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Abstract
Event cameras asynchronously output the polarity values of
pixel-level log intensity alterations. They are robust against
motion blur and can be adopted in challenging light condi-
tions. Owing to these advantages, event cameras have been
employed in various vision tasks such as depth estimation, vi-
sual odometry, and object detection. In particular, event cam-
eras are effective in stereo depth estimation to find correspon-
dence points between two cameras under challenging illumi-
nation conditions and/or fast motion. However, because event
cameras provide spatially sparse event stream data, it is diffi-
cult to obtain a dense disparity map. Although it is possible
to estimate disparity from event data at the edge of a structure
where intensity changes are likely to occur, estimating the
disparity in a region where event occurs rarely is challenging.
In this study, we propose a deep network that combines the
features of an image with the features of an event to generate
a dense disparity map. The proposed network uses images
to obtain spatially dense features that are lacking in events. In
addition, we propose a spatial multi-scale correlation between
two fused feature maps for an accurate disparity map. To val-
idate our method, we conducted experiments using synthetic
and real-world datasets.

Introduction
Stereo matching is the problem of determining correspon-
dence points across two different images. In the rectified
stereo camera setup with known parameters, the objective is
to determine the horizontal pixel displacement between the
left and right images, called disparity. The depth can be cal-
culated using the parameters between the two cameras and
the disparity. Therefore, stereo matching is important in 3D
structure reconstruction (Yao et al. 2018) and autonomous
driving cars (Yang et al. 2019).

Stereo matching conventionally employs frame-based im-
ages with RGB channels. Most of recent methods adopt
CNN-based deep learning (Zhang et al. 2020, 2019; Kendall
et al. 2017; Guo et al. 2019; Chang and Chen 2018; Yang
et al. 2018; Tulyakov, Ivanov, and Fleuret 2018) and show
reasonable performance. Their primary objective is to effec-
tively extract features from input images, use context fea-
tures for stereo, and guide the model to learn the correla-
tion between the two features generated from input images.
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They adopt various embedding, matching, and regulariza-
tion modules for the stereo model to solve such problems.
Although such frame-based stereo has achieved successful
performance, the effects of motion blur on estimation and
the difficulty of operations in challenging light scenes re-
main.

Compared with conventional frame-based cameras, event-
based cameras provide information on the amount of tem-
poral change in each pixel value. Data with such informa-
tion are called events. Events are asynchronous stream data
with the information about the spatial position, polarity, and
timestamps of intensity changes. Some event cameras (e.g.,
DAVIS346 (Brandli et al. 2014)) also provide aligned active
pixel sensor (APS) intensity images. Event cameras provide
event data with low latency (without motion blur) and have
the advantage of a high dynamic range, which enables oper-
ation under extreme lighting conditions, and therefore event
cameras can be more suitable for real-world applications.

Recent stereo matching studies with two event cameras
(Tulyakov et al. 2019; Ahmed et al. 2021) adopt CNN struc-
tures as frame-based stereo matching methods. They embed
event data from a stream format to a queue format, con-
sidering both spatial and temporal coordinates. The event
sequence that has passed through temporal aggregation be-
comes an event image of size c × h × w, thus facilitating
standard 2D convolution. They effectively estimated the dis-
parity by matching the correspondence points between the
two event cameras. However, obtaining a dense disparity
map solely with sparse event data as input is an ill-posed
problem.

In this study, we propose a novel end-to-end deep stereo
architecture to generate a dense disparity map by combin-
ing the event features with the image features. Our method
adopts both the image and event streams from the event cam-
era as inputs. The proposed method creates a dense disparity
map by effectively aggregating the two types of features us-
ing the proposed feature fusion module.

The main contributions of our work can be summarized
as follows:
• We propose the novel end-to-end architecture of deep

dense stereo, combining the event data and image. To
fuse the two input data with different modalities into one
feature, we propose a feature fusion module.

• We propose a method for generating a correlation volume
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considering multi-scale features via spatial correlation.
The multi-scale design considers the correlation between
features from coarse to fine features.

• We propose a novel branch that uses events to obtain
edge-related features from sparse ground-truth disparity.
This branch is only adopted for training to reduce the
memory footprint of the inference.

• We provide a new synthetic dataset for the event-image
fusion stereo. Since no actual event data aligned with
RGB images for stereo exist, previous studies of event
stereo have solely compared with frame-based stereo us-
ing intensity images. In this work, for comparison with
stereo method using RGB images, we generated syn-
thetic data.

Related Works
Frame-based Stereo Depth Estimation
The most successful methods of early studies using conven-
tional RGB images have adopted end-to-end deep learning
networks (Kendall et al. 2017; Zhong, Dai, and Li 2017; Xu
and Zhang 2020; Liang et al. 2018; Zhang et al. 2020, 2019;
Guo et al. 2019; Chang and Chen 2018; Yang et al. 2018;
Tulyakov, Ivanov, and Fleuret 2018). The networks gen-
erally comprise embedding, matching, and regularization
modules. The embedding modules applied as shared weights
for the left and right images are designed to obtain context
features that are difficult to obtain at a pixel-level intensity
from the image. In the matching modules, a substantially
simple method exists for concatenating the shifted right fea-
tures of each disparity value for the left feature (Zhong, Dai,
and Li 2017; Chang and Chen 2018; Kendall et al. 2017).
Alternatively, the matching module obtains a correlation by
mapping the right features corresponding to each disparity
of the left feature (Xu and Zhang 2020; Liang et al. 2018;
Zhang et al. 2020, 2019; Guo et al. 2019; Yang et al. 2018).
Regularization modules use 2D or 3D convolution for the
disparity regression of the cost volume or correlation vol-
ume. However, the effects of motion blur and lightning on
depth estimation remains a problem.

Event-based Stereo Depth Estimation
Event-based stereo matching methods can be divided into
two groups: those that perform stereo-based depth esti-
mation using the hand-crafted method representing events
with image-based representation (Kogler, Humenberger, and
Sulzbachner 2011; Camunas-Mesa et al. 2014; Zou et al.
2016, 2017; Piatkowska, Belbachir, and Gelautz 2013; Ro-
gister et al. 2011; Zhu, Chen, and Daniilidis 2018; Pi-
atkowska et al. 2017; Rebecq et al. 2017; Cho, Jeong, and
Yoon 2021), and those that perform stereo matching us-
ing learning-based methods via a queue-based representa-
tion (Tulyakov et al. 2019; Ahmed et al. 2021). Early hand-
crafted methods used filter-based or window-based tech-
niques to determine corresponding events (Camunas-Mesa
et al. 2014; Zou et al. 2016, 2017). (Piatkowska, Belbachir,
and Gelautz 2013) adopted the heuristic cooperative regu-
larization by defining the spatio-temporal neighborhood for

each event. Others predicted the depth using multi-view
stereo with the known pose of the event camera (Rebecq
et al. 2017; Cho, Jeong, and Yoon 2021). They succeeded
in generating a depth map using a spatial-temporal sparse
event camera; however, it was not dense, and the perfor-
mance was inferior to that of the learning-based method.
(Tulyakov et al. 2019) proposed a novel embedding of a 4D
queue containing both temporal and spatial information of
event data for deep learning. The queue that has undergone
temporal aggregation becomes a 3D vector such as an im-
age, thus facilitating the application of 2D convolution. Su-
pervised learning of queue-based events accumulated for a
certain period can create a dense depth map. (Ahmed et al.
2021) improved the performance of deep event stereo by em-
ploying the event features used in reconstructing the images.
However, the event-only approach has domain-specific (e.g.,
detailed textures) problems.

In this study, we propose a deep dense stereo matching
method using both events and images. To the best of our
knowledge, this is one of the first attempts to combine events
with images for stereo matching. Our method uses the event
for the edge of the structure, which contains powerful infor-
mation and determines match points in the space of the less
texture by using the information of the image.

Proposed Methods
The proposed model comprises six sub-networks: an event
embedding network, feature extractor, fusion module, multi-
scale correlation, 3D aggregation, and branch for sparse dis-
parity. As illustrated in Fig. 1, as an input to the model, it
takes images and events from the event camera in a stereo
setup. The event embedding network applied to the event
stream creates an event descriptor via 2D convolution. Event
and image features generated by the feature extractor are
then aggregated using the fusion module. Features fused at
various scales become 4D cost volumes via multi-scale cor-
relation. Then, a dense disparity map is extracted by a 3D ag-
gregation network comprising 3D convolution. During train-
ing, a sparse branch comprising multi-scale correlation and
3D aggregation predicts sparse disparity solely for the loca-
tions where the events occurred recently.

Event Embedding Network
We follow the event sequence embedding (Tulyakov et al.
2019) to represent both the spatial and temporal information
of an event in an image-like form. To apply temporal ag-
gregation methods, event sequence embedding contains the
first-in first-out (FIFO) queue structure that efficiently accu-
mulates events. The accumulated event queue is a 4D tensor
of size H×W ×κ×2, where κ denotes the queue capacity.
In this study, we adopted κ = 7, which exhibited the best re-
sults in (Tulyakov et al. 2019). After the kernel network with
a continuous fully connected layer, the event queue becomes
an event image with a size of H ×W × 32.

Feature Extractor
The intensity and event images have sizes of H × W × 1
(size of H ×W × 3 for RGB image) and H ×W × 32, re-
spectively. For the feature extractor, we adopt a ResNet-like
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Figure 1: Overall framework of the proposed method. The proposed network employs both images and events from a stereo
event camera as inputs. The event stream data are passed through an embedding module to enable the use of a CNN. The image
feature extractor shares weights between the image feature extractor, which is also true for event feature extractors. The features
of various scales are passed through the fusion and correlation modules to generate a cost volume. F2,L, F1,L, F0,L represent
the multi-scale features of the left output of the fusion module, and F2,R, F1,R, F0,R represent the multi-scale features of the
right output of the fusion module. The cost volume generated from the spatial multi-scale correlation is passed through a 3D
aggregation network for dense disparity extraction. The dotted line is solely used to train the model, and it creates a sparse
disparity using the event features alone.

network with half dilation used in (Guo et al. 2019) to in-
crease the receptive field. Feature extractors of images and
events have the same structure, except for the first convolu-
tion layer, owing to the different input channels in events and
images. The left event and left image feature extractors share
weights with the right event and right image feature extrac-
tors, respectively. The feature extractor generates three fea-
ture maps of different sizes as outputs in sizes of H×W×32,
H/2×W/2× 64, and H/4×W/4× 128.

Fusion Module
Instead of directly concatenating the event feature with
the image feature, we fuse the transfer between event and
image features with different modalities. Inspired by the
pose-attentional transfer network (PATN) (Zhu et al. 2019),
which comprises several cascaded pose-attentional transfer
blocks, we adopt the event with image-attentional transfer

(EIAT). As illustrated in Fig. 1, the fusion module takes
multiple scales of paired event and image features. Paired
features of different sizes become fused features via differ-
ent events from the image fusion (EIF) modules. Let E2, E1,
E0, and I2, I1, and I0 be the output feature maps of the
event and image feature extractors in the order of larger spa-
tial size, then the EIF module is as follows:

Fm = Sm(Em, Im; Θm), m = 0, 1, 2, (1)

where Sm and Θm denote the proposed EIF module and
learnable parameters of the EIF module, respectively.

Each EIF module comprises several EIAT blocks and
EIAT downs. As illustrated in Fig. 2, EIAT blocks comprise
the event and image pathways. Image codes are generated
from the image features using two convolution layers, two
instance normalization layers (Ulyanov, Vedaldi, and Lem-
pitsky 2016), and a ReLU layer (Nair and Hinton 2010).
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Figure 2: The proposed fusion module. The fusion module receives the image and event features paired with each other in
different sizes. It comprises three event image fusion (EIF) modules. Each EIF consists of an EIAT block and an EIAT down.

The attention maps At
m, which are values from zero to one,

are computed by applying the sigmoid function to the image
codes:

LayerI = norm(conv(ReLU(norm(conv(·))))),
At

m = σ(LayerI(I
t
m))

(2)

where t denotes the block sequence number. Note that ex-
cept for the first t = 1, the channel dimension of the im-
age codes is reduced by half, compared to the input image
features. The event codes Et

m are also generated from the
convolution layers, instance normalization layers, and ReLU
layer; however, the channel dimensions of the event feature
and the event codes are the same. The event codes are up-
dated by multiplying them with the attention maps At

m. The
result of the multiplication is added with event feature Et

m
via the residual connection:

LayerE = norm(conv(ReLU(norm(conv(·))))),
Et+1

m = LayerE(E
t
m)⊙At

m + Et
m,

(3)

where ⊙ denotes element-wise multiplication. The image
codes should also be updated, including updates of the new
event codes.

It+1
m = concat(LayerI(I

t
m), Et+1

m ), (4)

where concat denotes the channel-wise concatenation of fea-
ture level.

The channel dimensions of the features passing through
the EIF module are reduced. To compress the dimensions
of the feature, the EIAT down block was employed in the

EIF module. As illustrated in Fig. 2, the overall structure of
the EIAT down is the same as that of the EIAT block, except
for the residual connection of event features and convolution
layers. In the EIAT down, the event codes passing through
the layer have a channel dimension that is reduced by half
of the input event feature. For image codes passing through
the layer, the channel dimension is reduced by a quarter,
compared to the input image feature. The outputs of the im-
age features and event features passing through each branch
have channel dimensions reduced by half compared to those
before passing through the EIAT down block. In the EIF
module, EIF0 and EIF1 contain two EIAT down blocks and
six EIAT blocks. However, EIF2 contains one EIAT down
and four EIAT blocks. Left and Right fusion modules share
weights.

Spatial Multi-scale Correlation (SMC)
The left outputs of the fusion module and the right outputs of
the fusion module are denoted by Fm,L and Fm,R, respec-
tively, with a scale factor of m. The outputs of the fusion
module are generated from different scales with a 1/22−m

size of the original image dimension. As presented in Fig. 3,
considering coarse to fine features, SMC calculates the fea-
ture correlation of multiple scales using patches proportional
to the size of the features for the width and height dimen-
sions. The shape of the patch is 2m × 2m, and the size of
the dilation is also 2m. The value of each voxel in the cost
volume considers the similarity between the left and right
features of the corresponding patch. The SMC of the cost
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Figure 3: Spatial multi-scale correlation (SMC). SMC gen-
erates correlation volumes of the same size from the features
of different scales.

volume is computed as:

Cm
smc(d, x, y, c) =

1

22m

2m−1∑
p=0

2m−1∑
q=0

⟨Fm,L(2
mx+ p,

2my + q, c), Fm,R(2
mx+ p− 2md, 2my + q, c)⟩,

(5)

where m = 0, 1, 2, and ⟨·, ·⟩ represent the inner product.
When m = 0, the SMC becomes a conventional correla-
tion. The correlation is computed for all disparities d and all
channel levels c. Then, the outputs of the fusion module of
multiple scales form a cost volume with the same shape as
Dmax/4×H/4×W/4×C, except for the channel dimen-
sion, where C is 32, 16, 16, respectively, and Dmax is the
maximum disparity. The final cost volume is the concatena-
tion of C0

smc, C1
smc, and C2

smc in the channel dimension.
SMC calculates the correlation between the left and right
features in patch-based, and efficiently considers large-scale
features.

3D Aggregation Network
We utilize the stacked hourglass architecture proposed in
(Guo et al. 2019). They modified the stacked hourglass ar-
chitecture proposed in (Chang and Chen 2018). While they
added an auxiliary output module to improve accuracy, they
eliminated residual connections and used 1×1×1 3D convo-
lution for short connections to save inference computation.
There are four output modules for training, and only the last
output module is adopted for inference. In each output mod-
ule, the probability volume with a size of Dmax×H×W×1
is generated using two 3D convolutions with upsampling
and softmax function. The estimated disparity D̃ of each
pixel can be obtained as follows:

D̃ =

Dmax−1∑
d=0

d · pd, (6)

where d and pd denote the possible disparity value and cor-
responding probability, respectively.

Dual Learning with Sparse Disparity
We dual-train the branch for sparse disparity estimation dur-
ing training to use edge-related information more effec-
tively from events. For sparse disparity estimation, the loss
is solely computed in sparse locations corresponding to the
15,000 most recent events. As presented in Fig. 1, the sparse
branch estimates sparse disparity via correlation and 3D ag-
gregation sub-networks using only the event features pass-
ing through the feature extractor. Before passing through
the correlation network, the channel dimension of event fea-
tures with multiple scales is reduced through convolution
and ReLU layers as in the fusion module. By reducing the
channel dimension, a cost volume with the same size as in
dense disparity prediction is generated. To save computation
time during inference, the sparse disparity branch is solely
used during training. The experimental results indicate that
only the extra sparse estimation branch during training is
complementary to dense disparity estimation, without sig-
nificantly increasing the memory footprint.

Objective Function
We adopt the smooth L1 loss function to train the proposed
model. Smooth L1 can be obtained as:

smoothL1
(x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise
(7)

The predicted dense disparity maps from the four output
modules are denoted as D̃0, D̃1, D̃2, D̃3, and the predicted
sparse disparity maps are represented as d̃0, d̃1, d̃2, d̃3.
Then,

Ldense =
i=3∑
i=0

λi · smoothL1

(
D̃i −D∗

)
, (8)

where D∗ denotes the ground-truth for the dense disparity
map, and

Lsparse =

j=3∑
j=0

λj+4 · smoothL1

(
d̃j − d∗

)
, (9)

where d∗ denotes the ground truth for the sparse disparity
map. We apply the sparse loss (Lsparse) to the location that
corresponds to the 15,000 most recent events. Our final loss
(L) is obtained by combining the dense (Ldense) and the
sparse (Lsparse) losses as

L = Ldense + Lsparse. (10)

Experiments and Results
Datasets
We used two different datasets for the performance evalua-
tion. One dataset is the MVSEC (Zhu et al. 2018) of actual
event data, and the other is the simulated dataset that we
generated in this work.

MVSEC comprises two DAVIS cameras in a stereo set-
ting, which provides an intensity image and event stream
with a spatial resolution of 346×260. We split indoor flying
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(a) Images (b) Events (c) Ground-truth (d) Proposed (e) Event only stereo (f) Image only stereo 

Figure 4: Qualitative comparison of the proposed method with an event-based method and a frame-based method. The first two
rows are split 1 and split 3 from the MVSEC (real-world) dataset, and the third row is the RGB frame-based synthetic dataset,
respectively. In (a) and (b), we visualize the image and the 15,000 most recent events from the left camera. Note that (e) and (f)
are the results of (Tulyakov et al. 2019) and (Guo et al. 2019), respectively. Our proposed method (d) utilizes an image with the
corresponding events.

Model Using
data

Mean disparity
error[pix] ↓

One-pixel
accuracy [%] ↑

Mean depth
error [cm] ↓

Median depth
error [cm] ↓ time per

image [sec] ↓
Split 1 Split 3 Split 1 Split 3 Split 1 Split 3 Split 1 Split 3

PSMNet (Chang and Chen 2018) I 0.57 0.68 88.6 83.1 15.9 18.3 8.0 10.2 0.10
GwcNet-gc (Guo et al. 2019) I 0.53 0.64 89.9 85.8 15.0 17.4 7.5 9.3 0.06

PSN (Tulyakov, Ivanov, and Fleuret 2018) I 0.63 1.03 87.2 71.7 16.8 23.8 8.5 15.2 0.05
GC-Net (Kendall et al. 2017) I 0.55 0.75 88.6 83.8 15.3 18.7 7.8 11.1 0.13
PSN (Tulyakov et al. 2019) E 0.59 0.94 89.8 82.5 16.6 23.5 6.8 14.7 0.06

(Ahmed et al. 2021) E 0.55 0.75 92.1 89.6 14.2 19.4 5.9 10.4 −
SMC-Net w/o Sprase Branch (ours) E + I 0.40 0.53 93.9 91.9 11.8 14.6 4.7 6.4 0.12

SMC-Net (ours) E + I 0.37 0.52 94.3 92.0 11.2 14.5 4.5 6.3 0.12

Table 1: Results obtained for dense disparity estimation on MVSEC datasets. I indicates that the intensity image is adopted as
the model input data, and E implies that the event data are adopted as the input. E + I means both conditions are adopted. The
time per image denotes the time taken to infer a disparity image.

from MVSEC into three and used the two of them, split 1
and split 3, following (Tulyakov et al. 2019; Ahmed et al.
2021).

Although RGB can be sufficiently effective information
for stereo, previous studies compared event stereo solely
with intensity image-based stereo owing to the limitations
of the dataset. For comparison with RGB images, we cre-
ated a synthetic dataset containing RGB images. Our syn-
thetic dataset was generated using a 3D computer graphics
software called Blender (Community 2018). We generated
RGB images with a spatial resolution of 346×260 and depth
maps using open-source data (Zhang et al. 2016), including
city driving scenarios; then, we simulated the event streams
using the event simulator ESIM (Rebecq, Gehrig, and Scara-
muzza 2018). We split the data into 9,000 samples for train-

ing, 200 samples for validation, and 2,000 samples for the
test set. We introduced blur to the image by averaging seven
RGB frames with a high frame rate to cover actual driving
scenarios.

Experimental Setup
The coefficients of Eq. 8 were set to λ0 = 0.5, λ1 =
0.5, λ2 = 0.7, λ3 = 1.0. Similarly, the coefficients of Eq. 9
were set to λ4 = 0.5, λ5 = 0.5, λ6 = 0.7, λ7 = 1.0.
For comparison, we trained both our networks and other
models using the RMSprop optimizer. The coefficients used
for each model of the other models are in agreement with
those suggested in (Chang and Chen 2018; Guo et al. 2019;
Tulyakov, Ivanov, and Fleuret 2018; Kendall et al. 2017;
Tulyakov et al. 2019). We adopted a single NVIDIA TITAN
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Model Using data Mean disparity
error[pix] ↓ >2px [%] ↓ >3px [%] ↓ Mean depth

error [m] ↓
time per

image [sec] ↓

PSMNet (Chang and Chen 2018) RGB 0.98 7.87 5.35 0.38 0.15
GwcNet-gc (Guo et al. 2019) RGB 0.88 7.42 4.52 0.38 0.12

PSN (Tulyakov, Ivanov, and Fleuret 2018) RGB 1.04 7.84 5.14 0.48 0.08
GC-Net (Kendall et al. 2017) RGB 1.12 11.18 7.67 0.51 0.19
PSN (Tulyakov et al. 2019) E 1.25 12.36 6.74 0.60 0.07

SMC-Net w/o Sparse Branch (ours) E + RGB 0.84 6.27 3.88 0.35 0.17
SMC-Net (ours) E + RGB 0.82 6.07 3.46 0.32 0.17

Table 2: Results obtained for dense disparity estimation of synthetic datasets. RGB indicates that the RGB image is used as the
frame-based model input data, and E represents the event data used as the input. E + RGB means both are adopted.

Fusion
module

Using
data

Mean disparity
error[pix] ↓

One-pixel
accuracy [%] ↑

Mean depth
error [cm] ↓

Median depth
error [cm] ↓

Split 1 Split 3 Split 1 Split 3 Split 1 Split 3 Split 1 Split 3

Concat E + I 0.43 0.53 93.5 91.0 12.5 15.0 5.2 6.6
SPADE (Park et al. 2019) E + I 0.42 0.51 93.5 91.8 12.6 14.7 5.4 6.2

EIAT (ours) E + I 0.40 0.53 93.9 91.9 11.8 14.6 4.7 6.4

Table 3: Ablation studies of the proposed fusion module on MVSEC datasets. We evaluate the performance of the fusion module
while maintaining the correlation method and the overall framework, which is the proposed network: SMC-Net.

RTX GPU for training and inference. Regarding the model
used for testing, the models with the best performance in the
validation set were selected among those trained for up to 30
epochs until convergence.

Qualitative and Quantitative Results
As illustrated in Fig. 4, we qualitatively compared the re-
sults of the proposed method with those of other methods.
The proposed method, which adopts both events and images,
outperformed other methods that employed either events or
images. Hence, the proposed method provides a better dense
depth even in a region with less textures and similar intensity
to the surroundings. In contrast, the event- and image-based
methods are limited in areas with less textures and in the
edge and ground areas, respectively.

For quantitative analysis, we compared the results of our
proposed model with event- and image-based stereos using
mean depth error, median depth error, mean disparity er-
ror, and one-pixel accuracy, in accordance with (Tulyakov
et al. 2019; Ahmed et al. 2021). Table 1 presents a com-
parison of the proposed method with previous methods us-
ing actual MVSEC datasets. There was no case of testing
frame-based methods on the MVSEC dataset. For compar-
isons with the frame-based stereo method, we trained the
frame-based model using intensity images on the MVSEC
dataset. The proposed model outperforms frame- and event-
based methods by a large margin for all metrics as in Table 1.

Furthermore, we evaluated the proposed model using a
synthetic dataset. In the synthetic dataset, the frame-based
method was trained using RGB images, and for the event-
based method, only PSN (Tulyakov et al. 2019) with pub-
lished codes was trained. We trained the proposed model by
employing RGB images and events. We applied the same

metrics as the real-world dataset to the synthetic dataset
for quantitative performance evaluation, except for one-pixel
accuracy. In this case, we adopted 2 pixel (>2px) and 3 pixel
errors (>3px) for the synthetic dataset. Table 2 indicates
that the event-based method exhibits a lower performance
than the RGB-based method; however, the proposed model,
which employs both RGB images and events, outperforms
the RGB-based model.

Ablation Studies
We performed ablation studies to confirm the effectiveness
of the proposed methods. In the last two rows of Table 1 and
Table 2, the sparse branch in training improves performance
without additional time consumption with the inference in
both MVSEC and synthetic datasets.

In addition, we validated the ablation studies of the pro-
posed fusion module and correlation network using the
MVSEC dataset. To validate the effectiveness of the fusion
module, we maintained the entire model as the proposed
SMC-Net and replaced the fusion module with concat and
SPADE (Park et al. 2019). For concat, we added convolu-
tion after concat, such that the number of channels of fused
features is the same as that of the proposed EIF module. Ta-
ble 3 presents the results of the ablation study on the pro-
posed fusion module. From Table 3, except for the mean
disparity and median depth errors in split 3, EIF exhibits the
best performance. This proves the effectiveness of the fusion
module.

In addition, to validate the effectiveness of the proposed
correlation network, we trained the other models without al-
tering the overall structure. Instead, we added the proposed
EIF module as a fusion module that aggregates event and
image features. In addition, we adopted the same structure
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Model Using
data

Mean disparity
error[pix] ↓

One-pixel
accuracy [%] ↑

Mean depth
error [cm] ↓

Median depth
error [cm] ↓ time per

image [sec] ↓
Split 1 Split 3 Split 1 Split 3 Split 1 Split 3 Split 1 Split 3

PSMNet (Chang and Chen 2018) E + I 0.42 0.59 93.5 89.8 12.4 16.0 5.1 7.9 0.16
GwcNet-gc (Guo et al. 2019) E + I 0.41 0.58 93.9 91.0 12.1 15.0 4.9 7.4 0.12

PSN (Tulyakov, Ivanov, and Fleuret 2018) E + I 0.56 0.65 90.7 88.4 15.6 19.3 7.1 9.1 0.10
GC-Net (Kendall et al. 2017) E + I 0.44 0.58 92.5 90.2 12.6 15.1 5.5 7.6 0.25

SMC-Net (ours) E + I 0.40 0.53 93.9 91.9 11.8 14.6 4.7 6.4 0.12

Table 4: Ablation studies of the proposed correlation network on the MVSEC datasets. For evaluation using both events and
images, the proposed EIF module, which exhibits the best performance, is employed for the fusion module.

as the image feature extractor proposed in each model for
the event feature extractor. The detail of the architecture is
provided in the supplementary material. We also trained the
proposed model by removing the sparse branch for a fair
comparison. Table 4 presents the results of the ablation study
on the proposed correlation network. From Table 4, the pro-
posed network is determined as the best network considering
all accuracy metrics, which also proves the effectiveness of
the proposed correlation network.

Conclusion
We presented an end-to-end network to estimate a dense
depth map using both images and events. The two types of
source input complemented each other for stereo, and the
proposed model outperformed the performance of only the
image or only event-based methods by significant margins.
Accordingly, we proposed an attention-based fusion module
to aggregate event features with image features. In addition,
we proposed a spatial multi-scale correlation method to con-
sider the coarse to fine scale of features. We also proposed a
novel sparse branch mechanism to improve robustness, us-
ing the guidance on the disparity of edges from events. To
the best of our knowledge, this is one of the first attempts
to fuse an event and image for stereo matching. In addi-
tion, because the advanced methods of frame-based stereo
employ RGB images, we demonstrated the advantage of us-
ing RGB images and events together via a comparison with
RGB frame-based stereo. Based on these ablation studies,
we infer that the proposed network and modules effectively
improve the performance of stereo matching.
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