former blocks, which can be formulated as:

X1 = [xcls;F(x1p);F(x2p); · · · ;F(xNp )] + P, (1)

where X1 denotes the input of the first transformer block,
P ∈ R(N+1)×D is the position embedding and F is a linear
projection. In particular, the proposed RPAM is employed in
each transformer block to obtain a patch relation map Mr

∗ ,
which aggregates cross-patch information on a global basis.

Denote XL ∈ RN×D as the output feature of the last
transformer block. We reshape XL ∈ RD×w×h and apply

the proposed CDM for further highlighting weak local re-
sponses. After that we obtain the feature map XCDM ∈
RC×w×h. Finally, the XCDM are fed to a global average
pooling (GAP) layer (Lin, Chen, and Yan 2013) followed
by a softmax layer to predict the classification probability
p ∈ R1×C . The loss function is defined as

L = − log p. (2)

During testing, we extract the object map MCDM ∈
Rw×h from XCDM according to the predicted class and ob-
tain the final localization map by element-wise multiplica-
tion, given as

Mfuse = MCDM ⊗Mr
∗ . (3)

The Mfuse is then resized to the same size as the original
images by linear interpolation. For a fair comparison, we
apply the same strategy detailed in CAM (Zhou et al. 2016)
to produce the object bounding boxes.

Relational Patch-Attention Module
The proposed relational patch-attention module (RPAM)
(Figure 3) strengthens the global feature representation from
two stages: First, we utilize the attention vectors of the class
token in the transformer block to generate a global class-
token attention map. To fully exploit the feature dependen-
cies of the transformer structure, we then use all the attention
vectors of the patches containing the correlation between lo-
cal features to generate a patch relation map under the guid-
ance of the class-token attention map.

In the l-th transformer block, we hypothesize that the out-
put feature map is Xl ∈ R(N+1)×D. The attention matrix
Al ∈ RS×(N+1)×(N+1) of multi-head self-attention module
in the block is formulated as:

Al = Softmax

(
Ql ·K>

l√
D/S

)
, (4)

where Ql and Kl denote the queries and keys projected by
Xl of self-attention operation in (l−1)-th transformer block,
respectively. S represents the number of head and > is a
transpose operator.
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At this point, we first take the average operator to Al

based on S heads to obtain A′l ∈ R(N+1)×(N+1). Then,
the class-token attention vector M c

l ∈ R1×(N+1) is ex-
tracted from A′l. The M c

l reveals how much each patch con-
tributes to the object regions for image classification. Un-
fortunately, this map simply captures the global interactions
of the class token to all patches, while ignoring the cross-
patch correlations, which affects the modeling of local fea-
tures. To remedy it, we take advantage of the patch attention
map Mp

l ∈ R(N+1)×N in A′l to structure a patch relation
vector Mr

l under the guidance of M c
l . The Mp

l learns the
correlation between each patch but couldn’t tell which one
is more important. Therefore, we weight each patch atten-
tion map by multiplying Mp

l by M c
l to obtain a new map

Mh
l ∈ R(N+1)×N . Note that M c

l is reshaped (R(N+1)×1)
before the multiplication. After that, we squeeze the first di-
mension of Mh

l to a vector (Mr
l ∈ R1×N ) by an average

operation. The final patch relation map Mr
∗ is calculated by

Mr
∗ = Γw×h(

1

L

∑
l

Mr
l ), (5)

where Γw×h(·) indicates the reshape operator which coverts
the vector (R1×N ) to the map (Rw×h).

The patch relation map Mr
∗ obtains the long-range de-

pendencies that depends on the class-token attention vector
M c

l . Aggregating cross-patch information from the patch at-
tention maps, Mr

∗ facilitates better global representations of
the object without extra parameters in a simple way.

Cue Digging Module
RPAM considers the cross-patch information by using the
class-token attention map from self-attention mechanism
block of the transformer structure, but it is vulnerable if the
transformer gets a poor class-token attention map. We thus
further propose a cue digging module (CDM) to supply the
long-range features based on a hide-and-seek manner.

Inspired by erasing-based methods that remove the most
discriminative parts of the target object to induce the model
to cover the integral extent of the object, we erase the ob-
ject regions based on the global class-token attention map,
leaving the weak response ones and the background. Then
by weighting the learnable convolution kernels in the CDM
on the basis of them, we shift part of the attention to object
regions with weak responses. With the help of weighted ker-
nels, we can highlight the local details as a supplement to
the global representations.

Specifically, we convert the patch parts of class-token at-
tention vectors to the map M̃ c

∗ ∈ Rw×h, and apply it to the
feature map XL by spatial-wise multiplication after being
reversed. Note that M̃ c

∗ is calculated by M̃ c
∗ = 1

L

∑
lM

c
l .

The feature map then passes through a convolutional layer
to generate a new feature map X̃L ∈ RD×w×h. Next, we
score the features into G parts corresponding to G learn-
able convolution kernels. In particular, we apply two sep-
arate operators, the global average pooling and max pool-
ing, to X̃L. Then the feature maps are vectorized and sent to
a fully connected layer, respectively. Besides, we add them
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Figure 3: The RPAM aggregates all patch attention maps
based on the scores (values) of the class-token attention map
to learn local visual patterns.

together and apply a sigmoid function. In this light, we ob-
tain the scores as {Sg | g = 1, 2, . . . , G}. Finally, XL

passes through a convolutional layer with weighted convo-
lution kernels by the scores Sg for encouraging the model to
learn the object regions with weak responses, which can be
formulated as

XSGR = XL

G∑
g=1

SgW
e
g , (6)

where W e
g ∈ RD×C×kw×kh denotes the kernel weights of

the convolutional layer, which are initialized with kaiming
uniform initialization (He et al. 2015). kw, kh represent the
width and height of the kernels, respectively.

The convolution layer with the weighted kernels is ap-
plied to the global feature map XL drawn from the trans-
former structure. Once the loss L in Eq. 2 is optimized, the
weighted convolution kernels become more sensitive to the
features (i.e., the weak response features of object regions)
that favor image classification. In this way, the model pays
more attention to local cues and forms better global repre-
sentations for the target object.

Experiments
Experimental Settings
Datasets. We evaluate the proposed methods on two chal-
lenging datasets, including CUB-200-2011 (Wah et al. 2011)
and ILSVRC (Russakovsky et al. 2015). We only use image-
level labels for training. CUB-200-2011 is a fine-grained
bird dataset of 200 categories, which contains 5, 994 images
for training and 5, 794 for testing. ILSVRC has about 1.2
million images in the training set and 50, 000 images in the
validation set, with a total of 1, 000 different categories.

Evaluation Metrics. Following previous methods (Zhou
et al. 2016; Russakovsky et al. 2015), we adopt the Top-
1/Top-5 classification accuracy (Top-1/Top-5 Cls.), Top-
1/Top-5 localization accuracy (Top-1/Top-5 Loc.) and local-
ization accuracy with known ground-truth class (Gt-k.) as
our evaluation metrics. Specifically, Top-1/Top-5 Cls. is cor-
rect if the Top-1/Top-5 predicted category contains the cor-
rect label. Gt-k. is correct when the intersection over union
(IoU) between the ground-truth and the prediction is larger
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Methods (Yr) Backbone Loc. Acc
Top-1 Top-5 Gt-k.

CAM (’16) GoogLeNet 41.1 50.7 55.1
SPG (’18) GoogLeNet 46.7 57.2 -
RCAM (’20) GoogLeNet 53.0 - 70.0
DANet (’19) InceptionV3 49.5 60.5 67.0
ADL (’19) InceptionV3 53.0 - -
PSOL (’20) InceptionV3 65.5 - -
SPA (’21) InceptionV3 53.6 66.5 72.1
SLT-Net (’21) InceptionV3 66.1 - 86.5
CAM (’16) VGG16 44.2 52.2 56.0
ADL (’19) VGG16 52.4 - 75.4
ACoL (’18) VGG16 45.9 56.5 59.3
SPG (’18) VGG16 48.9 57.2 58.9
DANet (’19) VGG16 52.5 62.0 67.7
MEIL (’20) VGG16 57.5 - 73.8
PSOL (’20) VGG16 66.3 - -
RCAM (’20) VGG16 59.0 - 76.3
GC-Net (’20) VGG16 63.2 - -
SPA (’21) VGG16 60.2 72.5 77.2
SLT-Net (’21) VGG16 67.8 - 87.6
TS-CAM (’21) Deit-S 71.3 83.8 87.7
LCTR (Ours) Deit-S 79.2 89.9 92.4

Table 1: Localization accuracy on the CUB-200-2011 test
set.

than 0.5, and does not consider whether the predicted cate-
gory is correct. Top-1/Top-5 Loc. is correct when Top-1/Top-
5 Cls. and Gt-k. are both correct.

Implementation Details. We adopt the Deit (Touvron
et al. 2021) as the backbone network, which is pre-trained on
ILSVRC (Russakovsky et al. 2015). Particularly, we replace
the MLP head with our proposed CDM. Finally, a GAP layer
and a softmax layer are added on the top of the convolutional
layers. The input images are randomly cropped to 224×224
pixels after being resized to 256 × 256 pixels. We adopt
AdamW (Loshchilov and Hutter 2017) with ε=1e-8, β1=0.9,
β2=0.99 and weight decay of 5e-4. On CUB-200-2011, we
use a batch size of 128 with a learning rate of 5e-5 to train
the model for 80 epochs. For ILSVRC, the training process
lasts 14 epochs with a batch size of 256 and a learning rate
of 5e-4. After meticulous experiments, we set G=4 in the
CDM. All the experiments are performed with four Nvidia
Tesla V100 GPUs using the PyTorch toolbox.

Comparison with the State-of-the-Arts
Localization. We first compare the proposed LCTR with the
SOTAs on the localization accuracy on the CUB-200-2011
test set, as illustrated in Table 1. We observe that LCTR out-
performs the baseline (i.e., TS-CAM (Gao et al. 2021)) by
7.9% in terms of Top-1 Loc., and is obviously superior to
these CNN-based methods. Besides, Table 2 illustrates the
localization accuracy on the ILSVRC validation set. It re-
ports 0.4% performance improvement over the state-of-the-
art SLT-Net (Guo et al. 2021).

Classification. Table 3 and Table 4 show the Top-1 and

Methods (Yr) Backbone Loc. Acc
Top-1 Top-5 Gt-k.

CAM (’16) VGG16 38.9 48.5 -
ACoL (’18) VGG16 45.8 59.4 63.0
CutMix (’19) VGG16 42.8 54.9 59.0
ADL (’19) VGG16 44.9 - -
I2C (’20) VGG16 47.4 58.5 63.9
MEIL (’20) VGG16 46.8 - -
RCAM (’20) VGG16 44.6 - 60.7
PSOL (’20) VGG16 50.9 60.9 64.0
SPA (’21) VGG16 49.6 61.3 65.1
SLT-Net (’21) VGG16 51.2 62.4 67.2
CAM (’16) InceptionV3 46.3 58.2 62.7
SPG (’18) InceptionV3 48.6 60.0 64.7
ADL (’19) InceptionV3 48.7 - -
ACoL (’18) GoogLeNet 46.7 57.4 -
DANet (’19) GoogLeNet 47.5 58.3 -
RCAM (’20) GoogLeNet 50.6 - 64.4
MEIL (’20) InceptionV3 49.5 - -
I2C (’20) InceptionV3 53.1 64.1 68.5
GC-Net (’20) InceptionV3 49.1 58.1 -
PSOL (’20) InceptionV3 54.8 63.3 65.2
SPA (’21) InceptionV3 52.8 64.3 68.4
SLT-Net (’21) InceptionV3 55.7 65.4 67.6
TS-CAM (’21) Deit-S 53.4 64.3 67.6
LCTR (Ours) Deit-S 56.1 65.8 68.7

Table 2: Localization accuracy on the ILSVRC validation
set.

Methods (Yr) Backbone Cls. Acc
Top-1 Top-5

CAM (’16) GoogLeNet 73.8 91.5
RCAM (’20) GoogLeNet 73.7 -
DANet (’19) InceptionV3 71.2 90.6
ADL (’19) InceptionV3 74.6 -
SLT-Net (’21) InceptionV3 76.4 -
CAM (’16) VGG16 76.6 92.5
ACoL (’18) VGG16 71.9 -
ADL (’19) VGG16 65.3 -
DANet (’19) VGG16 75.4 92.3
SPG (’18) VGG16 75.5 92.1
MEIL (’20) VGG16 74.8 -
RCAM (’20) VGG16 75.0 -
SLT-Net (’21) VGG16 76.6 -
TS-CAM (’21) Deit-S 80.3 94.8
LCTR (Ours) Deit-S 85.0 97.1

Table 3: Classification accuracy on the CUB-200-2011 test
set.

Top-5 classification accuracy on the CUB-200-2011 test
set and ILSVRC validation set, respectively. For the fine-
grained recognition dataset CUB-200-2011, LCTR achieves
remarkable performance of 85.0%/97.1% on Top1/Top-5
Acc.. In addition, LCTR obtains comparable results with
SLT-Net (Guo et al. 2021) on Top-1 Acc. and surpasses other
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Figure 4: Visual comparisons of localization results on different methods. 1st Column: Input images. 2nd Column: Results of
CAM based on CNNs. 3rd Column: Results of TS-CAM based on Transformer. 4th Column: Results of our LCTR. Note that
the groundtruth bounding boxes are in red, the predictions are in green, and the IoU values (%) are shown in white text.

methods significantly on the ILSVRC validation set. Note
that SLT-Net used a separated localization-classification
framework, it cannot retain the global information for the
objects in the individual classification network. To sum up,
the proposed LCTR can greatly improve the quality of object
localization while keeping high classification performance.

Visualization. For qualitative evaluation, Figure 4 visual-
izes the final localization results of CAM (Zhou et al. 2016)
based on the CNNs, TS-CAM (Gao et al. 2021) based on the
transformer and our method on CUB200-2011 and ILSVRC
datasets. From the results, compared with the CAM, we con-
sistently observe that our method can cover a more complete
range of object regions instead of focusing only on the most
discriminative ones. In addition, we capture more localized
cues than the TS-CAM method, resulting in more accurate
localization. For example, the tail regions of the Bank Swal-
low and the Colobus are ignored by CAM and TS-CAM
methods, while our LCTR is able to aggregate more detailed
features of the target object, which enhances the local per-
ception capability of global features among long-range fea-
ture dependencies. Please refer to the supplementary mate-
rials for more visualized localization results of our method.

Ablation Studies
First, we visualize the localization maps with different set-
tings in Figure 5. We observe that the RPAM strengthens

Methods (Yr) Backbone Cls. Acc
Top-1 Top-5

CAM (’16) VGG16 68.8 88.6
ACoL (’18) VGG16 67.5 88.0
I2C (’20) VGG16 69.4 89.3
MEIL (’20) VGG16 70.3 -
RCAM (’20) VGG16 68.7 -
SLT-Net (’21) VGG16 72.4 -
CAM (’16) InceptionV3 73.3 91.8
SPG (’18) InceptionV3 69.7 90.1
ADL (’19) InceptionV3 72.8 -
ACoL (’18) GoogLeNet 71.0 88.2
DANet (’19) GoogLeNet 63.5 91.4
RCAM (’20) GoogLeNet 74.3 -
MEIL (’20) InceptionV3 73.3 -
I2C (’20) InceptionV3 73.3 91.6
SLT-Net (’21) InceptionV3 78.1 -
TS-CAM (’21) Deit-S 74.3 92.1
LCTR (Ours) Deit-S 77.1 93.4

Table 4: Classification accuracy on the ILSVRC validation
set.

the global representations of the baseline (Gao et al. 2021),
e.g., the tail-feature response of the African chameleon is en-
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African_Chameleon

(a) Image (b) Baseline (c) RPAM (d) CDM (e) RPAM+CDM

Black_Grouse

Figure 5: Visualization of localization map with different
settings. (a) Input images. (b) The baseline obtains coarse
long-range dependencies. (c) The global representations are
facilitated when applying the RPAM. (d) The local cues are
rewarded with the CDM. (e) The global perception capabil-
ity of the target object is fully exploited.

Applied Mode Top-1 Loc. Gt-k. Top-1 Cls.
GMP-fc 75.6 88.7 84.7
GAP-fc 75.8 88.8 84.8
(GMP+GAP)-fc 75.8 89.2 84.9
(GMP-fc) + (GAP-fc) 76.0 90.0 85.0

Table 5: The effect of different type of classifier in the CMD
on CUB-200-2011 test set. GMP/GAP denotes the global
max/average pooling. fc is the fully connected layer.

G Top-1 Loc. Gt-k. Top-1 Cls.
2 75.2 88.7 84.7
4 76.0 90.0 85.0
8 74.3 87.8 84.4

16 74.1 88.6 83.2
32 74.0 88.4 82.9

Table 6: The impact of the parameter G in the CDM on
CUB-200-2011 test set.

Kernel Size (kw × kh) Top-1 Loc. Gt-k. Top-1 Cls.
1× 1 73.5 88.8 82.5
3× 3 76.0 90.0 85.0

Table 7: The impact of different kernel size in the CDM on
CUB-200-2011 test set.

hanced, as it considers more cross-patch information. When
only using CDM, we find that the local feature details are
mined. For example, the abdominal features of the Black
grouse are further activated compared to the baseline. By
applying both RPAM and CDM, the final localization map
(Figure 5 (e)) highlights the full object extent.

Next, we explore the concise design of the CDM. From
the results on Table 5, we can observe that the mode of us-
ing separate fcs with GAP and GMP reports the best perfor-
mance. These results also verify that GAP and GMP work
differently in the CDM. Then, we evaluate the accuracy un-
der different parametersG in the CDM, as shown in Table 6.

Methods Dataset RPAM CDM Top-1 Top-1
Loc. Cls.

TS-CAM CUB 71.3 80.3
TS-CAM* 73.1 81.6

LCTR CUB
X 74.0 81.6

X 76.0 85.0
X X 79.2 85.0

TS-CAM ILSVRC 53.4 74.3
TS-CAM* 53.0 74.0

LCTR ILSVRC
X 54.2 74.0

X 55.1 77.1
X X 56.1 77.1

Table 8: Performance on both CUB-200-2011 test set and
ILSVRC validation set when using different configurations.
Note that * indicates the re-implement method.

From the experimental results, we observe that the best per-
formance is achieved when G = 4. Setting a larger G leads
to a larger number of parameters and degrades accuracy,
which we believe is caused by overfitting. Besides, we ex-
amine the impact of the weighted kernel size (i.e., kw× kh).
Results shown in Table 7 indicate that a kernel size of 3× 3
yields better performance.

Lastly, we investigate the effect with different configura-
tions on the accuracy, as reported in Table 8. On the CUB-
200-2011 test set, we can see that RPAM increases the Top-1
Loc. by 0.9% compared with the baseline TS-CAM method.
Note that the lightweight RPAM is directly applied in the test
phase, so the classification performance remains unchanged.
When applying the CDM to the network, we observe an
improvement in both classification and localization perfor-
mance. From this, we believe that the local cues captured
by the CDM are important for both two tasks. The best lo-
calization/classification accuracy can be achieved when em-
ploying both RPAM and CDM. Meanwhile, we conduct the
similar experiments on the ILSVRC validation set, which
also validate the effectiveness of two modules, as shown in
the lower part of Table 8.

Conclusion

In this paper, we propose a novel Local Continuity TRans-
former, termed LCTR, for weakly supervised object local-
ization, which induces the model to learn the entire extent of
the object with more local cues. We first design a relational
patch-attention module (RPAM), considering cross-patch in-
formation based on the multi-head self-attention mecha-
nism, which gathers more local patch features for facili-
tating the global representations. Moreover, we introduce a
cue digging module (CDM), which employs a hide-and-seek
manner to wake up the weak local features for enhancing
global representation learning. Extensive experiments show
the LCTR can successfully mine integral object regions and
outperform the state-of-the-art localization methods.
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