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Abstract

Spatio-temporal scene-graph approaches to video-based rea-
soning tasks, such as video question-answering (QA), typi-
cally construct such graphs for every video frame. These ap-
proaches often ignore the fact that videos are essentially se-
quences of 2D “views” of events happening in a 3D space,
and that the semantics of the 3D scene can thus be carried
over from frame to frame. Leveraging this insight, we pro-
pose a (2.5+1)D scene graph representation to better cap-
ture the spatio-temporal information flows inside the videos.
Specifically, we first create a 2.5D (pseudo-3D) scene graph
by transforming every 2D frame to have an inferred 3D struc-
ture using an off-the-shelf 2D-to-3D transformation module,
following which we register the video frames into a shared
(2.5+1)D spatio-temporal space and ground each 2D scene
graph within it. Such a (2.5+1)D graph is then segregated into
a static sub-graph and a dynamic sub-graph, corresponding to
whether the objects within them usually move in the world.
The nodes in the dynamic graph are enriched with motion
features capturing their interactions with other graph nodes.
Next, for the video QA task, we present a novel transformer-
based reasoning pipeline that embeds the (2.5+1)D graph
into a spatio-temporal hierarchical latent space, where the
sub-graphs and their interactions are captured at varied gran-
ularity. To demonstrate the effectiveness of our approach,
we present experiments on the NExT-QA and AVSD-QA
datasets. Our results show that our proposed (2.5+1)D rep-
resentation leads to faster training and inference, while our
hierarchical model showcases superior performance on the
video QA task versus the state of the art.

Introduction
Recent advances in deep learning have made it possible to
think beyond individual domains, such as computer vision
and natural language processing, and consider tasks that
are at their intersections. Visual question answering (VQA)
is one such task that has witnessed a significant attention
lately (Antol et al. 2015; Anderson et al. 2018; Wu et al.
2017; Jang et al. 2017; Geng et al. 2021; Chen et al. 2020;
Ghosh et al. 2019). While earlier approaches to this task
used holistic visuo-textual representations (Dang et al. 2021;
Antol et al. 2015), it was found that decomposing a visual
scene into its constituents (and their relationships) provided
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a better reasoning pipeline (Anderson et al. 2018; Johnson
et al. 2015; Krishna et al. 2017; Dornadula et al. 2019), per-
haps because of the possibility for an easier disentanglement
of the scene objects relevant to the given question. Such a
disentanglement naturally leads to a graph representation of
the scene, usually called a scene graph (Johnson et al. 2015).
Using such a graph representation allows one to use the
powerful machinery of graph neural networks for VQA, and
has demonstrated significant promise (Li and Jiang 2019; Li
et al. 2019; Pan et al. 2020; Geng et al. 2021).

While visual scene graphs were originally proposed for
image-based tasks, there have been direct adaptations of this
data structure for video-based reasoning problems (Geng
et al. 2021; Chatterjee et al. 2021; Pan et al. 2020; Herzig
et al. 2019). Usually, in such problems, scene graphs are
constructed for every video frame, followed by an inter-
frame representation learning to produce holistic video level
features for reasoning. However, having scene graphs for ev-
ery frame may be redundant and could even become compu-
tationally detrimental for longer video sequences. Taking a
step back, we note that videos are essentially 2D views of
a 3D space in which various events happen temporally, and
representing the scene in a 4D spatio-temporal space could
thus potentially avoid such representational redundancies.
Furthermore, object properties such as permanence (Sham-
sian et al. 2020) could be handled more effectively in a 3D
space, as each object (that is visible in some video frame)
gets a location therein, thereby disentangling the camera
views from its spatial location (Tung et al. 2020; Girdhar
and Ramanan 2019). Using such a 3D representation thus
would provide a natural way to avoid occlusions, which is a
significant problem when working with 2D scene graphs.

Motivated by the above insight, we explore a novel spatio-
temporal scene graph representation, where the graph nodes
are not grounded on individual video frames, instead are
mapped to a shared 3D world coordinate frame. While there
are approaches in computer vision that could produce such
a common 3D world (Hartley and Zisserman 2004), such
methods usually assume: i) that the scene is static, without
dynamic objects, ii) that the camera calibration information
is known, or iii) that multiple overlapping views of the same
scene are available; none of which may exist for arbitrary
(internet) videos typically used in VQA tasks. Fortunately,
there have been several recent advancements in 3D recon-
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struction from 2D images, such as (Ranftl et al. 2019; Fu
et al. 2018); these works take as input an image and pro-
duces a realistic pseudo-3D structure for the image scene,
typically called a 2.5D image. For every video frame, we
leverage such a 2.5D reconstruction to impart an approxi-
mate 3D location for each graph node, thereby producing a
(2.5+1)D spatio-temporal scene graph.

A technical challenge with the above (2.5+1)D scene
graph representation is that each graph is still specific to a
video frame, and is not registered to a shared space. Such
a registration is confounded by the fact that objects in the
scene may move from frame to frame. To this end, we pro-
pose to: (i) split the (2.5+1)D scene graph into static and
dynamic (2.5+1)D sub-graphs depending on whether the ob-
ject class of the underlying scene graph node usually moves
in real world (e.g., a person class is dynamic, while a ta-
ble class is considered static), (ii) merge the corresponding
static sub-graph nodes across frames based on their spatio-
temporal proximity, thereby removing the node redundancy,
and (iii) retain the nodes of the dynamic sub-graph from
the original scene graph. As the dynamic sub-graph nodes
are expected to not only capture the frame-level semantics,
but to also potentially involve object actions (e.g., person
picking a bottle), we enrich each dynamic graph node with
motion features alongside its object-level feature representa-
tion. Thus, our proposed (2.5+1)D scene graph representa-
tion approximately summarizes the spatio-temporal activity
happening in a scene in a computationally efficient frame-
work.

The use of such a (2.5+1)D graph representation allows
for developing rich inference schemes for VQA tasks. For
example, to capture the interaction of a person with a static
object in the scene, the inference algorithm needs to at-
tend to regions in the (2.5+1)D graph where the spatio-
temporal proximity between the respective graph nodes in-
crease. Leveraging this intuition, we propose a hierarchical
latent embedding of the (2.5+1)D graph where the graph
edges are constructed via varied spatio-temporal proximi-
ties, thereby capturing the latent embeddings of the graph at
multiple levels of granularity. We use such a graph within
a Transformer reasoning pipeline (Vaswani et al. 2017) and
conditioned on the VQA questions to retrieve the correct an-
swer.

To validate the effectiveness of our approach, we present
experiments on two recent video QA datasets, namely:
(i) the NExT-QA dataset (Xiao et al. 2021) and (ii) the
QA task of the audio-visual scene aware dialog (AVSD)
dataset (Alamri et al. 2019a). Our results on these datasets
show that our proposed framework leads to about 4× speed
up in training, while pruning 25–50% graph nodes, and
showcases superior QA accuracy against recent state-of-the-
art methods.

Related Work
We note that visual question answering has been a very ac-
tive research area in the recent times, and thus interested
readers may refer to excellent surveys such as (Teney et al.
2018; Wu et al. 2017). In the following, we restrict our lit-

erature review to prior methods that are most similar to our
contributions.

Scene graphs for QA: Since the seminal work of (John-
son et al. 2015) in using scene graphs as a rich representa-
tion of an image scene, there have been extensions of this
idea for video QA and captioning tasks (Herzig et al. 2019;
Wang et al. 2018; Jang et al. 2017; Tsai et al. 2019b; Gird-
har et al. 2019; Cherian et al. 2020). Spatio-temporal scene
graphs are combined with a knowledge distillation objective
for video captioning in (Pan et al. 2020). Similarly, video
scene graphs are combined with multimodal Transformers
for video dialogs and QA in (Geng et al. 2021). In (Jiang
et al. 2019), a graph alignment framework is proposed that
uses graph co-attention between visual and language cues
for better video QA reasoning. In (Fan et al. 2019), a multi-
step reasoning pipeline is presented that attends to visual and
textual memories. We note that scene graphs have been ex-
plored for various action recognition tasks as well. For ex-
ample, video action graphs are presented in (Bar et al. 2020;
Rashid, Kjellstrom, and Lee 2020; Wang and Gupta 2018).
Action Genome (Ji et al. 2020; Cong et al. 2021) charac-
terizes manually annotated spatio-temporal scene graphs for
action recognition. In contrast to these prior methods, we
seek a holistic and potentially minimal representation of a
video scene via pseudo-3D scene graphs for the QA task.

3D scene graphs: Very similar to our motivations towards a
comprehensive scene representation, 3D scene graphs have
been proposed in (Armeni et al. 2019). However, their focus
is on efficient annotation and collection of such graphs from
3D sensors. Similarly, more recent efforts such as (Zhang
et al. 2021; Wu et al. 2021) also improvises the construc-
tion of 3D scene graphs from RGBD scans, while our focus
is on constructing pseudo-3D graphs leveraging recent ad-
vancements in 2D-to-3D methods. We note that while pre-
cise 3D scene graphs may be important for several tasks such
as robot navigation or manipulation, they may not be crucial
for reasoning tasks such as what we consider in this paper,
and for such tasks approximate 3D reasoning may be suffi-
cient. We also note that 3D graphs have been explored for
video prediction tasks in (Tung et al. 2020), however in a
controlled setting.

Graph Transformers: Similar to our contribution, connec-
tions between graphs and Transformers have been explored
previously. For example, (Choromanski et al. 2021) has ex-
plored long-range attention using kernelized Transformers,
while (Tsai et al. 2019a) presents a kernel view of Trans-
former attention, and (Bello 2021) introduces long-range
attention using lambda layers that captures position and con-
tent interactions. While there are some similarities between
these works and ours in the use of kernels and positional
details in computing the similarity matrix within a Trans-
former, our objective and goals are entirely different from
these works. Specifically, our proposed architecture is to
represent a pseudo-3D scene at multiple levels of spatio-
temporal granularity for a reasoning task, which is entirely
different from the focus of these prior works.
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Figure 1: A schematic illustration of our proposed (2.5+1)D video QA reasoning pipeline.

Proposed Method
In this section, we first present our setup for constructing
(2.5+1)D scene graphs for a given video sequence, then
explain our hierarchical spatio-temporal Transformer-based
graph reasoning pipeline. See Fig. 1 for an overview of our
framework.

Problem Setup
We assume that we have access to a set of N training video
sequences, S = {S1, S2, . . . , SN}, where the i-th video
consists of ni frames. In the following, we eliminate the sub-
scripts for simplicity, and use S to denote a generic video
sequence from S that has n frames. We assume that each
video S is associated with at least one question Q, which is
an ordered tuple of words from a predefined vocabulary (tok-
enized and embedded suitably). We define the task of video
QA as that of retrieving a predicted answer, Apred, from a
collection of ` possible answers,A = {A1, A2, . . . , A`}. Of
these ` answers, we denote the ground-truth answer as Agt.
We propose to represent S as a (2.5+1)D spatio-temporal
scene graph. The details of this process are described in the
following subsections.

2D Scene Graph Construction
Let G = (V, E) be a scene graph representation of a video
sequence S of length n frames, where V = V1∪V2∪· · ·∪Vn
denotes the set of nodes, each Vt denotes the subset of nodes
associated with frame t, and E ⊆ V × V denotes the set
of graph edges (which are computed as part of our hierar-
chical Transformer framework explained later). To construct
the scene graph G, we follow the standard pipeline using an
object detector. Specifically, we first extract frames from the
video sequence and pass each frame as input to a Faster R-
CNN (FRCNN) object detection model (Ren et al. 2015).
The FRCNN implementation that we use is pre-trained on
the Visual Genome dataset (Anderson et al. 2018) and can
thus detect 1600 object classes, which include a broad array
of daily-life indoor and outdoor objects. In every frame, the
FRCNN model detects m objects, each of which is repre-
sented by a graph node v that contains a tuple of FRCNN
outputs (fov , cv, bboxv), where fov is the object’s neural rep-
resentation, cv is its label in the Visual Genome database,
and bboxv denotes its bounding box coordinates relative

to the respective frame. Thus, for a video sequence with n
frames, we will have mn graph nodes.1 However, as alluded
to above, several of these graph nodes may be redundant,
thus motivating us to propose our (2.5+1)D scene graphs.

(2.5+1)D Scene Graphs
Suppose D : Rh×w×3 → Rh×w×4 denotes a neural network
model that takes as input an RGB image and produces as
output an RGBD image, where the depth is estimated. For
a video frame (image) I , further let dI : R2 → R3 map a
2D pixel location (x, y) to a respective 3D coordinate, de-
noted p = (x, y, z). To implement D, we use an off-the-
shelf pre-trained 2D-to-3D deep learning framework. While
there are several options for this network (Fu et al. 2018;
Li et al. 2020), we use the MiDAS model (Ranftl et al.
2019), due to its ease of use and its state-of-the-art per-
formance in estimating realistic depth for a variety of real-
world scenes. For a scene graph node v ∈ Vt extracted from
video frame t (image It), let bboxv denote the centroid of
the node’s detected bounding box. To enrich the scene graph
with (2.5+1)D spatio-temporal information, we expand the
representation of node v to include its depth and frame in-
dex by updating the tuple for v to be (fov , cv, bboxv, pv, t),
where pv = dIt(bboxv) can be interpreted as the 3D cen-
troid of the bounding box. We denote the enriched graph
as G3.5D.

Static and Dynamic Sub-graphs
While the nodes in G3.5D are equipped with depth, they are
still grounded in every video frame, which is potentially
wasteful. This is because many of these nodes may corre-
spond to objects in the scene that seldom move in the real
world. If we can identify such objects, then we can prune
their redundant scene graph nodes. To this end, we segre-
gated the Visual Genome classes into two distinct categories,
namely (i) a category Cs of static scene objects, such as ta-
ble, tree, sofa, television, etc., and (ii) a category Cd of dy-

1While this may appear not too big a memory footprint, note
that each visual feature fo

v is usually a 2048D vector. Thus, with
m = 36, videos of length n ≈ 50 frames, and a batch size of 64,
we would need about 15GB of GPU memory for forward propaga-
tion alone.
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namic objects, such as people, mobile, football, clouds, etc.
While the visual appearance of a static object may change
from frame to frame, we assume that its semantics do not
change and are sufficient for reasoning about the object in
the QA task. However, such an assumption may not hold for
a dynamic object, such as a person who may interact with
various objects in the scene, and each interaction needs to
be retained for reasoning. Using this class segregation, we
split the graph G3.5D into two distinct scene graphs, Gs and
Gd, corresponding to whether the object label cv of a node
v ∈ V belongs to Cs or Cd, respectively.

Our next subgoal is to register G3.5D in a shared 3D space.
There are two key challenges in such a registration, namely
that (i) the objects in the scene may move, and (ii) the cam-
era may move. These two problems can be tackled easily
if we extract registration features only from the static sub-
graph nodes of the frames. Specifically, if there is camera
motion, then one may find a frame-to-frame 3D projection
matrix using point features, and then use this projection ma-
trix to spatially map all the graph nodes (including the dy-
namic nodes) into a common coordinate frame.

While this setup is rather straightforward, we note that the
objects in the static nodes are only defined by their bound-
ing boxes, which are usually imprecise. Thus, to merge two
static nodes, we first consider whether the nodes are from
frames that are sufficiently close in time, with the same
object labels, and with the intersection over union (IoU)
of their bounding boxes above a threshold γ. Two nodes
vt, vt′ ∈ Gs, from frames with timestamps t 6= t′ (where
|t − t′| < δ) are candidates for merging if the following
criterion C is met:

C(vt, vt′) :=
(
cvt =cvt′

)
∧IoU(bboxvt , bboxvt′ ) > γ. (1)

If a static node vt has multiple candidate nodes in the pre-
vious δ frames that satisfy criterion (1), the candidate with
the nearest 3D centroid is selected as the matching node that
will be merged:

match(vt) = argmin
vt′ ∈ V st−δ ∪ · · · ∪ V st−1
such that C(vt, vt′) = 1

∥∥pvt − pvt′∥∥, (2)

where V st = {vt ∈ Vt | vt ∈ Gs} denotes the set of all
static nodes from frame t. Since (2) chooses the best match
from the past δ frames, rather than just from frame t − 1, it
can tolerate more noise in the estimates of the depth and the
bounding boxes associated with the graph nodes.

We can apply this matching process recursively in order
to determine larger equivalence classes of matched nodes to
be merged, where an equivalence class is defined as the set
of all nodes that share a single common ancestor. We ac-
complish this by looping over the frames t in temporal or-
der, where for each node vt for which match(vt) exists, we
assign ancestor(vt) = ancestor

(
match(vt)

)
. This proce-

dure is detailed in Algorithm 1. Finally, for each ancestor, all
nodes that share that ancestor are merged into a single node.
The feature fov associated with the new node v is obtained
by averaging the features from all of the nodes that were
merged into it. We use the 3D coordinate p of the parent
node for all the child nodes that are merged into it. Let Gs′

Algorithm 1: Identifying common ancestors for merging

for v1 ∈ V s1 do
ancestor(v1) := v1

for t = 2 to n do
for vt ∈ V st do

if match(vt) exists then
ancestor(vt) := ancestor

(
match(vt)

)
denote the new reduced version of Gs after each equivalence
class of matched nodes has been merged into one node.

Motion Features
To recap, so far we have segregated the graph G3.5D into
Gs and Gd, where the nodes of Gs have been pruned and
registered into a common shared 3D space to form an up-
dated graph Gs′ , while the spatial locations of the nodes in
the dynamic graph Gd have been updated via transforma-
tion matrices produced from Gs′ into the same coordinate
frame. An important step missing in our framework is that
the dynamic sub-graph that we have constructed so far is still
essentially a series of graph nodes produced from FRCNN,
which is a static object detection model – that is, the nodes
are devoid of any action features that are perhaps essential
in capturing how a dynamic node acts within itself and on
its environment (defined by the static objects). To this end,
we propose to incorporate motion features into the nodes
of the dynamic graph. Specifically, we use the I3D action
recognition neural network (Carreira and Zisserman 2017),
pre-trained on the Kinetics-400 dataset to produce convolu-
tional features from short temporal video clips. These fea-
tures are then ROI-pooled using the (original) bounding
boxes associated with the dynamic graph nodes. Suppose
favt = ROIPool(I3D(st), bboxvt), where st denotes a short
video clip around the t-th video frame of a video S, then we
augment the FRCNN feature vector by concatenating the ob-
ject and action features as foav ← fov || fav , for all v ∈ Vd,
where || denotes feature concatenation.

Hierarchical Graph Embedding
Using our (2.5+1)D scene graph thus constructed, we are
now ready to present our video QA reasoning setup. As the
questions in a QA task may need reasoning at various levels
of abstraction (e.g., Q: what is the color of a person’s shirt?
A: red, Q: why did the boy cry?: A: Because the ball hit him,
etc.), we decided to design our reasoning pipeline so that it
can capture such a hierarchy. To set the stage, let us review a
few basics on Transformers in our context. In the sequel, we
assume the set of nodes in G3.5D is given by: V ′ = Vs′ ∪Vd.
Transformers: Suppose F ∈ Rr×|V ′| denotes a matrix of
features computed from the static and dynamic graph nodes
of a video S via projecting their original features into latent
spaces of dimensionality r using multi-layer perceptrons,
MLPs and MLPd; i.e., F = MLPs(f

o
Vs′

) ||MLPd(f
oa
Vd
).

If Qi
F ,K

i
F ,V

i
F ∈ Rrk×|V ′| denote the i-th k-headed query,

key, and value embeddings of F respectively, where rk =
r/k, then a multi-headed self-attention Transformer encoder
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produces features F ′ given by:

F ′ :=
k

||
i=1

softmax

(
Qi
FK

i
F
>

√
rk

)
Vi
F . (3)

(2.5+1)D-Transformer: We note that in a standard Trans-
former described in (3), each output feature in F ′ is a mix-
ture embedding of several input features, as decided by the
similarity computed within the softmax. Our key idea in
(2.5+1)D-Transformer is to use a similarity defined by the
spatio-temporal proximity of the graph nodes as character-
ized by our (2.5+1)D scene graph. For two nodes v1, v2 ∈
V ′, let a similarity kernel κ be defined as:

κ(v1, v2|σS , σt) = exp

(
−‖pv1 − pv2‖

2

σ2
S

−
‖tv1 − tv2‖1

σT

)
,

(4)
capturing the spatial-temporal proximity between v1 and v2
for scales σS and σT for spatial and temporal cues, respec-
tively. Then, our (2.5+1)D-Transformer is given by:

F ′3.5D :=
k

||
i=1

softmaxK(V ′, V ′|σS , σT )Vi
F , (5)

where we use K to denote the spatio-temporal kernel matrix
constructed on V ′ using (4) between every pair of nodes.
Such a similarity kernel merges features from nodes in the
graph that are spatio-temporally nearby – such as for exam-
ple, a person interacting with an object, or the dynamics of
objects in Gd. Further, the kernel is computed on a union of
the graph nodes in Gs′ and Gd, and thus directly captures the
interactions between the static and dynamic graphs.
Hierarchical (2.5+1)D-Transformer: Note that our
(2.5+1)D-Transformer in (5) captures the spatio-temporal
features at a single granularity as defined by σS and σT .
However, we can improve this representation towards a
hierarchical abstraction of the scene graph at multiple gran-
ularities. Let σjS , σ

j
T , j = 1, . . . , η be a set of scale, and let

MLPj , j = 1, . . . , η be a series of multilayer perceptrons,
then combining (3) and (5), we define our hierarchical
(2.5+1)D-Transformer producing features FH3.5D as:

FH3.5D=

η∑
j=1

MLP
j

k

||
i=1

(
softmaxK(V ′, V ′|σjS ,σ

j
T )V

i
F

)
.

(6)

In words, (6) computes spatial-temporal kernels at vari-
ous bandwidths and merges the respective scene graph node
features and embeds them into a hierarchical representation
space via the MLPs. In practice, we find that it is useful to
combine the kernel similarity in (6) with the feature simi-
larity in (3) and add (6) with (3) (after an MLP) to produce
the final graph features. Fig. 2 shows the architecture of the
proposed Transformer.
Question Conditioning: For the video QA task, we first
use a standard Transformer architecture in (3) to produce
multi-headed self-attention on the embeddings of the given

(2.5+1)D scene graph
Node Features spatio-temporal positions

Q K V V

Multi-head 
Attention

Multi-head 
Kernel Attention

𝑝! 𝑝!"
𝜎#$, 𝜎%$

𝑀𝐿𝑃$

Add & Norm

Feed Forward

Add & Norm

Nx

𝑀𝐿𝑃

𝑖 = 1,2, … , 𝜂

Figure 2: The architecture of the proposed Hierarchical
(2.5+1)D-Transformer for encoding (2.5+1)D scene graphs.
The left module in red (N×) is the standard Transformer.

question. This step precedes attending the encoded ques-
tions on FH3.5D via a multi-headed cross-attention Trans-
former, followed by average pooling to produce question-
conditioned features FQ3.5D. In this case, the source to the
cross-Transformer is the set of FH3.5D features, while the tar-
get sequence corresponds to the self-attended question em-
beddings.
Training Losses: To predict an answer Apred for a given
video S and a question Q, we use the question-conditioned
(2.5+1)D-Transformer features produced in the previous
step and compute its similarities with the set of candidate
answers. Specifically, the predicted answer is defined as
Apred = softmax(FQ3.5D

>λ(A)), where λ(A) represents
embeddings of candidate answers. For training the model,
we use cross-entropy loss between Apred and the ground
truth answer Agt. Empirically, we find that rather than com-
puting the cross-entropy loss against one of ` answers, if we
compute the loss against b×` answers produced via concate-
nating all answers in a batch, that produced better gradients
and training. Such a concatenation is usually possible as the
text answers for various questions are often different.

Experiments

In this section, we provide experiments demonstrating the
empirical benefits of our proposed representation and infer-
ence pipeline. We first review the datasets used in our ex-
periments, following which we describe in detail our setup,
before presenting our numerical and qualitative results.
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Datasets
We used two recent video QA datasets for evaluating our
task, namely NExT-QA (Xiao et al. 2021) and AVSD-
QA (Alamri et al. 2019a).
NExT-QA Dataset is a very recent video question answer-
ing dataset that goes beyond traditional VQA tasks, and in-
corporates a significant number of why and how questions,
that often demand higher level abstractions and semantic
reasoning about the videos. The dataset consists of 3,870
training, 570 validation, and 1,000 test videos. The dataset
provides 34,132, 4,996, and 8,564 multiple choice questions
in the training, validation, and test sets respectively, and the
task is to select one of the five candidate answers. As the
test video labels are with-held for online evaluation, we re-
port performances on the validation set in our experiments.
We use the code provided by the authors of (Xiao et al. 2021)
for our experiments, which we modified to incorporate our
Transformer pipeline.
AVSD-QA Dataset is a variant of the Audio-Visual Scene
Aware Dialog dataset (Alamri et al. 2019b), repurposed for
the QA task. The dataset consists of not only QA pairs, but
also provides a human generated conversation history, and
captions for each video. In the QA version of this dataset,
the task is to use the last question from dialog history about
the video to select an answer from one of a hundred candi-
date answers. The dataset consists of 11,816 video clips and
118,160 QA pairs, of which we follow the standard splits
to use 7,985, 1,863, and 1,968 clips for training, validation,
and test. We report the performances on the test set. For this
dataset, we used an implementation that is shared by the au-
thors of (Geng et al. 2021) and incorporated our modules.

Experimental Setup and Training
Visual Features: As mentioned earlier, we use public imple-
mentations for constructing our scene graphs and (2.5+1)D
graphs, these steps being done offline. Specifically, the video
frames are sub-sampled at fixed 0.5 fps for constructing the
scene graphs using Faster RCNN, and each frame is pro-
cessed by the MiDAS pre-trained model for computing the
RGBD images. The FRCNN and depth images are then
combined in a pre-processing stage for pruning the scene
graph nodes as described earlier. Out of 1600 object classes
in the Visual Genome dataset, we segregated 1128 of the
classes as dynamic and used those for constructing the dy-
namic scene graph. Next, we used the I3D action recogni-
tion model (Carreira and Zisserman 2017) to extract motion
features from the dynamic graph nodes. For this model, we
used the videos at their original frame rate, but averaged the
spatio-temporal volumes via conditioning on the pruned FR-
CNN bounding boxes for every dynamic object anchored at
the frame corresponding to the frame rate used in the ob-
ject detection model. This setup produced 2048D features
for the static graph nodes and (2048+1024)D features for
the dynamic graph nodes. These features are then separately
projected into a latent space of 256 for NExT-QA and 128
dimensions for AVSD-QA datasets on which the Transform-
ers operate.
Text Features: For the NExT-QA dataset, we use the pro-
vided BERT features for every question embedding. These

are 768D features, which we project into 256D latent space
to be combined with our visual features. Each candidate an-
swer is concatenated with the question, and BERT features
are computed before matching them with the visual features
for selecting the answer. For NExT-QA, we also augment the
BERT features with the recent CLIP features (Radford et al.
2021) that are known to have better vision-language align-
ment. For AVSD-QA, we used the provided implementation
to encode the question and the answers using an LSTM into
a 128D feature space. We used the same LSTM to encode
the dialog history and the caption features; these features are
then combined with the visual features using multi-headed
shuffled Transformers as suggested in (Geng et al. 2021).
Evaluation Protocol: We used the classification accuracy
on NExT-QA, while we use mean retrieval rank on the
AVSD-QA dataset; the latter measure ranks the correct an-
swer among the selections made by an algorithm and reports
the mean rank over the test set. Thus, a lower mean rank sug-
gests better performance.
Training Details: We use an Adam optimizer for training
both the models. For NExT-QA, we used a learning rate of
5e-5 as suggested in the paper with a batch size of 64 and
trained for 50 epochs, while AVSD-QA used a learning rate
of 1e-3 and a batch size of 100, and trained for 20 epochs.
Hyperparameters: There are two key hyperparameters in
our model, namely (i) the number of spatial abstraction
levels in the hierarchical Transformer, and (ii) the band-
widths for the spatio-temporal kernels. We found that for
the NExT-QA dataset, a four layer hierarchy with σS ∈
{0.01, 0.1, 1, 10} showed the best results, while for AVSD-
QA, we used σS ∈ {1, 10}. As for the temporal scale, we di-
vided the frame index tv by the maximum number of video
frames in the dataset (making the temporal span of the video
to be in the unit interval), and used σT = σS . We found that
using a larger number of hierarchical levels did not change
the performance for NExT-QA, while it showed slightly in-
ferior performance on AVSD-QA. For the Transformer, we
used a 4-headed attention for NExT-QA, and a 2-headed at-
tention for AVSD-QA.

Results
In this section, we provide numerical results of our approach
against state of the art, as well as analyze the contribution of
each component in our setup.
State-of-the-art Comparisons: In Tables 1 and 2, we com-
pare the performance of our full (2.5+1)D-Transformer
pipeline against recent state-of-the-art methods. Notably,
on NExT-QA we compare with methods that use spatio-
temporal models for VQA such as spatio-temporal reason-
ing (Jang et al. 2019), graph alignment (Jiang and Han
2020), hierarchical relation models (Le et al. 2020), against
which our proposed model shows a significant ∼4% im-
provement, clearly showing benefits. On AVSD-QA, as pro-
vided in Table 2, we compare against the state of the art
STSGR model (Geng et al. 2021), as well as older multi-
modal Transformers (Le et al. 2019), outperforming them in
the mean rank of the retrieved answer. We found that when
our AVSD-QA model is combined with other text cues (such
as dialog history and captions), the mean rank improves to
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What does the man in grey do after sitting down int the middle?
A1: talking on phone
A2: take the pipe
A3: smiling
A4: smell burger
A5: cross his legs
Where is the baby while him was fed milk?
A1: mobile
A2: in lady’s arm
A3: pillow
A4: baby trolley
A5: living room

why did he get up ?
GT answer: the man got up to start cleaning the plate
Our answer: he stands up so he can go over to the stove
Our rank = 4  STSGR rank = 20

GT: in lady’s arm
Ours: in lady’s arm
HGA: living room

GT: smell burger
Ours: smell burger
HGA: take the pipe 

Does she pick anything up from off the couch ?
GT answer: yes , she folds clothes that are on the couch
Our answer: yes , she folds clothes that are on the couch
Our rank = 1   STSGR rank = 11

Figure 3: Qualitative results: First two rows on NExT-QA and the last two on the AVSD-QA datasets. We compare to HGA (Fan
et al. 2019) on NExT-QA, and STSGR (Geng et al. 2021) on AVSD-QA datasets.

Method Acc. (%)↑
Spatio-Temporal VQA (Jang et al. 2019) 47.94
Co-Memory-QA (Gao et al. 2018) 48.04
Hier. Relation n/w (Le et al. 2020) 48.20
Multi-modal Attn VQA (Fan et al. 2019) 48.72
graph-alignment VQA (Jiang and Han 2020) 49.74

(2.5+1)D-Transformer (ours) 53.40

Table 1: Comparisons to the state of the art on the NExT-
QA dataset. Results for the various competitive methods are
taken from (Xiao et al. 2021).

Method Mean Rank ↓
Question Only (Alamri et al. 2019a) 7.63
Multimodal Transformers (Hori et al. 2019) 7.23
Question + Video (Alamri et al. 2019a) 6.86
MTN (Le et al. 2019) 6.85
ST Scene Graphs (Geng et al. 2021) 5.91

(2.5+1)D-Transformer (ours) 5.84

Table 2: Comparisons to the state of the art on the AVSD-QA
dataset. The prior results are taken from (Geng et al. 2021).

nearly 1.4, suggesting a significant bias between the ques-
tions and the text-cues. Thus, we restrict our analysis only
to using the visual features.

Ablation Studies
In Table 4, we provide an ablation study on the importance
of each component in our setup on both the datasets. Our
results show that without the static or the dynamic sub-
graphs, the performance drops. Without I3D features, the
performance drops significantly for both the datasets, un-
derlining the importance of motion features in the graph
pipeline. We find that without the hierarchical Transformer,

the performance drops from 53.4→52.9 on NExT-QA, and
5.84→5.97 on AVSD-QA. Further, the trick of using aug-
mented answers in the learning process as described in the
section on Training Losses seems to help improve the train-
ing of the models. We also evaluate the importance of ques-
tion conditioning, which appears to contribute to the final
performance. As our proposed pipeline is sequential in na-
ture, we may also study the performance via removing indi-
vidual modules from the pipeline. In Table 5 rows 1-4, we
show the results of this experiment. Our results show that our
proposed Transformer module leads to nearly 3% improve-
ment, and using the pseudo-depth improves by a further 1%.

In Table 6, we ablate on the performance of the hierar-
chy in the (2.5+1)D-Transformer. Specifically, we show re-
sults for various kernel scales and their combinations on the
NExT-QA dataset. The results suggest that including more
scales (i.e., hierarchies) leads to better modeling of the video
scene and better performance. We use only the (2.5+1)D-
Transformer for this experiment without using the combi-
nation with the standard Transformer to clearly separate out
the benefits.
Computational Benefits: In Table 5 last row, we further
show ablations on NExT-QA dataset, when the full set of
graph nodes are used for inference. As expected in this case,
the performance improves mildly, however our experiments
show that the time taken for every training iteration in this
case slows down 4-fold (from∼1.5 s per iteration to∼6 s on
a single RTX6000 GPU). In Table 7, we compare the number
of nodes in the static and dynamic graphs, and compare it to
the total number of nodes in the unpruned graph for both the
datasets. As the results show, our method prunes nearly 54%
of graph nodes on AVSD-QA dataset and 24% on NExT-
QA. We believe the higher pruning ratio for AVSD-QA is
perhaps due to the fact that most of its videos do not contain
shot-switches and use a stationary camera, which is not the
case with NExT-QA.
Question-Category Level Performance: In Table 3, we
compare the performance of our (2.5+1)D approach on var-
ious question categories in the NExT-QA dataset. Specifi-
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Method Why How Prev&Next Present Count Location Other Overall

STVQA, IJCV’19 45.37 43.05 47.52 51.73 43.50 65.42 53.77 47.94
CoMem, CVPR’18 46.15 42.61 48.16 50.38 41.81 67.12 51.80 48.04
HCRN, CVPR’20 46.99 42.90 48.16 50.83 40.68 65.42 49.84 48.20
HME, CVPR’19 46.52 45.24 47.52 49.17 45.20 73.56 51.15 48.72
HGA, AAAI’20 46.99 44.22 49.53 52.49 44.07 72.54 55.41 49.74

Ours 52.39 48.36 50.91 54.28 46.02 77.08 58.31 53.4
% improvement +5.4 +3.12 +1.38 +1.79 +0.82 +3.52 +2.91 +3.66

Table 3: Comparison of our answer selection on various categories in NExT-QA dataset against other recent methods. The
numbers for competing methods are taken from (Xiao et al. 2021).

NExT-QA AVSD-QA

Ablation Acc (%)↑ mean rank↓
No dynamic graph 52.49 5.97
No static graph 53.00 6.03
No I3D 52.65 6.09
No hier. kernel 52.90 5.97
No answer augment 49.98 5.92
No question condition 50.39 5.96

Full Model 53.40 5.84

Table 4: Ablation studies on NExT-QA and AVSD-QA
datasets after removing a sub-module from the full pipeline.

# Ablation on NExT-QA Acc. (%)↑
1 Txr + I3D + FRCNN + QC 47.9
2 (1) + AA 49.8
3 Txr + V(2+1)D Txr + AA + QC 52.4
4 Txr + V(2.5+1)D Txr + AA + QC (full) 53.4
5 (4) using all nodes (no pruning) 53.5

Table 5: Ablation studies on NExT-QA by removing mod-
ules in our pipeline. Notation: Txr: standard Transformer;
I3D+FRCNN: averaged I3D and FRCNN features per frame
(no graph); AA: Answer augmentation; QC: Question-
conditioning; V(2+1)D Txr: Scene graph without depth;
V(2.5+1)D Txr: Scene graph using (pseudo-) depth.

Hier. levels bandwidths σ Accuracy
1-level 0.01 52.13
2-levels {0.01, 0.1} 52.58
3-levels {0.01, 0.1, 1.0} 52.97
4-levels {0.01, 0.1, 1.0, 10.0} 53.20
5-levels {0.01, 0.1, 1.0, 10, 20.0} 53.00

Table 6: Ablation study on NExT-QA using different spatio-
temporal hierarchies defined by the kernel bandwidth σ.

AVSD-QA NExT-QA

Full graph 502.43 656.30
Static graph 97.26 68.68
Dynamic graph 136.10 430.83

% node reduction 53.6 23.9

Table 7: Computational benefits of the proposed approach.
The numbers indicate the average number of graph nodes
per video sequence in each dataset.

cally, the dataset categorizes its questions into 7 reasoning
classes: (i) why, (ii) how, (iii) previous&next, (iv) present
(v) counting, (vi) spatial location related, and (vii) all other
questions. From Table 3, we see that our proposed repre-
sentation fares well in all the categories against the state of
the art. More interestingly, our method works significantly
outperforms to the next best scheme HGA (Jiang and Han
2020), by more than 5% on why-related questions and 3.5%
on location-related questions, perhaps due to better spatio-
temporal localization of the objects in the scenes as well as
the spatio-temporal reasoning.
Qualitative Results: In Fig. 3, we present qualitative QA
results and compare against the responses produced by two
recent methods. More results and visualizations are provided
in the extended paper (Cherian et al. 2022).

Conclusions
In this paper, we presented a novel (2.5+1)D representa-
tion for the task of video question answering. We use 2.5D
pseudo-depth of scene objects to be disentangled in 3D
space, allowing the pruning of redundant detections. Using
the 3D setup, we further disentangled the scene into a set
of dynamic objects that interact within themselves or with
the environment (defined by static nodes); such interactions
are characterized in a latent space via spatio-temporal hierar-
chical transformers, that produce varied abstractions of the
scene at different scales. Such abstractions are then com-
bined with text queries in the video QA task to select an-
swers. Our experiments demonstrate state-of-the-art results
on two recent and challenging real-world datasets. Going
forward, we plan to explore the use of our setup in audio-
visual context.
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