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Abstract

We present a pose adaptive few-shot learning procedure and
a two-stage data interpolation regularization, termed Pose
Adaptive Dual Mixup (PADMix), for single-image 3D recon-
struction. While augmentations via interpolating feature-label
pairs are effective in classification tasks, they fall short in
shape predictions potentially due to inconsistencies between
interpolated products of two images and volumes when ren-
dering viewpoints are unknown. PADMix targets this issue
with two sets of mixup procedures performed sequentially.
We first perform an input mixup which, combined with a pose
adaptive learning procedure, is helpful in learning 2D feature
extraction and pose adaptive latent encoding. The stagewise
training allows us to build upon the pose invariant represen-
tations to perform a follow-up latent mixup under one-to-one
correspondences between features and ground-truth volumes.
PADMix significantly outperforms previous literature on few-
shot settings over the ShapeNet dataset and sets new bench-
marks on the more challenging real-world Pix3D dataset.

Introduction
Mixup, a feature-label interpolation scheme, has been well
explored and proven successful in enhancing 2D and 3D
classifications (Zhang et al. 2018; Chen et al. 2020), sta-
bilizing generative networks, and enriching augmentations
under adversarial and few-shot settings (Mangla et al. 2020).
However, literature discussing the effectiveness of interpola-
tion regularizations in reconstructing 3D shapes from single-
view images is fairly limited. We speculate that the hin-
drance is mostly due to the ambiguity of defining a bijec-
tive mapping between mixed inputs and outputs. Specifi-
cally, without a given pose, an interpolation between views
of two objects may be inconsistent to the direct interpolation
of the two objects themselves.

Aiming at transferring the benefits of mixup on better gen-
eralizations to the reconstruction task under the challenge of
pose discrepancy, we first propose a pose adaptive learning
procedure on top of the effective prior-based autoencoders in
few-shot reconstruction tasks (Wallace and Hariharan 2019)
to promote latent representation pose invariance. With a near
pose invariant encoding space, we build a two-stage data
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Figure 1: Overview. Top: We propose a two-stage mixup
routine named PADMix and a pose adaptive learning pro-
cedure to enhance a linear autoencoder for few-shot gener-
alization on single-view reconstructions. Bottom: The mIoU
scores of current methods against the number of shots. Our
PADMix performs the best at 1-shot, with a slope of im-
provement steeper than all previous approaches.

augmentation strategy, termed Pose Adaptive Dual Mixup
(PADMix) (Figure 1), to enhance the generalization of ob-
ject reconstruction in novel classes with minimal training
samples.

The first-stage mixup of PADMix is performed on the in-
put images and ground-truth volumes. We generate a train-
ing sample from an interpolation of both the 2D and 3D
space of the input pairs (image and its corresponding prior),
which maps to an interpolation of their two corresponding
ground-truth volumes. We argue that the input mixup, while
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only providing a rough mapping between the mixed image
and volume, is helpful in learning better feature extractions.
We simultaneously impose a pose adapting loss during the
input mixup training stage to minimize latent representation
differences between renderings of an object from different
angles.

Following the input-space mixup is a pose invariant la-
tent mixup that can be implemented on the latent space of
an autoencoder. Since the pose adaptive learning procedure
enforces pose-invariance of image-prior features (i.e., la-
tent representations of two images of the same object ren-
dered at different angles should be similar), interpolation
at this stage refines the correspondence between the mixup-
generated queries and ground truths.

Our empirical study on the popular ShapeNet dataset
(Chang et al. 2015) shows that an image-prior encoder
on par with previous work can improve significantly and
achieve state-of-the-art results with the addition of PADMix.
We further explore the effects of the data-agnostic mixup
procedure on scenarios with corrupted priors and no priors
at all — all of which provides consistent effectiveness of
PADMix on novel category reconstructions. Finally, we ex-
tend PADMix to the challenging Pix3D dataset (Sun et al.
2018) to create a new benchmark in few-shot real-world ob-
ject reconstruction.

In summary, our contributions are threefold:

• A pose adaptive learning procedure to promote pose in-
variance between latent representations of object ren-
derings, which creates a one-to-one correspondence that
could be extended for a feature-label mixup.

• Pose Adaptive Dual Mixup (PADMix): a data augmen-
tation routine applicable to a 2D-3D autoencoder to en-
hance reconstruction results under the few-shot setting.

• Demonstration of PADMix’s ability to aid in model gen-
eralization and achieve state-of-the-art results on both
synthesized and real-world datasets.

Related Work
3D Reconstruction
The process of reconstructing real-world objects from RGB
images is the key to bridging 2D and 3D scene understand-
ing. Some approaches make use of the grid nature within
voxelized shape representations and build 2D-3D autoen-
coders based on convolutional neural networks (CNNs) (Xie
et al. 2019, 2020; Popov, Bauszat, and Ferrari 2020). Con-
versely, some have focused on improving the underlying
representation of 3D shapes by creating implicit functions
(Mescheder et al. 2019; Bechtold et al. 2021), while oth-
ers emphasize on the learning of alternative 3D represen-
tations such as point clouds (Fan, Su, and Guibas 2017;
Lin, Kong, and Lucey 2018; Mandikal and Babu 2019) and
meshes (Wang et al. 2018; Wen et al. 2019; Gkioxari, Malik,
and Johnson 2019; Kuo et al. 2020). The idea of learning
from shape priors has also been explored (Wu et al. 2018;
Kato and Harada 2019; Cherabier et al. 2018; Wu et al.
2016). Yang et al. (2021) incorporate explicitly constructed
“image-voxel” shape priors to supplement the information

lost due to noisy backgrounds and heavy occlusions in the
image. However, research on reconstructing 3D objects un-
der unseen classes with limited training data remains under-
developed.

Few-Shot Learning
Few-shot learning is the problem of constructing models
with sufficient training data from base classes and limited
examples from novel classes, in the hope of learning bet-
ter generalizations. Previous literature mainly focuses on 2D
image tasks, mostly on classification (Dhillon et al. 2020;
Yu et al. 2020; Afrasiyabi, Lalonde, and Gagn’e 2020) and
some on more complex topics such as object detection (Fan
et al. 2021; Hu et al. 2021; Sun et al. 2021) and segmen-
tation (Yang et al. 2020; Li et al. 2021; Wang et al. 2020).
These tasks often adopt the concept of meta-learning (Ren
et al. 2018; Flennerhag et al. 2020; Rusu et al. 2019), where
the model is trained to generalize to unseen classes in a few
gradient updates.

Only few techniques focus on the predictions of 3D
shapes under few-shot settings. Wallace and Hariharan
(2019) are the first to incorporate the notion of class-specific
average shapes named shape priors, while Michalkiewicz
et al. (2020) propose a method to learn class-specific priors
via codebooks. Our work utilizes the benefits of shape priors
as secondary inputs and proposes an interpolation method
for better generalization.

Interpolation Regularization
The notable regularization technique, referred to as mixup
(Zhang et al. 2018), is proposed to enhance learning effi-
ciency by generating virtual examples via interpolating an
example-label pair. Verma et al. (2019) extend beyond this
to introduce manifold mixup, where the interpolation occurs
on the hidden states instead of the inputs. These methods
mainly focus on the effectiveness of regularization on 2D
image tasks. PointMixup transfers the interpolation method
from grid-like pixels to 3D points and further proves that
such interpolation is linear and invariant (Chen et al. 2020).
Nevertheless, interpolation’s effectiveness mainly shines in
classification and segmentation tasks.

PADMix derives a 2D-3D corresponding interpolation ap-
proach for shape prediction, which prevents pose variance
between mixed example and ground truth to further build on
the empirically-proven capability of mixup on model gener-
alization in this new domain.

Method
Problem Setting
Our main objective is to learn a few-shot reconstruction
model that extracts features from a 2D image I containing
a single object and reconstructs the corresponding 3D vol-
ume V . Such an approach should generalize well to novel
categories of shapes with very limited training data.

In this setting of few-shot learning, training data are cat-
egorized into base categories Cb and novel categories Cn.
For every category c ∈ Cb, we have a set of data Dc, where
Dc = {(Ii, Vi)}Kc

i=1 and Kc is the number of pairs for c. We
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Figure 2: Pose adaptive learning procedure. We build upon
a standard autoencoder and training pipeline for few-shot
single-view reconstruction (uncolored) by introducing an
additional 3D encoder to learn a pose adaptive encoding via
a new pose adapting loss (colored).

also haveDc′ = {(Ii, Vi)}K
′

i=1 for every c′ ∈ Cn. The setting
is similar for Dc and Dc′ except that K ′ is identical across
all c′ and K ′ � Kc for all c ∈ Cb.

We aim to create a training procedure and a data interpola-
tion routine that circumvent the problem of pose discrepancy
between the 2D renderings and 3D space while still encom-
pass all the advantages of traditional interpolation regular-
ization. Such an approach should leverage the vast quantities
of {Dc}c∈Cb

and the limited samples {Dc′}c′∈Cn to better
generalize to the test/query images under Cn.

Base Network
We begin with a standard network architecture illustrated
by the uncolored components in Figure 2. The framework
comprises a 6-layer 2D image encoder EI extracted from
an ImageNet-pretrained ResNet-34 (Deng et al. 2009; He
et al. 2016), a 4-layer 3D shape prior encoder EP , a 3-layer
merger network M , and a 4-layer decoder D.

We then construct class-specific shape priors through av-
eraging the voxel representations of 3D volumes within each
class. Let {V c

i }
Nc
i=1 be the set of Nc voxel volume represen-

tations of objects under class c. We can construct the shape
prior Pc for class c:

Pc(x, y, z) =

{
1 , if 1

Nc

∑Nc

i=1 V
c
i (x, y, z) > t,

0 , otherwise,
(1)

where V c
i (x, y, z) ∈ {0, 1} is the value of the ith shape un-

der class c at voxel coordinates (x, y, z) and t is the bina-
rization threshold. Previous work has empirically shown the
effectiveness of naive averaging for prior generation (Wal-
lace and Hariharan 2019); we add thresholding so that in-
significant features from the training set are omitted to avoid
over-complication during our PADMix.

Afterward, given an image I and its corresponding shape
prior P as in (1), we extract image features eI = EI(I)
and shape features eP = EP (P ) through their separate en-
coders. We then obtain an image-prior latent representation
eZ via the merger network M . Finally, eZ is fed into the
decoder D to output the final voxel-volume prediction:

Ṽ = D(eZ) = D(M(eI ⊕ eP )), (2)

where ⊕ denotes the concatenation operator.
Model learning is achieved by voxel-wise comparing our

predicted volume Ṽ to the ground truth volume V . With (2),
we let Ṽ (x, y, z) ∈ [0, 1] and V (x, y, z) ∈ {0, 1} be the
occupancy confidence and the ground truth label at coordi-
nates (x, y, z) respectively. We can then obtain the binary
cross-entropy loss between Ṽ and V :

LBCE(Ṽ , V ) = − 1

|V |
∑

(x,y,z)

[V (x, y, z) log(Ṽ (x, y, z))

+ (1− V (x, y, z)) log(1− Ṽ (x, y, z))]. (3)

Learning Pose Adaptive Encoding
In the conventional object reconstruction settings, all images
of a same object rendered at different angles should refer to
the same shape prediction. This could become problematic
during interpolation regularization in that the pose of a fused
image may be inconsistent with its corresponding fused vol-
ume. To resolve this issue, we consider an additional shape
encoder EGT in the training stage (exemplified by the col-
ored components in Figure 2) that maps the ground truth
volume V into the embedding space as eL. Note that EGT is
initialized with the encoder of a pretrained autoencoder for
unsupervised volume reconstruction. The underlying goal is
for eZs at all viewpoints to be as similar to eL if they refer
to the same V .

To achieve the above-mentioned representation align-
ment, we minimize the distance between regardless of the
rendering angle of I by imposing a pose adapting loss com-
prising a triplet and a cosine similarity criterion:

LADP (eZ , eL) = max(Szn − Szp + µ, 0) + 1− Szp, (4)

where Szp and Szn are the cosine similarities of an eZ gen-
erated from an image and its corresponding prior with a
positive (eL from the ground truth object) and a negative
(eL from a different object in the database), and µ ∈ [0, 1]
is a margin hyperparameter. As eZs from all angles form
positive pairs with the corresponding ground truth latent
vector, we argue that LADP in (4) encourages Ep to be
pose adaptive via the triplet margin and cosine similarity
reinforcement—outputting highly similar latent representa-
tions of images from the same object—while still preserving
feature distinctiveness for images of different viewpoints.
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With a base network incorporating shape priors from pre-
vious work and a pose adaptive encoding scheme, we are
ready to introduce our hierarchical PADMix regularization.

PADMix
The original interpolation augmentation mixup (Zhang et al.
2018) is proposed to interpolate two pairs of features and
their corresponding target labels (X1, Y1) and (X2, Y2) with
a mixup ratio λ ∼ Beta(α, α) for α ∈ [0, 1]:

Xmix(λ) = (1− λ)X1 + λX2, (5)
Ymix(λ) = (1− λ)Y1 + λY2. (6)

We are thus motivated by establishing PADMixup via a
two-stage routine that mixup is hierarchically carried out,
first in the input space and then in the latent space, to maxi-
mize the results of reconstruction.

The intuition behind PADMixup is simple: While apply-
ing mixup to create virtual examples via cross-class interpo-
lations has been shown to be useful for dealing with classifi-
cation and segmentation problems, it is reasonable to expect
that its effective generalization could bring improvements in
tackling more challenging learning scenarios such as novel
shape inference from 2D images under few-shot setting.

Input Mixup From (5) and (6), input mixup is achieved
by naive interpolations of inputs X = (I, P ) and of their
target volumes Y = V . When X1 and X2 are of different
classes, mixup would result in a new prior. Such interpo-
lations can be viewed as yielding a virtual class of objects
with the newly interpolated prior and image, which can be
thought of as a virtual example of the class.

This approach, while straightforward, may cause incon-
sistencies between Xmix = (Imix, Pmix) and Ymix. Theo-
retically, a perfect Imix should be a particular view of the in-
terpolated ground truth volume Ymix. However, as the poses
of the original renderings are usually not given, Imix may be
inconsistent with the fused Ymix and Pmix (e.g., the mixed
image may have the chair facing left and table right, but the
fused volume have both of them facing front).

Nevertheless, we hypothesize that input mixup still has its
merits on account of two main reasons. First, interpolation
has been proven successful in enhancing feature extractions,
which is helpful for finer reconstructions. Second, shape pri-
ors are generated from ground truth target volumes, meaning
that the interpolated outcome of the two would remain con-
sistent and thus contains implicit information about the pose
of ground truth. Extensive studies to address these claims
are presented in the following section.

Latent Mixup With a well-trained pose adaptive encoder,
we then propose a latent mixup where the input (I, P )s
are now replaced by eZs. Since the pose adaptive encod-
ing minimizes the cosine distances between image-views
and ground truth volume representations, latent vectors eZs
are implicitly distilled for being pose invariant. That is, the
images from different viewpoints of a same object should
be highly similar when transformed to the latent representa-
tions. This design creates a one-to-one mapping between the
features and outputs, making the mixup augmentation more
straightforward for networks to learn.

PADMix Training
A hierarchical training procedure for PADMix (Figure 3) is
described as follows. We first train the base network via the
loss L, accounting for both (3) and (4):

L = wBCE · LBCE + wADP · LADP , (7)

where wBCE and wADP are hyperparameters. A complete
input mixup routine is then added to the training procedure,
which has been empirically shown to outperform beginning
with input mixup from scratch.

Afterward, we continue training with latent mixup. The
stagewise training ensures that our latent mixup is built upon
a well-trained pose adaptive encoder and that our latent rep-
resentations are near pose invariant. As the interpolation
takes place after the pose adaptive encoding, the definition
of a positive pair is ambiguous and so we omitted the triplet
criterion in LADP during this stage of training.

Experiments
We extensively study the generalization results of PADMix
on the ShapeNet dataset (Chang et al. 2015), following the
identical settings as previous work in the 80-20 split of base
classes {airplanes, cars, chairs, displays, phone, speakers,
tables} and novel classes {cabinet, sofa, bench, watercraft,
rifle, lamp}. All procedures are trained using eight Nvidia
Tesla V100s for 100 epochs with a batch size of 32. In terms
of hyperparameters, µ is set to 0.1, α to 0.2, and wBCE and
wADP to 10 and 0.5. The learning rates of the entire base
network and the additional shape encoder EGT are set to
1e-3 and 1e-4, respectively. Our main comparisons are with
Wallace and Hariharan (2019) who first introduced priors
and CGCE by Michalkiewicz et al. (2020) that incorporates
codebooks to learn better priors.

We also extend PADMix to the more challenging Pix3D
dataset (Sun et al. 2018). The dataset is an extension from
the IKEA furniture dataset (Lim, Pirsiavash, and Torralba
2013), with 395 3D shapes mapping to over 10K real-world
images correspondingly. Our results set a new benchmark
for in-the-wild few-shot single-view reconstructions.

Additional training details can be found in the supplemen-
tary materials.

Results and Ablation Study
Few-shot Generalization on ShapeNet We first evaluate
the sequential improvements of PADMix on our linear au-
toencoder (Table 1) based on the class-wise Intersection-
over-Union (IoU) metric under the 1-shot setting. While
the results of input mixup and latent mixup performed sep-
arately mildly improve from the base network with pose
adaptive training, the entire PADMix achieves the best re-
sults in five out of six categories and on the overall average.

We report the best PADMix IoU scores in comparison with
results directly quoted from previous work (Michalkiewicz
et al. 2020; Wallace and Hariharan 2019) in Table 2. In all
three of their given settings (1, 10, 25), PADMix achieves
higher average IoUs and outperforms in five of the six novel
classes, with widening gap as the number of shots increases.
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Figure 3: Training procedure and PADMix augmentation routine. The overall training procedure comprises three stages: 1)
Training the original base network without any data augmentation routine. 2) Training the network with input mixup to improve
feature extraction and pose adaption. 3) Training the network with latent mixup. The pose invariant encoding enables better
mapping between the features and the targeted volume prediction.

Category WithoutMix InputMix LatMix PADMix

Cabinet 0.63 0.63 0.64 0.67
Sofa 0.51 0.52 0.51 0.54
Bench 0.30 0.32 0.33 0.37
Watercraft 0.40 0.40 0.40 0.41
Lamp 0.27 0.27 0.28 0.29
Rifle 0.34 0.34 0.35 0.31

Average 0.41 0.41 0.42 0.43

Table 1: Few-shot learning IoU results on novel ShapeNet
classes. We sequentially perform the procedures of PADMix
to see the incremental improvements of the pipeline. Bold
texts denote best results.

In fact, our 1-shot results are comparable with the previous
state-of-the-art IoUs trained under the 25-shot setting.

One observation, however, is that PADMix tends to per-
form better in shapes with lower proximity to the shapes
in Cb (e.g., cabinets). We further analyze this by plotting
our 1-shot IoU results against proximity of each novel class
against base classes in Figure 4, where the proximity of each
novel class c follows the definition of (Michalkiewicz et al.
2020) and is computed as:

Proxc =
1

Nc

Nc∑
i=1

max
j∈BaseShapes

(IOU(Vi, Vj)). (8)

A trend of increasing margin can be observed as proximity
of the novel class decreases. We hypothesize this to be the
result of our LADP design.

Intuitively, LADP encourages a difference greater than µ
in between the representation of every object. When objects
are physically similar and refer to the same class priors, the
encoder may accommodate feature details of images to cre-
ate the difference margin. Consequently, the model empha-
sizes the detailed feature differences rather than the global
similarity of objects. Novel class objects exhibiting distinc-
tive features are hence benefited more from our approach
than objects with higher proximity to base classes.

Figure 4: 1-shot class-wise IoU for decreasing proximity.
The improvement margin enlarges as proximity of the novel
class against base class decreases.

We argue that this setting is actually preferable, as real-
world object classes tend to be diverse and highly dissimilar
to one another.

Qualitative Analysis We juxtapose the generated outputs
of input mixup and PADMix in Figure 5. Our visualizations
suggest that at times when the angle of the object or the ob-
ject itself makes the reconstruction task inherently difficult,
PADMix generalizes significantly better than just the input
mixup. For cases that are simpler, PADMix also shows more
refined results in terms of the overall shapes.

Pose Adaptiveness We explicitly analyze the effective-
ness of LADP and input mixup in promoting pose invari-
ance and feature distinctiveness for the latent representation;
we train three networks: two base networks with and with-
out LADP , and one with an additional input mixup. We
then compute the intra-class cosine similarities under two
settings:

• Same Object (SameObj): where two images are rendered
from the same object but at different viewpoints.
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1-Shot 10-Shot 25-Shot
Category Wallace CGCE PADMix Wallace CGCE PADMix Wallace CGCE PADMix

Cabinet 0.69 0.71 0.67 0.69 0.71 0.66 0.69 0.71 0.68
Sofa 0.54 0.54 0.54 0.54 0.54 0.57 0.54 0.55 0.59
Bench 0.37 0.37 0.37 0.36 0.37 0.41 0.36 0.38 0.42
Watercraft 0.33 0.39 0.41 0.36 0.41 0.46 0.37 0.43 0.52
Lamp 0.20 0.20 0.29 0.19 0.20 0.31 0.19 0.20 0.32
Rifle 0.21 0.23 0.31 0.24 0.23 0.39 0.26 0.28 0.50
Average 0.39 0.41 0.43 0.40 0.41 0.47 0.40 0.43 0.51

Table 2: Class-wise IoU comparison of PADMix to state-of-the-art few-shot learning approaches on ShapeNet. Bold texts denote
best results. PADMix has shown to be the most effective in 1, 10, and 25-shot settings, with a widening difference margin as the
number of shots increases.

Base (No LADP ) Base (With LADP ) InputMix
Category SameObj DiffObj SameObj DiffObj SameObj DiffObj

Cabinet 0.86 0.62 0.97 0.84 0.97 0.85
Sofa 0.82 0.72 0.92 0.86 0.93 0.88
Bench 0.81 0.72 0.94 0.88 0.95 0.89
Watercraft 0.84 0.75 0.96 0.90 0.96 0.91
Lamp 0.91 0.69 0.97 0.79 0.97 0.81
Rifle 0.83 0.80 0.95 0.93 0.96 0.95

Table 3: Cosine similarities of latent representations. We
compute the average cosine similarities between latent vec-
tors of two images from identical and different objects.

No Priors Corrupted Priors
Category WithoutMix PADMix WithoutMix PADMix

Cabinet 0.68 0.68 0.67 0.67
Sofa 0.53 0.55 0.51 0.51
Bench 0.37 0.39 0.35 0.38
Watercraft 0.36 0.37 0.36 0.38
Lamp 0.27 0.27 0.26 0.26
Rifle 0.18 0.19 0.18 0.17

Average 0.40 0.41 0.39 0.40

Table 4: Reconstruction results with no/corrupted priors. We
adjust our base network into not feeding in any class-specific
priors or priors from a different class to see the effect of
PADMix under more challenging scenarios.

• Different Objects (DiffObj): where two images are ren-
dered from different objects but within the same class.

We perform the experiment within classes, which is a more
challenging setting as the similarities between object vol-
umes are higher.

Based on our results in Table 3, LADP and input mixup
enhance the cosine similarities under the SameObj setting
across all categories, implying a better learned pose adaptive
encoding. On the other hand, the margin between the two
settings remained, and therefore we claim that the distinctive
features for distinguishing objects are still preserved despite
the enhancement in pose invariance.

InputMix LatentMix
α = 0.2 0.41 0.41
α = 0.4 0.41 0.43
α = 1 0.34 0.41

Table 5: Class-wise average IoUs on varying β(α, α)s. Bold
texts denote best results for each mixup stage.

PADMix With No/Corrupted Priors Following previous
literature, all our experiments have the presumed knowledge
of the input image class so that a correct prior is chosen.
Thus, we proceed to explore the effects of PADMix in the
circumstances where the ground-truth categorical informa-
tion of the input image is absent, by simulating situations
with inputs consisting of no priors and corrupted priors. In
the no-prior setting, we remove the 3D encoder and add an
adaptive pooling on the output of the 2D encoder to readjust
the feature size to fit into the merger. In the corrupted prior
setting, we deliberately select a wrong prior (i.e., prior from
other classes). We train all networks under the 1-shot setting
with identical hyperparameters.

As indicated in Table 4, PADMix achieves higher IoU re-
sults in all novel classes under the no-prior setting. This sug-
gests that the interpolation regularization at both the input
and latent stages could help out with extracting important
features that may be well generalized to unseen objects.

The results on corrupted priors are coherent with the
aforementioned findings. Even under the situation where
priors are fundamentally flawed, PADMix’s ability to extract
image features has aided in better reconstruction results.

Variations of Beta Distributions The type of distribution
to use for interpolation weights is highly important. We ex-
amine the results of input mixup and latent mixup using dif-
ferent values of α for β(α, α). Since the mixup procedure
is sequential, we carry out testings on input mixup first, and
then use the best results to test on latent mixup.

It could be concluded from Table 5 that out of the three
more popular settings, input mixup achieves the best IoU
under the settings α = 0.2, 0.4, while latent mixup achieves
the best IoU results with α = 0.4. It is worth noting that
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Figure 5: Visualizations under 1-shot setting. Left column:
simple shape and angle. PADMix refines the shape into a bet-
ter reconstructed volume. Middle column: simple shape but
sub-optimal angle. PADMix produces a well-reconstructed
result while Input Mixup implicitly recognizes and recon-
structs the image as a plane (base class). Right column: dif-
ficult shape. Input Mixup fails to extract the shape features
which PADMix is able to accomplish.

Category Wallace WithoutMix PADMix

Sofa 0.26 0.39 0.39
Desk 0.06 0.05 0.11

Category Wallace WithoutMix PADMix

Sofa 0.34 0.38 0.40
Desk 0.06 0.08 0.12
Bookcase 0.05 0.03 0.06
Misc 0.10 0.10 0.09

Table 6: Class-wise IoU results on Pix3D. We provide
benchmarks of two data splits. Benchmark 1 focuses on the
model’s generalization to similar training classes. Bench-
mark 2 provides a more comprehensive overview of the
model’s few-shot results. Bold texts denote best results.

the interpolation results in both cases fall when α = 1 (a
uniform distribution). This is reasonable as equal weights
of two inputs create more difficult and unrealistic examples,
which should not have an equal chance of existence with
examples having one dominant input.

Pix3D Benchmark Few-shot settings aim to mimic a re-
alistic scenario of object reconstruction. With this in mind,
we extend our approach to the more challenging dataset—
Pix3D (Sun et al. 2018)—that uses in-the-wild instead of

synthetic images. The volume resolution of Pix3D (1283) is
also much higher than that of ShapeNet (323), making the
task considerably more difficult by nature.

As Pix3D is substantially smaller than ShapeNet (only
around 10K images and 400 models), and with some classes
only containing a dozen of models, we only provide bench-
marks under the 1-shot setting. We extract all training and
testing data from the standard S1 split described in the
Mesh-RCNN paper (Gkioxari, Malik, and Johnson 2019),
which contains 7539 train images and 2530 test images.
Since Pix3D is loosely annotated (i.e., one image may con-
tain more than one object but only one is labeled), we use
the ground-truth bounding boxes to crop out all images. We
create two benchmarks to target different aspects of recon-
struction: The first benchmark includes only four of the nine
classes: {chair, table} for base and {sofa, desk} for novel.
This serves as a simpler baseline, with chairs being similar
to sofas and tables to desks. This benchmark tests the abil-
ity of one’s model in generalizing to new classes with high
proximity to the training set. The second benchmark serves
as a more general baseline comprising all the nine classes,
where we set five of the classes {wardrobe, bed, tool, chair,
table} to base and the other four {bookcase, desk, sofa, mis-
cellaneous} to novel. The results on this benchmark should
be a more comprehensive overview toward one’s reconstruc-
tion model.

The reported results are obtained by following the same
hyperparameters for training, with one amendment made
on the reconstruction loss: we observe that in reconstruc-
tion it is empirically better to use a balanced focal loss in-
stead of the BCE loss. This could be due to a class imbal-
ance between occupied and empty volumes (Pix3D objects
are much more irregularly shaped with more empty spaces),
akin to the foreground-background class imbalance that the
focal loss is originally designed to solve. Table 6 shows im-
provements for both settings in almost all classes. The extra
base-categories in Benchmark 2 also allow better generaliza-
tion in the overlapping categories (i.e., sofa and desk). Nev-
ertheless, the results in Bookcase and Miscellaneous suggest
that there are still plenty of rooms worth exploring.

Conclusion

This paper explores the extent of interpolation regularization
in few-shot shape prediction problems. We propose a few-
shot learning procedure followed by an augmentation rou-
tine named PADMix that involves two mixup schemes: an
input mixup and a pose invariant latent mixup. The former,
combined with a pose triplet-cosine-based loss, strength-
ens the pose-adaptiveness of the encoders while maintaining
feature discrepancies between different objects. The latter
makes use of such pose invariance to perform a one-to-one
interpolation regime between the features and labels (i.e.,
targeted volume). Our state-of-the-art few-shot results on the
synthesized ShapeNet and real-world Pix3D datasets justify
that interpolation augmentations can be well-adopted into
the domain of shape predictions.
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