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Abstract

Recently, various image-to-image translation (I2I) methods
have improved mode diversity and visual quality in terms
of neural networks or regularization terms. However, con-
ventional I2I methods relies on a static decision boundary
and the encoded representations in those methods are en-
tangled with each other, so they often face with ‘mode col-
lapse’ phenomenon. To mitigate mode collapse, 1) we design
a so-called style-guided discriminator that guides an input im-
age to the target image style based on the strategy of flexi-
ble decision boundary. 2) Also, we make the encoded repre-
sentations include independent domain attributes. Based on
two ideas, this paper proposes Style-Guided and Disentan-
gled Representation for Robust Image-to-Image Translation
(SRIT). SRIT showed outstanding FID by 8%, 22.8%, and
10.1% for CelebA-HQ, AFHQ, and Yosemite datasets, re-
spectively. The translated images of SRIT reflect the styles
of target domain successfully. This indicates that SRIT shows
better mode diversity than previous works.

Introduction
Generative adversarial network (GAN) (Goodfellow et al.
2014) capable of generating high-fidelity images from noise
is getting a lot of attention from image synthesis (Brock,
Donahue, and Simonyan 2018; Lučić et al. 2019), super-
resolution (Ledig et al. 2017; Wang et al. 2018), image-to-
image translation (I2I)(Zhu et al. 2017; Isola et al. 2017;
Mao et al. 2019; Lee et al. 2018), and so on. Powerful image
generation ability of GAN is useful for the I2I task, whose
main goal is to learn the translation between different do-
mains. The core of I2I is to translate an image via a latent
vector containing generalized information in the visual do-
main (Choi et al. 2020).

However, since GAN is like a two-player minmax game of
discriminator and generator, it cannot avoid mode collapse
(Arjovsky, Chintala, and Bottou 2017). Mode refers to a type
of generated images, and mode collapse happens when the
generated images follow only a single mode or very few
modes. Mode collapse in I2I is a phenomenon in which the
translated images are biased on a single mode when trans-
lating to a different domain (Kim et al. 2017).
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Recently, as an approach to mitigate mode collapse from
an information-theoretic perspective, (Chen et al. 2016) tried
to maximize the mutual information (MI) between the la-
tent space and the generated image space. Also, mode seek-
ing regularization (Mao et al. 2019) for encouraging minor
modes was introduced for the I2I task. Besides, many studies
to overcome mode collapse in generative models have been
reported (Anoosheh et al. 2019; Jolicoeur-Martineau 2018;
Choi et al. 2020).

However, the above-mentioned methods still have several
limitations. (Choi et al. 2020) newly proposed a loss func-
tion for the diversity of style information, but it could not be
a fundamental solution for mode collapse. Also, (Mao et al.
2019) relied solely on a regularization term, and discrimi-
nated generated images and real images based on a static
decision boundary that causes mode collapse. A single deci-
sion boundary causes a critical problem that generated im-
ages are stuck in a specific mode. In particular, the static
decision boundary in the I2I task makes diverse image at-
tributes gather in a single basin (Sun, Fang, and Schwing
2020). The left side of Fig. 1 shows the limitations of the
previous works.

To overcome the mode collapse problem in the I2I
task, we allow a discriminator to produce a flexible deci-
sion boundary. (Jolicoeur-Martineau 2018) and (Sun, Fang,
and Schwing 2020) already reported that flexible decision
boundary could mitigate the phenomenon of being stuck in
a single basin when translating images of a few visual at-
tributes. Thus, inspired by the previous studies, we present
a style-guided discriminator to consider diverse modes and
detailed styles. Also, we borrow an extrinsic regularization
term for disentanglement of encoded representations. In ad-
dition, we utilize use-specific weights based on information
theory for boosting generator performance.

Main contributions of this paper are as follows:
• We propose a novel style-guided discriminator loss func-

tion that attempts to mitigate mode collapse and also
disentangle style representation through flexible decision
boundary. As far as we know, this is the world-first ex-
plicit discriminator based on pairwise input for a multiple
domain I2I task.

• The discrimination plot on the right of Fig. 1 presents a
way to visually confirm the degree of mode collapse re-
laxation and reality of each generated image. This plot

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

463



Figure 1: The left side shows the generated images of MSGAN, StarGAN and SRIT (ours) on the test split of CelebA-HQ,
AFHQ, Yosemite datasets. Here, the blue and red boxes are magnified. They show that SRIT reflects the style of the reference
image better than the other methods. The graph on the right shows the discrimination ability of each I2I translation model. In
this plot, the closer to the equilibrium line, the closer the generative model is to the global optimum, that is, pdata = pg (i.e.
D(xr) = D(xg)) (Goodfellow et al. 2014). This indicates that the generated image can be decided as a realistic image from
the perspective of discriminator. The radius of each circle on the right graph indicates the standard deviation of the output of
discriminator D. Refer to Experiments section for analysis of the plotted values on this graph.

can be widely used as a performance indicator of I2I al-
gorithms in the future.

Related Work
Generative models for reducing mode collapse. In order
to mitigate mode collapse, ether a generative model should
be adaptive to input images (Goodfellow et al. 2014) or a
discriminator must have the strong mode decision capabil-
ity (Liu et al. 2019). So, (Mirza and Osindero 2014) and
(Che et al. 2016) proposed a mode-specific generator that
injects label supervision information into noise. (Mao et al.
2017) and (Arjovsky, Chintala, and Bottou 2017) proposed
a loss function using f -divergence to match the distribution
of the discriminator with the true label. From another point
of view, (Chen et al. 2016) and (Belghazi et al. 2018) tried
to alleviate mode collapse by utilizing MI between the input
and output of the generator. ToDayGAN (Anoosheh et al.
2019) formed flexible decision boundary for the discrimina-
tor based on pairwise input. Since pairwise input enables a
more flexible decision boundary, ToDayGAN can be an ex-
trinsic solution that alleviates mode collapse. Inspired by the
relativistic formula of (Jolicoeur-Martineau 2018), we de-
rived a flexible decision boundary suitable for the I2I task.
Overview of image-to-image translation. As an early I2I
model, Pix2Pix (Isola et al. 2017) adopted a generator based
on U-Net (Ronneberger, Fischer, and Brox 2015) and a
structure of adversarial learning. CycleGAN (Zhu et al.
2017) and DiscoGAN (Kim et al. 2017) introduced cycle
consistency loss for stable I2I between different domains.
Meanwhile, for diverse visual representations, (Mao et al.
2019) and (Yang et al. 2019) utilized diversity regularization
term which plays a role of generating an image of a different
mode whenever latent vectors change. Recently, I2I meth-

ods using guidance of reference images have been proposed
(Choi et al. 2020; Baek et al. 2020). They achieved high vi-
sual quality by directly using the source image as an input to
the generator without any encoding process in which image
information may be lost.
Technical approaches for boosting visual quality. Infor-
mation theory has been employed to understand I2I between
different domains. For instance, MI was applied to loss func-
tions (Chen et al. 2016; Belghazi et al. 2018) or regulariza-
tion terms (Baek et al. 2020). Specifically, (Baek et al. 2020)
adopted MI to maximize the dependency between style rep-
resentations of samples in the same domain, thereby each
class information was independently trained. While MI re-
flects the overall dependency of the two distributions, point-
wise MI (PMI) is a metric for measuring the dependency of
each point. PMI has been applied to a lot of computer vision
tasks. For example, in the text supervision task (Takayama
and Arase 2019), the output response sentence was deter-
mined so that PMI was maximized at the point where there
was an input utterance. Since the encoded style representa-
tions from multiple domains in SRIT should be independent,
PMI will contribute to SRIT for the purpose of understand-
ing multiple domains.

Method
Let the distributions of real images and generated images
be P and Q, respectively. Images sampled from P and Q
are represented by xr and xg , respectively. As in Fig. 2
(a) and (b), a style encoder E and a mapping network M
(Choi et al. 2020) generate style representations sr and sz
from xr and z. Here, z is from a random noise distribu-
tion R: sr = E(xr) and sz = M(z). In the learning stage,
sz and sr are alternately input to generator G (Choi et al.
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Figure 2: Components of SRIT. SRIT consists of (a) style
encoder, (b) mapping network, (c) generator, and (d) dis-
criminator.

2020) every iteration. Let translations using sz and sr de-
note latent-guided synthesis and reference-guided synthesis,
respectively.D (Liu et al. 2019) is defined byD = (fsig◦C)
where C is a network without the last sigmoid layer fsig .

Overview
Our goal is to generate an image with a rich visual repre-
sentation by mitigating mode collapse. In other words, we
want xg (translated from xr) to successfully capture the
style information of xr. As a main idea of this paper, we
propose a style-guided discriminator (STGD) loss that mit-
igates mode collapse through flexible decision boundary.
STGD loss induces a style guide effect through flexible de-
cision boundary by generating xg that reflects diverse style
(i.e. mode) characteristics. In addition, we present a normal-
ized PMI (NPMI) loss that enhances the disentanglement of
the encoded style representation, and propose an importance
weighting generator (IG) loss. They contribute to improving
the visual representation and visual quality of translated im-
ages. The proposed SRIT is proven to provide the best quan-
titative performance. Also, the discrimination plot of Fig.
1 demonstrates that SRIT is closest to the global optimum
(Goodfellow et al. 2014) of the generative model.

Style-Guided Discriminator
In order for diverse modes to be fully reflected in xg , it is
desirable that D not only determines whether xg is real or
fake, but also considers various modes. However, since most
of the I2I methods adopted a static decision boundary (Choi

et al. 2020; Lee et al. 2018; Huang et al. 2018), their learn-
ing process had one convergence point (D(x) → 1). As a
result, as shown in the top of Fig. 3 (a), in the standard I2I
method (w/o LSTGD), a visually static decision boundary is
formed regardless of modes. So the standard I2I method can
suffer from deterioration in visual quality and diversity due
to mode collapse.

To alleviate mode collapse, (Jolicoeur-Martineau 2018;
Sun, Fang, and Schwing 2020) employed a specific flexible
decision boundary mechanism that compares the discrimi-
nator outputs for real and fake images in pair. Inspired by
the approach of (Jolicoeur-Martineau 2018; Sun, Fang, and
Schwing 2020), we propose the STGD loss based on flex-
ible decision boundary where relativistic discrimination is
applied to the pairwise inputs of xr and xg . The formula is
as follows:

LSTGD = E(xr,z)∼(P,R)[log(fsig(C(xr)− C(xg)))]
+ E(xr,z)∼(P,R)[log(1− fsig(C(xg)− C(xr)))]

(1)
where xg is G(xr, sr) or G(xr, sz). Note that LSTGD is
defined based on pairwise inputs of a reference image xr and
the translated image xg . A given model is trained so that the
difference between C(xg) and C(xr) is minimized through
the STGD loss. As a result, the style characteristics of xr
are reflected and a flexible decision boundary is formed. As
C(xg) converges to the decision boundary of xr, resulting in
a style-guide effect, and the translated images maintain the
style characteristics of reference images as shown in Fig.
3 (b). From a generative model perspective, more realistic
images are generated.

A two-point sample-based verification method that can
explain the operation of Eq. 1 has been introduced in (Sun,
Fang, and Schwing 2020). The two-point case showed that
the relativistic formula of Eq. 1 alleviates mode collapse and
is also appropriate for the pairwise input structure. The two-
point case can be easily extended to the multiple-point case,
and a neural network-based model can be also applied at
the same time. See the claims in Sec. 3 of (Sun, Fang, and
Schwing 2020) for a detailed proof.

Normalized Point-Wise Mutual Information
LSTGD in the previous section is an intrinsic solution at the
image level to mitigate mode collapse. This section proposes
auxiliary solution to mitigate mode collapse through extrin-
sic regularization for disentanglement of encoded style rep-
resentation in latent space. If the encoded representation has
a style attribute overlapped with other images, the visual rep-
resentation of the translated image may be degraded or mode
collapse may occur. Therefore, by minimizing the depen-
dency of two style representations sr1 and sr2 encoded from
different images, we make each style representation suffi-
ciently reflect the independent characteristics of the corre-
sponding images. Eventually, this mode collapse relaxation
strategy will further improve the visual quality of the trans-
lated image.

On the other hand, since all components of the style rep-
resentation affect the I2I process, we employ PMI (Van de
Cruys 2011) to measure the MI of each component. PMI
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(a) (b)

Figure 3: (a) Decision boundary according to STGD loss. Here, the decision boundaries (C(xr)) for 100 samples per domain of
AFHQ testset were represented. In the standard I2I method (top) (Choi et al. 2018), images of various styles go through similar
static decision boundaries, whereas the lower SRIT (w/ LSTGD) has flexible decision boundaries according to image styles.
(b) Reference-guided synthesis results for five green box images in the wildlife domain of (a). In this experiment, the results of
StarGAN-v2 do not reflect the style characteristics of reference images well (see red boxes), but SRIT shows consistent style
characteristics (see blue boxes). Best viewed when zoomed in.

measures the point-wise dependency of two variables and
can be normalized for balance with other loss functions as
in (Bouma 2009). To make the style representation of each
image have an independent attribute, we define a loss func-
tion based on NPMI as follows:

LNPMI = E(xr,z)∼(P,R)[NPMI(sr1, sr2)] (2)

where sr1 and sr2 denote style representations encoded from
different real images xr1, xr2 or noises z1, z2. Since the
components of the style representation encoded from each
reference image through LNPMI are independently dis-
tributed, an image with a rich visual representation can be
generated (see Experiments section). Appendix 1 qualita-
tively shows a disentangled representation that is indepen-
dently distributed according to style.

Importance Weighting
Ultimately, the closer to a point where the discriminator’s
outputs become equivalent, i.e., D(xr) = D(xg), the more
realistic the image is generated. This section presents an ad-
ditional idea for accomplishing this.

Together with the image level solution LSTGD and the la-
tent space level solutionLNPMI , we additionally propose to
assign use-specific weights to generator learning (Cao et al.
2020). In order to give more weights to parameter updates
in proportion to the discriminator output for each image, we
refer to importance sampling (Bishop 2006).

Specifically, the expected value of the known function G
with respect to the real image distribution pr may be esti-
mated by some samples of the translated image distribution

pg . The importance weighting factor is the likelihood ratio
of the probability that the generated image xg has a real im-
age distribution, i.e., pr(xg) and the probability that xg has
a generated image distribution, i.e., pg(xg). As a result, the
weighting factor to be used for updating parameters are de-
fined by using pr(xg)

pg(xg)
.

Lemma 1. The importance weighting factor, which acts as
a weight when learning a generator based on the GAN’s
global optimal discriminator, is derived by Eq. (3).

pr(xg)

pg(xg)
= eC(xg). (3)

Proof. First, according to (Goodfellow et al. 2014), the ideal
global optimal discriminator has the following output w.r.t.
xg .

D(xg) =
pr(xg)

pr(xg) + pg(xg)
(4)

Next, since D has a sigmoid activation function layer fsig at
the end, it can be defined by

D(xg) = fsig ◦ C(xg) =
1

1 + e−C(xg)
(5)

Based on Eqs. (4) and (5), the importance weighting factor is
derived by an exponential formula such as Eq. (3). Here, as
C, i.e., D excluding the activation function layer determines
that xg is more realistic, a larger weight eC(xg) is computed.
See (Cao et al. 2020) for more details.
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If the importance weighting strategy derived by Lemma 1
is applied to the loss function of the generator, the following
loss function is defined.
LIG = E(xg,z)∼(Q,R)[e

C(xg)+ε log(1−D(xg))] (6)
Here, we introduce an offset factor ε to correct the output,
taking into account that C may mismatch the global opti-
mal discriminator with an ideal zero-centered output. ε is a
scalar factor adapted to each dataset. It is fixed at 0.8 for
CelebA-HQ and AFHQ and is set to 0.7 in Yosemite. On
the other hand, since the weighting factor cannot be gener-
ated by an untrained discriminator, the training phase and
the boosting phase must be distinguished during the learn-
ing process. So, all networks including the discriminator are
trained in the training phase. In the training phase, the im-
portance weighting factor eC(xg) is set to 1. Then, the image
translation performance is boosted by minimizing LIG in
the boosting phase using the trained style-guided discrim-
inator D. Effect of this weighting process on performance
will be demonstrated in Ablation study section.

Defining Full Objective Function
The full objective function consists of the loss functions de-
fined by Eqs. (1), (2) and (6) and the fundamental loss func-
tion Lfund, which is widely used for I2I models.

First, the adversarial loss function Ladv is reconstructed
based on pairwise input for the intrinsic improvement of the
loss function. Ladv is defined by Ladv = LSTGD + LIG.
Note that LIG includes eC(xg) only in the boosting phase as
mentioned above.

Next, Lfund consists of three loss functions: The cycle
consistency loss function Lcyc (Kim et al. 2017), which
is commonly used to prevent mode collapse, and the style
reconstruction loss function Lsty (Huang et al. 2018) to
maintain consistency in the multiple domain I2I process,
and the loss function Lds (Choi et al. 2020) for enhancing
the diversity of the translated images. Therefore, Lfund =
λcycLcyc + λstyLsty − λdsLds. Here, λcyc, λsty , and λds
are the hyper-parameters.

In addition, we experimentally observed that the mode
seeking loss function Lms proposed in (Mao et al. 2019) not
only strengthens the mapping between the style represen-
tation and the translated image, but also is synergetic with
LNPMI . Thus, the extrinsic regularization terms LNPMI

and Lms are applied so that the encoded representation re-
flects the style attribute of domain well in the latent space.
Finally, the full objective function is defined by
min
G,F,E

max
D

Ladv +λNPMILNPMI +Lms+Lfund (7)

where a scale factor λNPMI was set to 0.1.

Experiments
We chose StarGAN-v2 (Choi et al. 2020), MSGAN (Mao
et al. 2019) and RGAN (Jolicoeur-Martineau 2018) as base-
lines. See Appendix 2 for network details. Quantitative and
qualitative results are shown through intensive experiments
on a total of three datasets including the two datasets used in
(Choi et al. 2020). In addition, numerical figures shown in
the right graph of Fig. 1 are quantitatively analyzed.

Datasets
This section evaluates the proposed SRIT algorithm1 for
three popular datasets, i.e., CelebA-HQ (Karras et al. 2017),
AFHQ (Choi et al. 2020), and Yosemite (summer and winter
scenes) (Zhu et al. 2017). CelebA-HQ is divided into male
and female, and AFHQ is divided into cat, dog and wildlife,
and Yosemite is divided into summer and winter. Any infor-
mation except the domain label was not used, and for fair
comparison, each image resolution was resized to 256×256
as in the previous works.

Training Configurations
Implementation details. Model training is composed of
the training phase and the boosting phase. In training all
datasets, the batch size was set to 8, and 100K iterations in
the training phase and 5K iterations in the boosting phase
were repeated. Three regularization parameters λcyc, λsty ,
and λds were set with reference to (Choi et al. 2020), and
λNPMI and εwere experimentally determined, respectively.
For CelebA-HQ and Yosemite datasets, λcyc = 1, λsty = 1,
λds = 1, and λNPMI = 0.1. In AFHQ, λcyc = 1, λsty = 1,
λds = 2, and λNPMI = 0.1. Also, for CelebA-HQ and
AFHQ, ε = 0.8, and ε = 0.7 in Yosemite. For training
stability, λds decreases linearly towards zero for 10K iter-
ations. The detailed set-up such as high-order regularization
(Mescheder, Geiger, and Nowozin 2018) was set the same
as the baseline model (Choi et al. 2020). See Appendix 3.

For detailed parameter configuration and model specifi-
cations, refer to the link below, which contains methods for
generating high-resolution (e.g., 512 × 512 and more) im-
ages and adjusting parameters.
Evaluation metrics. We adopted FID (Fréchet inception
distance) (Zhang et al. 2018) and LPIPS (Learned Percep-
tual Image Patch Similarity) (Heusel et al. 2017) to evalu-
ate the visual quality and diversity of translated images. FID
was computed by feature vectors obtained from Inception-
V3 (Szegedy et al. 2016) pre-trained with ImageNet, and
LPIPS was computed by L1 distance between features ex-
tracted from AlexNet (Krizhevsky, Sutskever, and Hinton
2012) pre-trained with ImageNet. FID is the average for the
validation set and the translated images of each dataset, and
the LPIPS is the average for 10 images translated from the
same source image. The lower the FID, the higher the visual
quality. And, the higher the LPIPS, the higher the diversity.

Performance Comparison
For fair evaluation, we extracted the quantitative values de-
scribed in the latest I2I translation literature, and for quali-
tative performance comparison, we employed only available
milestone methods under the same conditions.
Quantitative evaluation. We compared the quantitative per-
formances of DRIT (Lee et al. 2018), MSGAN (Mao et al.
2019), StarGAN-v2 (Choi et al. 2020), LETIT (Zhao and
Chen 2021), ReMix (Cao et al. 2021), and SRIT in terms
of FID and LPIPS. Table 1 shows that SRIT quantitatively
outperforms other methods for all datasets. Compared to

1Code can be found here https://github.com/jaewoong1/SRIT
Style-guided-I2I-translation
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Datasets CelebA-HQ AFHQ Yosemite
Type Method FID (↓) LPIPS (↑) FID (↓) LPIPS (↑) FID (↓) LPIPS (↑)

Latent

DRIT (Lee et al. 2018) 52.1 0.178 95.6 0.326 52.3 0.106
MSGAN (Mao et al. 2019) 33.1 0.389 61.4 0.517 49.0 0.106
StarGAN-v2 (Choi et al. 2020) 13.7 0.452 16.2 0.45 43.5 0.196
LETIT (Zhao and Chen 2021) 12.5 - 15.9 - - -
ReMix (Cao et al. 2021) - - 15.2 0.491 - -
SRIT(ours) 12.4 0.499 12.5 0.591 39.1 0.381

Reference

DRIT (Lee et al. 2018) 53.3 0.311 114.8 0.156 78.1 0.187
MSGAN (Mao et al. 2019) 39.6 0.312 69.8 0.375 56.7 0.214
StarGAN-v2 (Choi et al. 2020) 23.8 0.388 19.8 0.432 43.8 0.225
SRIT(ours) 21.7 0.411 16.9 0.555 38.1 0.424

Table 1: Quantitative comparison on latent-guided and reference-guided synthesis. The numerical figures of LETIT and ReMix
were directly quoted from those papers.

Datasets CelebA-HQ AFHQ Yosemite
Method D(xr) D(xg) γ D(xr) D(xg) γ D(xr) D(xg) γ

MSGAN (Mao et al. 2019) 0.806 0.258 0.320 0.693 0.211 0.304 0.455 0.148 0.325
StarGAN-v2 (Choi et al. 2020) 0.387 0.147 0.380 0.349 0.233 0.668 0.653 0.288 0.441
SRIT(ours) 0.526 0.315 0.598 0.378 0.326 0.862 0.560 0.405 0.723

Table 2: The quantitative values in the discrimination plot on the right side of Fig. 1. γ is an index obtained by dividing D(xg)
byD(xr), and the closer γ is to 1, the better performance. The results of reference-guided synthesis and latent-guided synthesis
were summed. It is worth noting that SRIT has γ closest to 1 for all datasets.

Figure 4: Qualitative comparison of reference-guided syn-
thesis on the CelebA-HQ and AFHQ datasets.

StarGAN-v2, SRIT has a marginal improvement in quantita-
tive performance. However, as can be seen in Figs. 4 and 5,
SRIT is superior to StarGAN-v2 in terms of qualitative im-
age quality. On the other hand, Table 2 lists the quantitative
values of each technique shown in the discrimination plot
on the right side of Fig. 1. See Appendix 4 for the standard
deviation per model. Here, γ = D(xg)/D(xr) becomes 1
when the model reaches the global optimum (Goodfellow
et al. 2014). Thus, as γ approaches 1, it can be interpreted
that the discriminator determines that the translated image is

realistic. Note that SRIT has γ that is closest to 1 compared
to other methods.

For the quantitative performance of the proposed method
in terms of Inception Score (Salimans et al. 2016) other than
FID and LPIPS, refer to Appendix 5.
Qualitative evaluation. Fig. 4 qualitatively compares the
reference-guided synthesis results of SRIT, MSGAN, and
StarGAN-v2. For CelebA-HQ, SRIT naturally reflects the
style of the reference image and achieves higher visual qual-
ity than other methods (see Fig. 4 (a)). In AFHQ of Fig.
4 (b), we can see that SRIT generates an image with a
richer visual representation than the others, and represents
the characteristics of the reference image better than state-
of-the-art (SOTA) methods. From the latent-guided synthe-
sis results of Fig. 5, we could observe high mode diversity
and rich visual representation of SRIT. Refer to Appendix 5
for further visual examples.

Also, Fig. 6 shows the sequential images generated by
traversing the encoded style representations from two ref-
erence images. In this figure, we can observe that SRIT re-
flects the style information of reference images better than
StarGAN-v2. This indicates that SRIT is good at disentan-
glement of style information.

Ablation Study
This section analyzed the effect of each key technique of
SRIT on overall performance. For this experiment, the quan-
titative performance of latent-guided synthesis was mea-
sured on the Yosemite dataset. Table 3 shows the results. (A)
in Table 3 gives the performance of the baseline model (Choi
et al. 2020). (B) proves that the model performance is im-
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Figure 5: Latent-guided synthesis of SRIT per dataset. SRIT can generate more diverse images than the others.

Figure 6: Transition of translated images along the style representation traverse. This experiment shows how the translated
images change while varying the ratio of style representation of two reference images in the AFHQ dataset.

MS NPMI STGD IG FID LPIPS
(A) 43.5 0.196
(B) X 42.5 0.248
(C) X X 41.1 0.318
(D) X X X 39.4 0.372
(E) X X X X 39.1 0.381

Table 3: Performance analysis of various configurations
of latent-guided synthesis for Yosemite dataset. This table
shows the quantitative performance change whenever each
loss of the proposed method is applied to StarGAN-v2 one-
by-one. MS stands for mode seeking regularization.

proved when mode seeking (MS) regularization (Mao et al.
2019) is applied as a loss function. Although not shown in
Table 3, in the case of CelebA-HQ and AFHQ, we could ob-
serve a tendency for the FID to deteriorate by about 10-20%.
This is due to unstable learning caused by large gradients of
MS regularization (Choi et al. 2020).

When the NPMI loss function (that allows the encoded
style representation to have an independent component) and
the MS regularization term (that allows different encoded
style representations to generate each mode) are used to-
gether, synergy is exerted and overall performance is im-
proved as in (C) in Table 3. The same tendency was observed
in CelebA-HQ and AFHQ datasets. Continuing, a notice-
able performance improvement was observed whenever the
STGD loss function (D) and the IG loss function (E) were

sequentially added to this.

Conclusion
This paper proposes the SRIT that can generate images of
improved visual quality and visual representation by miti-
gating the mode collapse problem in the I2I task. By adopt-
ing a strategy that independently guides the style of the tar-
get domain, SRIT could preserve style characteristics of the
reference image or the target domain better than the SOTA
algorithms. By effectively encoding the style representation
of reference images, SRIT can generate an image with more
realistic and richer representation compared to SOTA tech-
niques. In other words, SRIT can significantly improve the
I2I performance by using a style guide, an intrinsic objective
function for boosting visual quality, and an extrinsic objec-
tive function for independent representation. In the future,
we will study a method to encode a meaningful representa-
tion even for a small number of complex images.

Acknowledgments
This work was partly supported by Institute of Informa-
tion & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government (MSIT)
(No.2020-0-01389, Artificial Intelligence Convergence Re-
search Center(Inha University)) and partly supported by
IITP grant funded by the Korea government (MSIT)
(No.2021-0-02068, AI Innovation Hub).

469



References
Anoosheh, A.; Sattler, T.; Timofte, R.; Pollefeys, M.; and
Van Gool, L. 2019. Night-to-day image translation for
retrieval-based localization. In 2019 International Con-
ference on Robotics and Automation (ICRA), 5958–5964.
IEEE.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In International conference
on machine learning, 214–223. PMLR.
Baek, K.; Choi, Y.; Uh, Y.; Yoo, J.; and Shim, H. 2020. Re-
thinking the truly unsupervised image-to-image translation.
arXiv preprint arXiv:2006.06500.
Belghazi, M. I.; Baratin, A.; Rajeswar, S.; Ozair, S.; Ben-
gio, Y.; Courville, A.; and Hjelm, R. D. 2018. Mine:
mutual information neural estimation. arXiv preprint
arXiv:1801.04062.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. springer.
Bouma, G. 2009. Normalized (pointwise) mutual informa-
tion in collocation extraction. Proceedings of GSCL, 31–40.
Brock, A.; Donahue, J.; and Simonyan, K. 2018. Large
scale GAN training for high fidelity natural image synthe-
sis. arXiv preprint arXiv:1809.11096.
Cao, J.; Hou, L.; Yang, M.-H.; He, R.; and Sun, Z. 2021.
ReMix: Towards Image-to-Image Translation with Limited
Data. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 15018–15027.
Cao, J.; Huang, H.; Li, Y.; He, R.; and Sun, Z. 2020. In-
formative sample mining network for multi-domain image-
to-image translation. In European Conference on Computer
Vision, 404–419. Springer.
Che, T.; Li, Y.; Jacob, A. P.; Bengio, Y.; and Li, W. 2016.
Mode regularized generative adversarial networks. arXiv
preprint arXiv:1612.02136.
Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever,
I.; and Abbeel, P. 2016. Infogan: Interpretable representation
learning by information maximizing generative adversarial
nets. arXiv preprint arXiv:1606.03657.
Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; and Choo,
J. 2018. Stargan: Unified generative adversarial networks
for multi-domain image-to-image translation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 8789–8797.
Choi, Y.; Uh, Y.; Yoo, J.; and Ha, J.-W. 2020. Stargan v2:
Diverse image synthesis for multiple domains. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 8188–8197.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial networks. arXiv preprint
arXiv:1406.2661.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. arXiv preprint
arXiv:1706.08500.

Huang, X.; Liu, M.-Y.; Belongie, S.; and Kautz, J. 2018.
Multimodal unsupervised image-to-image translation. In
Proceedings of the European conference on computer vision
(ECCV), 172–189.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1125–1134.
Jolicoeur-Martineau, A. 2018. The relativistic discriminator:
a key element missing from standard GAN. arXiv preprint
arXiv:1807.00734.
Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2017. Pro-
gressive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196.
Kim, T.; Cha, M.; Kim, H.; Lee, J. K.; and Kim, J. 2017.
Learning to discover cross-domain relations with generative
adversarial networks. In International Conference on Ma-
chine Learning, 1857–1865. PMLR.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25: 1097–1105.
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham,
A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.;
et al. 2017. Photo-realistic single image super-resolution us-
ing a generative adversarial network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 4681–4690.
Lee, H.-Y.; Tseng, H.-Y.; Huang, J.-B.; Singh, M.; and Yang,
M.-H. 2018. Diverse image-to-image translation via dis-
entangled representations. In Proceedings of the European
conference on computer vision (ECCV), 35–51.
Liu, M.-Y.; Huang, X.; Mallya, A.; Karras, T.; Aila, T.;
Lehtinen, J.; and Kautz, J. 2019. Few-shot unsuper-
vised image-to-image translation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
10551–10560.
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