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Abstract

In order to fully perceive the surrounding environment, many
intelligent robots and self-driving cars are equipped with a
multi-camera system. Based on this system, the structure-
from-motion (SfM) technology is used to realize scene re-
construction, but the fixed relative poses between cameras in
the multi-camera system are usually not considered. This pa-
per presents a tailor-made multi-camera based motion aver-
aging system, where the fixed relative poses are utilized to
improve the accuracy and robustness of SfM. Our approach
starts by dividing the images into reference images and non-
reference images, and edges in view-graph are divided into
four categories accordingly. Then, a multi-camera based ro-
tating averaging problem is formulated and solved in two
stages, where an iterative re-weighted least squares scheme
is used to deal with outliers. Finally, a multi-camera based
translation averaging problem is formulated and a l1-norm
based optimization scheme is proposed to compute the rela-
tive translations of multi-camera system and reference cam-
era positions simultaneously. Experiments demonstrate that
our algorithm achieves superior accuracy and robustness on
various data sets compared to the state-of-the-art methods.

Introduction
Fully perceive and reconstruct the surrounding environment
is a crucial ability for intelligent systems, such as various
kinds of robots (Strisciuglio et al. 2018; Chen et al. 2021)
and self-driving cars (Heng et al. 2019; Wang et al. 2020).
To achieve this goal, multi-camera system is typically used
as the sensor platform since it is cheap to maintain, easy
to handle and provides 360◦ high-resolution image data.
These data make the reconstruction become more complete
and facilitate better camera re-localization (Colledanchise,
Malafronte, and Natale 2020) and navigation (Chen et al.
2019). The SfM technology is typically used to realize the
reconstruction task and based on the manner of camera poses
estimation, its pipeline is divided into two classes: incremen-
tal and global.

Incremental SfM selects camera seeds first and then adds
cameras one by one as the size of scene model grows up.
The quality of incremental scene reconstruction is depend-
ing on the selection of camera seeds and the order of camera
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addition. With the operation of incremental system, the er-
ror accumulates gradually, which often leads to significant
scene drift (Cornelis, Verbiest, and Gool 2004; Holynski
et al. 2020). To mitigate these error, the non-linear bundle
adjustments (BA) is performed repeatedly. While accurate,
the computational cost increases dramatically. Global SfM
has become more popular in recent years, which aims to es-
timate all camera poses at the same time through motion av-
eraging. Formally, a global SfM method takes a view-graph
as input G = {V,E}, where each node Vi in V denotes
an image and each edge Eij in E denotes the connection be-
tween image i and j. The relative pose (Rij , tij) is estimated
for each edge, where Rij ∈ R3×3 denotes a relative rotation
matrix, tij ∈ R3×1 represents a unit vector of the relative
translation direction. Ignoring the measurement noise, the
following two equations are hold:

Rij = RjRT
i , λijtij = Rj(ti − tj). (1)

where λij is a scale factor. The motion averaging is to find
the camera rotation Ri via global rotation averaging and
camera position ti via global translation averaging, such
that the observed pairwise relative poses are best explained.
The global SfM does not need to carefully select camera
seeds and the reconstruction error is uniformly spread to the
whole model, avoiding the error accumulation. Moreover,
the global BA is only run once, which is more efficient than
the incremental system.

Although many global SfM systems (Wilson and Snavely
2014; Dong et al. 2022) have success in reconstructing in-
ternet images, they are not suitable to reconstruct the im-
ages collected by the multi-camera platform. The reason
has three folds. Firstly, the internet images usually cover a
single scenic spot, hence the nodes in the view-graph are
densely connected. However, the multi-camera platform col-
lects data from the city-scale scene, such as the self-driving
car collects images around city blocks. As a consequence,
the nodes connection in the view-graph is sparse, which is
more challenging for the global motion averaging system.
Secondly, the distribution of internet image positions is ran-
dom, while the multi-camera platform usually moves along
straight routes, such as a self-driving car moves along the
street, hence many relative translations are collinear, which
may ruin the global SfM system (Jiang, Cui, and Tan 2013).
Finally, since the cameras in the multi-camera system are
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(b) Our method, with multi-camera constraints(a) Global SfM method: BATA

Figure 1: Camera position estimations of a large-scale
dataset. ‘GT’ denotes the ground-truth. Conventional global
SfM method BATA (Zhuang, Cheong, and Lee 2018) has
large scale drift and can not achieve closed-loop. In this sce-
nario with large loops, our method is more robust.

rigidly mounted, the internal relative poses between cameras
in the multi-camera system are considered as fixed. Conven-
tional SfM systems ignore this inherent fixed relative poses,
resulting in a large difference between the estimated camera
position and the actual camera position.

In theory, if the internal relative poses between cameras
in the multi-camera system are known, we only need to es-
timate the pose of one camera, and the other camera poses
can be derived accordingly. These internal relative poses are
generally estimated by specific calibration patterns (Zhang
and Pless 2004), which needs sufficient large overlapping
area of cameras. Although this method achieves high accu-
racy, it is computationally expensive and incapable of cali-
brating the multi-camera system with little or even no over-
lapping fields of view, which is often the case for applica-
tions in autonomous vehicles. Some methods (Heng, Fur-
gale, and Pollefeys 2015; Lin et al. 2020) use scene recon-
struction to calibrate the internal relative poses, which re-
quires prior knowledge of the scene, hence they are also un-
suitable for the reconstruction task and the calibration accu-
racy of such manner is dependent on the pre-reconstructed
scene. In this paper, we propose an adaptive multi-camera
based SfM system, where the internal relative poses of the
multi-camera system are computed online and a new multi-
camera based motion averaging problem is formulated.

First, images are divided into reference images and non-
reference images. For a N-camera system, N images are
simultaneously obtained at each moment. We select one
camera as the reference camera and the images collected
by this camera are denoted as reference images. In this
way, only the reference camera poses and the internal rel-
ative poses of multi-camera system need to be computed.
As a consequence, the number of parameters in our sys-
tem is about 1/N of the number of parameters in the tra-
ditional SfM system. The constraints produced by the non-
reference images are transformed into the constraints on ref-
erence images, which makes the connections of reference
images become more dense. According to the different clas-
sification attributes of images, the edges in view-graph will
generate four different geometric constraints. Based on the
constraints on camera rotations, a multi-camera based ro-

tation averaging problem is formulated and solved in two
stages: the internal relative rotations of multi-camera sys-
tem is first estimated and then an iterative re-weighted least
squares scheme is further proposed to refine camera rota-
tions. Given global camera rotations, a multi-camera based
translation averaging problem is formulated and solved in
a global manner, where the internal relative translations of
multi-camera system and reference camera positions are si-
multaneously estimated in a l1-norm based cost function.
As shown in (Wilson, Bindel, and Snavely 2016), the per-
formance of motion averaging is depending on both the ac-
curacy of relative geometries and the number of constraints.
However, the two-view relative translation estimation is sen-
sitive to feature match outliers, which means direct compu-
tation of the whole view-graph may bring a lot of outliers
to the motion averaging system. Thus, we propose an edge
selection method to mitigate the impact of relative geom-
etry outliers. Experiments demonstrate that the robustness
and accuracy of SfM system are improved by this selection
strategy. Fig. 1 shows the camera positions estimation of a
large-scale dataset data09, which comes from the odometry
benchmark of KITTI (Geiger, Lenz, and Urtasun 2012).

In summary, the main contributions of our work are:

• a multi-camera based motion averaging (MMA)
system is proposed, where the internal relative
poses between cameras are calibrated automati-
cally. To our best knowledge, we are the first to
handle the reconstruction task of multi-camera sys-
tem in a global manner;

• images are divided into reference images and non-
reference images, and in this way, the number of
estimated parameters in our system is reduced to
1/N of that in the traditional system, where N is
the number of cameras in the multi-camera system;

• a multi-camera based rotation averaging (MRA)
problem is formulated and solved to simultane-
ously estimate the internal relative rotations of
multi-camera system and camera rotations of ref-
erence images;

• a multi-camera based translation averaging (MTA)
problem is formulated and solved to simultane-
ously estimate the internal relative translations of
multi-camera system and reference image posi-
tions, and an edge selection method is proposed to
tackle outliers.

Related Work
Rotation Averaging. RA aims to estimate the absolute ro-
tations from the observations of relative rotations. Govindu
and Venu propose to solve this problem by lie-group based
averaging (Govindu 2004). In (Hartley, Aftab, and Trumpf
2011), the classical Weiszfeld algorithm is used to update the
absolute orientations of each camera iteratively. In (Cran-
dall et al. 2012), a rough rotation initialization is estimated
by discrete Markov Random Field (MRF) with loopy be-
lief propagation, and then refined by continuous Levenberg-
Marquardt optimization. In (Fredriksson and Olsson 2012),
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the RA problem is converted to a dual problem with La-
grangian duality and solved by the Semi-Definite Program-
ming (SDP), which contributes to obtaining the globally
minimum solutions. The impact of different cost functions
to the performance of RA is summarized in (Hartley et al.
2013). In (Wilson, Bindel, and Snavely 2016), the authors
point out that densely connected view-graph and highly ac-
curate geometry can produce a more stable and accurate RA
result. Chatterjee and Govindu use an iterative re-weighted
least squares (IRLS) formulation to fine-tune the initializa-
tion of RA (Chatterjee and Govindu 2017). In (Cui et al.
2017), the view-graph is clustered to improve the connec-
tion tightness, but the accuracy of RA relies on the rela-
tive geometries between different clusters. Similarly in (Zhu
et al. 2018), images are divided into multiple partitions first
and a global motion averaging is solved to determines cam-
eras at partition boundaries. In (Cui et al. 2019), the orthog-
onal maximum spanning tree (Cui et al. 2018) is used to
select relative geometry inliers. Shonan-based RA (Dellaert
et al. 2020) is proposed to recover globally optimal solu-
tions under mild assumptions on the measurement noise.
In (Purkait, Chin, and Reid 2020; Yang et al. 2021), the
end-to-end neural network based RA is proposed. In (Chen,
Zhao, and Kneip 2021), a hybrid RA framework is repre-
sented by leveraging the advantages of global RA and local
RA. Besides£¬in (Dai et al. 2009), the stereo-camera config-
uration is considered in the RA but it cannot be extended to
solve the multi-camera based RA problem. In this work, we
are the first to solve the RA problem of multi-camera system
by fusing internal relative rotation constraints.
Translation Averaging. TA aims to estimate absolute cam-
era positions from the observations of relative translations.
Many linear methods (Rother 2003; Jiang, Cui, and Tan
2013) are proposed to solve TA problem by matrix decom-
position. Although efficient, such approaches are sensitive to
relative geometry outliers. In openMVG (Moulon, Monasse,
and Marlet 2013), a relaxed version of TA problem is pro-
posed and a L∞ norm based function is used to optimize the
estimations. However, the L∞ norm is sensitive to outliers,
which cannot be used in large-scale reconstruction prob-
lems. Since the relative geometries are estimated by feature
matches, the edge outliers are inevitable. Many algorithms
focus on the outliers filtering or robust view-graph construc-
tion. Some methods (Zach, Klopschitz, and Pollefeys 2010;
Guibas, Huang, and Liang 2019) use loop consistency to
remove outliers in the view graph. Some works attempt to
directly construct an accurate view-graph (Cui et al. 2021;
Barath et al. 2021) or refine the view-graph by loop con-
sistency (Cui and Tan 2015; Sweeney et al. 2015). A least
unsquared deviations (LUD) form is proposed in (Ozyesil
and Singer 2015) to estimate not only camera positions but
also the scale of measurements. Based on the alternating di-
rection method of multipliers (ADMM) (Boyd et al. 2011), a
similar cost-function is proposed in (Goldstein et al. 2016),
which is called as Shapefit/kick. To desensitize the impact of
baseline, a bilinear object function is introduced in (Zhuang,
Cheong, and Lee 2018), introducing a variable to perform
the requisite normalization. In (Dong et al. 2022), a rank
constraint is strengthened to refine the camera positions.

The internal relative translations are not considered in the
formulations of those above methods. In this paper, we pro-
pose a new formulation for multi-camera based TA problem
and compute the internal relative translations and reference
camera positions simultaneously.

Multi-Camera Based Motion Averaging
In this section, we show the pipeline of our global motion av-
eraging. The view-graph is first constructed and then we de-
fine the reference camera and non-reference camera. Based
on the belonged camera of images, the relationship between
the reference camera poses and the internal relative poses of
multi-camera system is introduced. Next, we investigate the
multi-camera based rotation averaging problem and show a
two-stage solution. Finally, the multi-camera based transla-
tion averaging problem is formulated and the corresponding
l1 norm based cost function is solved in a global manner.

Construction of View-graph
Given images collected by the multi-camera system, the
scale-invariant image features are first detected. Since the
multi-camera system is usually equipped on the continu-
ously moving platform, the images are collected sequen-
tially. In our work, the image matching is divided into two
stages. In the first stage, the sequential match is performed
on the adjacent images. In the second stage, the loop detec-
tion is performed, where each image is matched with the im-
ages searched by image retrieval (Schönberger et al. 2016).
Given feature matches, the 5-point algorithm (Nistér 2004)
is used to estimate the two-view relative geometry (Rij , tij).
The node in view-graph denotes images. When two images
have a sufficient number of feature matches, they are con-
nected in view-graph and the corresponding edge records the
two-view relative geometry measurement.

Reference Images Definition
Let N be the number of cameras in the multi-camera sys-
tem. We select one camera as the reference camera and the
images collected by this camera are defined as reference im-
ages. The other images are defined as non-reference images.
During the image data collection, N images are simultane-
ously obtained at each moment and we denote them as a
“rigid set”. In each rigid set, there is only one reference im-
age and the number of internal relative poses between cam-
eras in the multi-camera system is N−1. All rigid sets share
the same internal relative poses.

If all images are fully connected, no matter which camera
is selected as the reference camera, the number of the un-
known parameters, including the camera pose of reference
images and the internal relative poses of multi-camera sys-
tem, is fixed. However, in the 360◦ scene, some cameras may
usually collect textureless scene, such as indoor walls or out-
door sky. If they are selected as the reference camera, most
of images may be left uncalibrated. In our work, the maxi-
mum spanning tree (MST) of view-graph is first extracted,
where edge weight is set to the number of feature correspon-
dences, and then the images in the MST are divided into N
classes based on their belonged camera. The class that has
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the most number of images is selected and the images in-
side are set as the reference images. If image i is a reference
image, then its camera pose is the reference camera pose;
otherwise, we find the reference image in the rigid set con-
taining image i and set the corresponding camera pose as the
reference camera pose of image i.

Let {Rref
i , trefi } be the reference camera pose of image

i. {Rrel
i , treli } is the relative pose between images i and its

corresponding reference image. For image i, the following
two equations are hold:

Rrel
i = RiRref

i

T
; (2)

treli = Rref
i (ti − trefi ). (3)

Then, Eq. 1 is transformed into:

Rij = Rrel
j Rref

j Rref
i

T
Rrel

i

T
; (4)

λijtij = Rrel
j Rref

j (Rref
i

T
treli + trefi − Rref

j

T
trelj − trefj ).

(5)
For Eq. 4 and Eq. 5, the left side is the relative geometry
measurement, and the right side contains the reference cam-
era poses and the internal relative poses between cameras.

Multi-Camera Based Rotation Averaging
Since images are distinguished as reference and non-
reference images, the edges in view-graph are divided into
four classes: r − r, r − n, n − r, n − n, where r denotes
reference image and n denotes non-reference image. Based
on Eq. 4, the formulations of four different classes of edges
are derived as follows. For the edge r − r, the referenced
images of both connected images are themselves, hence the
relationship between global camera rotation and relative ro-
tation is transformed into:

Rij = Rref
j Rref

i

T
. (6)

For the edge r − n, the transformed relationship is:

Rij = Rrel
j Rref

j Rref
i

T
. (7)

For the edge n− r, the transformed relationship is:

Rij = Rref
j Rref

i

T
Rrel

i

T
. (8)

For the edge n− n, the transformed relationship is:

Rij = Rrel
j Rref

j Rref
i

T
Rrel

i

T
. (9)

Let D1, D2, D3, D4 be the difference between left side and
right side of Eq. 6, Eq. 7, Eq. 8 and Eq. 9, respectively. The
multi-camera based rotation averaging is defined as:

min
Rref

,Rrel

∑
ij∈E

∥D1∥p + ∥D2∥p + ∥D3∥p + ∥D4∥p,

(10)
where the variable p = 1, 2 chooses l1 or l2 norm.

The key to solve MRA problem is to provide a good
initialization for Eq. 10. In view-graph, the edge weight is
set to the number of feature correspondences. The MST of
view-graph is extracted and camera rotation initialization

can be computed by the chain rule. Then, each rigid set can
produce internal relative rotations of multi-camera system.
Since these estimated internal relative rotations may be in-
consistent, we use the RANSAC method (Hartley and Zis-
serman 2003) to find the best one. In this way, the initializa-
tion of Eq. 10 is obtained. Considering the robustness, the
camera rotations are refined first by minimized Eq. 10 with
l1 norm and then further optimized by minimizing Eq. 10
with l2 norm. To handle gross relative rotation measure-
ments, the l2 norm based optimizing process is performed
in an iterative re-weighted least squares (IRLS) way, where
a weighted least squares problem is solved in each iteration.
The re-weighting function is set to the Φ(ε) = α2/(ε2+α2),
where ε denotes the residual for each observation and α is
the loss width.

If the corresponding reference image of image j is as the
same as that of image i, Eq. 7 will be transformed as:

Rij = Rrel
j , (11)

Eq. 8 will be transformed as:

Rij = Rrel
i

T
, (12)

and Eq. 9 will be transformed as:

Rij = Rrel
j Rrel

i

T
. (13)

Based on these transformations, a relative rotation averaging
is proposed to refine the initial internal relative rotation Rrel

by minimizing:∑
ij∈E

∥Rij−Rrel
j ∥1+∥Rij−Rrel

i

T ∥1+∥Rij−Rrel
j Rrel

i

T ∥1.

(14)
This occurs when cameras have overlapping areas.

Overall, the multi-camera based rotation averaging prob-
lem defined in Eq. 10 is solved in two stages. The first stage
is to estimate the initialization of camera rotations. When the
cameras in the multi-camera system are not overlapped, the
initialization is estimated by the MST of view-graph first,
and then refined by a l1 norm based optimization. When the
cameras in the multi-camera system are overlapped, the ini-
tialization is estimated by the MST of view-graph, and the
internal relative poses between cameras are refined by min-
imizing Eq. 14 with l1 norm. The second stage is to refine
the initialization by minimizing Eq. 10 in an IRLS way.

Multi-Camera Based Translation Averaging
Similar to MRA problem, edges in view-graph are also di-
vided into four classes in MTA problem. Let vij = RT

j tij .
For the edge r − r, the relative translation relationship in
Eq. 1 is transformed into:

λijvij = trefi − trefj . (15)

For the edge r − n, the transformed relationship is:

λijvij = trefi − Rref
j

T
trelj − trefj . (16)

For the edge n− r, the transformed relationship is:

λijvij = Rref
i

T
treli + trefi − trefj . (17)
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For the edge n− n, the transformed relationship is:

λijvij = Rref
i

T
treli + trefi − Rref

j

T
trelj − trefj . (18)

When cameras in the multi-camera system are over-
lapped, the referenced camera of image j may be as the same
as that of image i. In this case, Eq. 16 is transformed into:

λijRref
j vij = trelj , (19)

Eq. 17 is transformed into:

λijRref
i vij = treli , (20)

and Eq. 18 is transformed into:

λijRref
i vij = treli − trelj . (21)

However, since the observed relative translation tij is up to
scale and sensitive to feature match outliers, the local aver-
aging on internal relative translations is not performed.

Let F1, F2, F3, F4 be the right side of Eq. 15, Eq. 16,
Eq. 17 and Eq. 18, respectively. The multi-camera based
translation averaging is defined as:

min
tref ,trel,λij

∑
ij∈E

∥F1 + F2 + F3 + F4− λijvij∥1

s.t. λij > b,
∑
i∈V

trefi = 0,

(22)
where λij is a non-negative variable (in our paper, b is set
to 1.0). The first constraint on λij is to remove the scale
ambiguity and the second constraint on trefi is to remove the
inherent positional ambiguity. We solve this problem by the
ADMM solver (Boyd et al. 2011).

Since the two-view relative translation estimation is more
sensitive to feature match outliers, hence many gross rela-
tive translation constraints may exist in the averaging sys-
tem. For the robustness concern, we propose a simple yet
effective edge selection strategy to improve the performance
of translation averaging. Consider the completeness of scene
reconstruction, the motion averaging should be performed
on all the connected images in view-graph. To achieve this
goal, the MST of the view-graph is extracted, where the
weight of edge is set to the number of feature correspon-
dences. Then for each image, its connected edges are ranked
by the number of feature correspondence inliers and we se-
lect the top-K edges into motion averaging system.

Experiments
Our experiments are performed on real photo collections
provided by different multi-camera platforms, including
conventional stereo camera, Insta360 OneX with two fisheye
cameras and Insta360 Pro2 with six fisheye cameras. The
detailed dataset info is shown in Table 1. The stereo camera
dataset comes from odometry benchmark of KITTI (Geiger,
Lenz, and Urtasun 2012). Although many data do not con-
tain loops, we test them to verify the limitations of motion
averaging technology. We also run experiments on the image
projections of panorama to further demonstrate the power-
ful reconstruction ability of our motion averaging system.
The panorama is a composite of two fisheye images from

Name Ni Nc Sensor GT Loop
data00 9082 2 Stereo yes yes
data01 2202 2 Stereo yes no
data02 9322 2 Stereo yes no
data03 1602 2 Stereo yes no
data04 542 2 Stereo yes no
data05 5522 2 Stereo yes yes
data06 2202 2 Stereo yes yes
data07 2202 2 Stereo yes yes
data08 8142 2 Stereo yes no
data09 3182 2 Stereo yes yes
data10 2402 2 Stereo yes no
data11 2552 2 Insta360 OneX no yes
data12 780 2 Insta360 OneX no yes
data13 2358 6 Insta360 Pro2 no yes
data14 4866 6 Insta360 Pro2 no yes
data15 2312 8 Panorama no yes
data16 2992 8 Panorama no yes

Table 1: Details of testing dataset. Ni denotes the number
of images and Nc denotes the number of cameras. ‘GT’ de-
notes ground truth.

Insta360 OneX and then projected in eight directions to sim-
ulate eight virtual cameras in the scene.

All datasets are collected sequentially and run on a same
computer with 256GB memory. Our method is compared to
the state-of-the-art rotation averaging system RRA (Chatter-
jee and Govindu 2017) and IRA (Gao et al. 2021), and also
compared to the state-of-the-art translation averaging sys-
tem LUD (Ozyesil and Singer 2015) and BATA (Zhuang,
Cheong, and Lee 2018). Global rotation averaging results
of LUD and BATA are produced by RRA. Both RRA and
LUD are implemented in Theia (Sweeney 2015). The code
of BATA is provided in (Zhuang 2018). In our work, the
parameter K in the translation averaging is set to 8. For
the reconstruction implementation, the root-SIFT (Arand-
jelović and Zisserman 2012) is used to detect image fea-
tures and feature matching is run on GPU (Schönberger and
Frahm 2016). Based on estimated camera poses, the tracks
triangulation (Hartley and Sturm 1997) and bundle adjust-
ment (Agarwal, Mierle, and Others 2021) are iteratively per-
formed to get the final reconstruction result.

Evaluation of Benchmark Datasets
To evaluate calibration accuracy, our method is run on the
KITTI odometry benchmark dataset, which is captured by a
driving car with a stereo camera. Since cars usually travel
in a straight line, most of relative translation estimations are
collinear, which is challenging for global SfM system. Ta-
ble 2 shows the results of camera calibration accuracy and
system running time. Since the image-based reconstruction
is up to scale, the accuracy of internal relative translation is
measured by the angle between translation directions.

In most cases, our MRA method is superior than the
RRA (Chatterjee and Govindu 2017) and IRA (Gao et al.
2021). Especially for data02 and data06, the results pro-
duced by RRA are gross while we produce more accurate
camera rotations, which is the key to produce a better trans-
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RRA IRA MRA LUD BATA MTA
Name ẽr|ēr Tr ẽr|ēr Tr ẽr|ēr|err Tr ẽt|ēt Tt ẽt|ēt Tt ẽt|ēt|ert Tt

data00 1.3|1.7 20 0.7|0.8 59 0.7|0.8|0.1 20 25.7|38.3 4.5 21.7|36.8 7.0 1.5|1.9|0.1 1.4
data01 1.8|2.8 1 1.2|1.6 15 0.7|1.1|0.1 1 22.5|41.6 1.3 19.5|29.3 0.3 16.3|23.2|0.4 0.5
data02 78.3|88.8 30 3.0|5.0 59 1.8|2.3|0.1 32 105.6|247.0 3.9 104.2|259.5 6.0 7.0|10.1|0.8 5.1
data03 0.7|0.7 2 28.8|36.7 2 0.7|0.7|0.1 2 3.2|7.0 0.4 4.0|10.0 0.3 0.4|1.9|0.3 0.3
data04 0.4|0.4 1 0.3|0.3 4 0.3|0.3|0.1 1 34.3|66.9 0.6 67.4|87.8 0.1 2.4|13.3|1.3 0.6
data05 1.8|1.8 24 0.6|1.3 45 0.7|0.8|0.1 25 10.9|26.4 2.8 9.0|19.7 1.7 0.6|1.2|0.2 1.2
data06 57.8|77.8 3 0.5|0.5 14 0.5|0.5|0.1 3 25.9|71.4 1.2 27.5|65.1 0.3 0.3|1.0|0.3 0.2
data07 2.9|2.9 3 0.6|0.5 17 0.6|0.6|0.1 3 8.3|13.3 1.2 4.9|8.9 0.3 0.9|2.2|0.2 1.0
data08 0.8|0.9 15 0.7|0.7 43 0.8|0.8|0.1 14 20.0|32.2 2.7 17.5|24.8 3.5 2.6|3.1|0.5 4.7
data09 1.4|1.4 6 1.0|1.1 21 0.6|0.6|0.1 6 28.4|49.9 1.4 20.7|38.5 0.4 1.7|3.5|0.4 1.4
data10 1.2|1.3 5 0.6|0.7 16 0.7|0.8|0.1 5 16.3|40.3 1.1 8.3|26.0 0.3 0.6|1.2|0.3 1.1

Table 2: Calibration accuracy of KITTI datasets. ẽr and ēr denote median and mean rotation errors in degrees, respectively. ẽt
and ēt denote median and mean position errors in meters, respectively. err and ert denote relative rotation error and relative
translation error in degrees, respectively. Tr denotes running time of RA in seconds. Tt denotes running time of TA in minutes.

(b) data07(a) data05

Figure 2: Comparison of calibrated camera positions. ‘GT’
denotes the ground-truth camera positions. Since the driving
car runs on a flat road, only the top-view of calibrated cam-
era trajectory is shown in the figure.

lation averaging result. Since IRA is an incremental method,
it is not as efficient as our global MRA method and it cannot
generate an usable result for data03. For the translation aver-
aging, neither LUD nor BATA can fulfil this task. The main
reason is that the view-graph contains too many collinear
two-view translation measurements, which degenerate the
scales estimation. Figure 2 shows the camera positions pro-
duced by LUD, BATA and MMA, respectively. Although the
loop is achieved by LUD and BATA, the scale error is ex-
tremely large, while our result is nearly coincide with the
ground-truth. In our work, the camera pose constraints gen-
erated by edges containing non-reference images are con-
verted to constraints on reference images. As a consequence,
many non-collinear constraints are added to the reference
images and the number of constraints on reference camera
poses is higher than that of conventional methods. From Ta-
ble 2, our motion averaging results are more accurate than
those produced by LUD and BATA. For the running time,
the performances of these three systems are similar.

Since loop closure is vital to mitigate camera calibration
errors, the result produced on the data with loops is more
accurate than those data without loops. Based on this com-
parison, it is necessary for mobile robots to surround a cir-
cle in the scene in order to better perceive the surrounding

scene. This is an inherent limitation of global motion aver-
aging system. Although our system alleviates the limitation,
if the image acquisition platform moves linearly for a long
time without closing the loop, the system cannot produce
accurate results, such as the results of data01 and data02.

Evaluation of Self-collected Datasets
To demonstrate the scalability of system, six self-collected
datasets are also tested. The dataset info is shown in Table 1
and the corresponding results are shown in Fig. 3. Since
these datasets are collected sequentially, the camera moving
trajectory should be continuous.

Among these datasets, only data11 is successfully recon-
structed by all three methods. The main reasons include
the following two aspects. First, most of the camera trajec-
tory is not along a line, hence the view-graph contains lit-
tle collinear relative translations, which is more suitable for
conventional global motion averaging systems. In addition,
since the scene is collected multiple times, the nodes in the
view-graph are densely connected. These two good condi-
tions make the scene be reconstructed easily. However, this
collecting manner is infeasible for self-driving cars.

For data12 and data13, the scene is a underground garage
and the camera moving trajectories are similar. The data12
is collected by Insta OneX with two fisheye cameras and
data13 is collected by Insta Pro2 with six fisheye cameras.
In the garage, there are many identical cars, signs and diver-
sion lines, which produce many gross relative geometries.
Although the corresponding ground truth camera positions
are not available, the similar and smooth camera trajectories
produced by our motion averaging show that our system per-
forms better than the LUD and BATA. The camera positions
calibrated by LUD and BATA are discontinuous, which vio-
lates the sequential collecting manner.

For data14 and data16, both BATA and our system recon-
struct them successfully. Although the shape of the camera
trajectory produced by LUD is similar to that produced by
our system, many erroneous camera positions exist in its re-
sult. Since the platform just walks around the scene once and
the distance between cameras in the multi-camera system is
close, the camera trajectory should seems like a single loop.
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data11 data12 data13 data14 data15 data16

Figure 3: From top to bottom, the reconstruction results are produced by LUD, BATA and our method MMA, respectively. The
calibrated camera positions are shown in red.

(b) mean error(a) median error

Figure 4: Camera position accuracy under different param-
eter settings. To simplify parameter search process, we set
K = 4H,H = 1, 2, ..., 7. x-axis denotes the value of H and
y-axis shows the camera position error in meters.

However for LUD, many loops and gross camera positions
appear in the result. The data15 is collected in the street and
the camera trajectory contains many straight lines. Neither
BATA nor LUD is capable of reconstructing this scene. In
comparison, our calibrated camera trajectory is continuous
and the corresponding reconstruction result is more reliable.

Overall, our system is not sensitive to the collinear rela-
tive translations and more accurate than LUD and BATA. In
addition, the number and the distribution of cameras in the
multi-camera system does not affect the performance of our
system. Since the data collection manner for cars or robots is
usually moving straight along the road, our system is more
applicable for the related applications of self-driving.

Ablation Study of Parameter K
Since feature match outliers produce many gross relative ge-
ometry estimations, our edge selection strategy is proposed

to balance the accuracy of observed relative translations and
the number of constraints on cameras. The only parameter
in our work is the number of selected edges for each node of
view-graph, which is defined as K. To guarantee the robust-
ness of scene reconstruction, five datasets containing loops
are used to find the optimal parameter.

Fig. 4 shows the performance of our system under differ-
ent parameter settings. Note that when H = 7, all edges of
view-graph are selected into our multi-camera based trans-
lation averaging system, which means the corresponding re-
sult is produced without our edge selection strategy. From
this figure, using all edges gets the worst result, indicating
the necessity of edge selection. From K = 4 to K = 8,
both median position error and mean position error decrease.
However, as more edges are selected, the error of camera po-
sition estimations increases progressively. Hence, based on
this discovery, the parameter K is set to 8, which means that
in our multi-camera based translation averaging, each image
is constrained only by the best 8 edges connected to it.

Conclusion
In this paper, we propose a multi-camera based motion av-
eraging system, where the multi-camera based rotation aver-
aging and multi-camera based translation averaging are pre-
sented. By embedding the internal relative poses constraint
into reconstruction system, both our rotation averaging and
translation averaging are superior than the state-of-the-art
global systems. Extensive experiments on different multi-
camera systems demonstrate the scalability, robustness and
accuracy of our system. By equipping our system, both self-
driving cars and intelligent robots can better perceive the
surrounding environment. Next, on the premise of ensuring
efficiency, we will consider adding a small number of 3D
points into system to study whether they can further improve
the reconstruction performance.

496



Acknowledgements
This work was supported by the National Natural Science
Foundation of China (under grants 62073320, 61873265 and
U1805264).

References
Agarwal, S.; Mierle, K.; and Others. 2021. Ceres Solver.
http://ceres-solver.org. Accessed: 2022-03-07.
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