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Abstract

Training effective Generative Adversarial Networks (GANs)
requires large amounts of training data, without which the
trained models are usually sub-optimal with discriminator
over-fitting. Several prior studies address this issue by ex-
panding the distribution of the limited training data via mas-
sive and hand-crafted data augmentation. We handle data-
limited image generation from a very different perspective.
Specifically, we design GenCo, a Generative Co-training net-
work that mitigates the discriminator over-fitting issue by in-
troducing multiple complementary discriminators that pro-
vide diverse supervision from multiple distinctive views in
training. We instantiate the idea of GenCo in two ways. The
first way is Weight-Discrepancy Co-training (WeCo) which
co-trains multiple distinctive discriminators by diversifying
their parameters. The second way is Data-Discrepancy Co-
training (DaCo) which achieves co-training by feeding dis-
criminators with different views of the input images. Exten-
sive experiments over multiple benchmarks show that GenCo
achieves superior generation with limited training data. In ad-
dition, GenCo also complements the augmentation approach
with consistent and clear performance gains when combined.

Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) have achieved great successes in various image
generation tasks such as image-to-image translation (Zhu
et al. 2017; Zhan, Zhu, and Lu 2019; Zhan et al. 2021),
domain adaptation (Hoffman et al. 2018; Hsu et al. 2020)
and image in-painting (Yu et al. 2019, 2021b,a). Neverthe-
less, high-fidelity image generation requires large amounts
of training samples which are laborious and time-consuming
to collect. Data-limited image generation, which aims to
generate realistic and high-fidelity images with a small num-
ber of training samples, is a very meaningful yet challenging
task for the widespread applications of image generation.

With limited training samples, the trained generation
model suffers from discriminator over-fitting (Zhao et al.
2020; Karras et al. 2020a) which leads to degraded gener-
ation. Specifically, over-fitting discriminator produces very
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Figure 1: The proposed GenCo improves data-limited im-
age generation clearly (on 100-shot Obama): With limited
training samples, discriminator in most GANs such as Style-
GAN2 tends to become over-fitting and produces very small
discriminator loss as shown in the upper graph. The very
small discriminator loss further leads to very large generator
loss as well as gradients which cause training to diverge and
generation to deteriorate as shown in the lower graph. The
proposed GenCo mitigates the discriminator over-fitting ef-
fectively with more stable training and better generation.

small discriminator loss as illustrated in the upper graph in
Fig. 1. The very small discriminator loss then leads to very
large generator loss and gradients which accumulate during
training and lead to training divergence and degraded gen-
eration (Pascanu, Mikolov, and Bengio 2012, 2013) as il-
lustrated in the lower graph in Fig. 1. The over-fitting issue
has attracted increasing interest recently, and the prevalent
approach addresses the issue through massive data augmen-
tation. The idea is to massively augment the limited training
samples to expand the data distributions as much as possible.
Though prior studies (Karras et al. 2020a; Zhao et al. 2020)
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demonstrate the effectiveness of this approach, they address
the problem at the input end only without considering much
about network training.

We tackle the over-fitting issue from a very different per-
spective. Specifically, we introduce the idea of co-training
into the data-limited image generation task, aiming to learn
limited data from multiple distinctive yet complementary
views. Co-training was originally proposed to boost the
inspection performance when only limited data is avail-
able (Blum and Mitchell 1998). It alleviates the data con-
straint effectively by employing multiple classifiers that
learn from different views and capture complementary in-
formation about the limited data. In recent years, co-training
has been adopted in different deep learning tasks such as
semi-supervised image recognition (Qiao et al. 2018), un-
supervised domain adaptation (Saito et al. 2018; Luo et al.
2019), etc., where the amount of training data becomes more
critical as compared with traditional learning tasks without
using deep neural networks.

Specifically, we design GenCo, a Generative Co-training
network that adapts the idea of co-training into data-limited
image generation for tackling its inherent over-fitting is-
sue. GenCo trains the generator with multiple discriminators
that mitigate the over-fitting issue by learning from multi-
ple distinct yet complementary views of the limited data.
We design two instances of GenCo that enable the discrim-
inators to learn from distinctive and comprehensive views.
The first is Weight-Discrepancy Co-training (WeCo) which
co-trains multiple distinctive discriminators by diversifying
their parameters with a weight discrepancy loss. The second
is Data-Discrepancy Co-training (DaCo) that co-trains dis-
tinctive discriminators by feeding them with different views
of the input images. The proposed GenCo mitigates the dis-
criminator over-fitting issue and improves data-limited im-
age generation effectively as illustrated in Fig. 1, more de-
tails to be discussed in the Experiments section.

The contribution of this work can be summarized in three
aspects. First, we propose to tackle the data-limited image
generation challenge from a co-training perspective. To this
end, we design GenCo, a Generative Co-training network
that mitigates the discriminator over-fitting issue effectively
by training the generator with multiple distinctive discrimi-
nators. Second, we design two instances of GenCo that are
complementary to each other, namely, WeCo that introduces
weight discrepancy loss to diversify multiple discriminators
and DaCo that learns distinctive discriminators by employ-
ing different views of input images. Third, extensive exper-
iments show that GenCo achieves superior generation qual-
ity and it is also complementary with the state-of-the-art
augmentation and regularization approaches with consistent
performance gains.

Related Works
Generative Adversarial Networks (GANs): The pio-
neer GANs (Goodfellow et al. 2014) greatly changes the
paradigm of automated image generation. Leveraging this
idea, quite a few GANs have been developed for realistic
image generation in the past few years. They strive to im-
prove the generation realism and fidelity from different as-

pects by introducing task-specific training objectives (Ar-
jovsky, Chintala, and Bottou 2017), sophisticated network
architectures (Miyato and Koyama 2018; Wu et al. 2020; Cui
et al. 2021), and different training strategies (Liu et al. 2020),
etc. On the other hand, most existing GANs still require a
large number of training images for capturing the data dis-
tributions comprehensively. When only a limited number of
training images are available, they often suffer from clear
discriminator over-fitting and degraded generation.

We target data-limited image generation, which strives to
learn robust generation models from limited training images
yet without sacrificing much generation quality.

Data-Limited Image Generation: Data-limited image
generation has attracted increasing interest for mitigating
the laborious image collection process. The earlier stud-
ies (Webster et al. 2019; Gulrajani, Raffel, and Metz 2020)
suggest that one of the main obstacles of training GANs with
limited training data is the discriminator over-fitting. The re-
cent studies strive to address the issue through massive data
augmentation. For example, Zhao et al. (2020) introduces
differentiable augmentation to stabilize the network training
which leads to a clear improvement in generation. Karras
et al. (2020a) presents an adaptive augmentation mechanism
that prevents leaking of augmentation to generated images.

In this paper, we tackle the discriminator over-fitting is-
sue from a different perspective and propose Generative Co-
training that employs the idea of co-training to view the lim-
ited data from multiple complementary views.

Co-training: Co-training aims to learn multiple comple-
mentary information from different views for training more
generalizable models. The idea traces back to a few pio-
neer studies (Blum and Mitchell 1998; Sun and Jin 2011; Yu
et al. 2011) that propose co-training to tackle the data insuf-
ficiency problem while training classification models. With
the recent advance of deep neural networks and demands for
larger amounts of training data, the idea of co-training has
attracted increasing interest in various deep network training
tasks. For example, Qiao et al. (2018) and Saito et al. (2018)
co-train networks with multiple classifiers while Huang et al.
(2021a) conducts co-training with multiple tasks.

We introduce co-training into the data-limited image gen-
eration task for mitigating its inherent over-fitting issue dur-
ing adversarial training. To the best of our knowledge, this
is the first work that explores the discriminative co-training
idea for the generative image generation task.

Method
This section describes the detailed methodology of the pro-
posed GenCo. As illustrated in Fig. 2, we co-train multiple
distinctive discriminators to mitigate the over-fitting issue.
In addition, we design two instances of GenCo, including a
Weight-Discrepancy Co-training (WeCo) that trains multi-
ple distinctive discriminators by diversifying their parame-
ters and a Data-Discrepancy Co-training (DaCo) that trains
multiple distinctive discriminators by feeding them with dif-
ferent views of training images. We focus on two discrimi-
nators in WeCo and DaCo and will discuss the extension
with more discriminators in Experiments. The ensuing sub-
sections will describe the problem definition of data-limited
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Figure 2: The architecture of the proposed GenCo: GenCo consists of four modules on Image Sampling, Image Generation,
Weight-Discrepancy Co-training (WeCo) and Data-Discrepancy Co-training (DaCo). Image Sampling samples images x from
limited training data and Image Generation generates images G(z) with a generator G. x and G(z) are fed to WeCo to co-
train discriminators D1 and D2 which are differentiated by a weight discrepancy loss. They are also fed to DaCo to co-
train discriminators D1 and D3, where a different view of data (i.e., R(x) and R(G(z))) is fed to D3. The box on the right
shows six groups of prediction histograms. The left four groups are produced by D1 (2 with shared weights), D2 and D3,
and the right two groups are the combined prediction histograms by WeCo and DaCo, respectively. The horizontal axis of
these histograms shows the discriminator score in [-4, 4] and the vertical axis shows the numbers of occurrence. The four
distinctive yet complementary discriminators capture different information of the training images, and the fusion of them with
more comprehensive information mitigates the discriminator overfitting issue effectively.

image generation, the network architecture of GenCo, de-
tails of the proposed WeCo and DaCo, and the overall train-
ing objective, respectively.

Problem Definition

The GAN models are the cornerstone techniques for image
generation tasks. Each GAN consists of a discriminator D
and a generator G. The general loss function for discrimina-
tor and generator is defined as:

Ld(D;x,G(z)) = E[log(D(x))]

+E[log(1−D(G(z))]
(1)

Lg(D;G(z)) = E[log(1−D(G(z))] (2)

where Ld and Lg denote the discriminator and generator
losses, respectively. x denotes a training sample and z is
sampled from a prior distribution.

With limited training data XL, discriminator in GANs
tends to become over-fitting, leading to sub-optimal image
generation. Concretely, the over-fitting discriminator pro-
duces high prediction scores and very small discriminator
loss Ld. The very small discriminator loss leads to very large
generator loss Lg as well as gradients which accumulate dur-
ing training and further cause training divergence and de-
graded generation. The following subsections describe how
the proposed GenCo mitigates the discriminator over-fitting.

Overview of Network Architecture
GenCo consists of four major modules as demonstrated
in Fig. 2: Image Sampling, Image Generation, Weight-
Discrepancy Co-training (WeCo) and Data-Discrepancy Co-
training (DaCo). Image Sampling samples images x from
the limited dataset XL and Image Generation generates fake
samples G(z) from a prior distribution with generator G. x
and G(z) are then passed to WeCo to co-train discrimina-
tors D1 and D2 that are differentiated by a weight discrep-
ancy loss. Meanwhile, x and G(z) are also fed to DaCo to
co-train discriminators D1 and D3 that are differentiated by
distinctive views of the inputs.

Weight-Discrepancy Co-training
The proposed WeCo aims to learn two distinctive discrim-
inators D1 and D2 by diversifying their parameters. We
achieve diverse parameters by defining a weight discrep-
ancy loss Lwd that minimizes the cosine distance between
the weights of D1 and D2:

Lwd(D1, D2) =

−−→
WD1

−−→
WD2

|
−−→
WD1

||
−−→
WD2

|
(3)

where
−−→
WD1

and
−−→
WD2

are the weights of D1 and D2. The
loss of D1 and D2 can thus be formulated by:

LD1
= Ld(D1;x,G(z)) (4)

LD2
= Ld(D2;x,G(z)) + Lwd(D1, D2) (5)
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Methods Massive Pre-training 100-shot AFHQ
Augmentation w/ 70K images Obama Grumpy Cat Panda Cat Dog

Scale/shift No Yes 50.72 34.20 21.38 54.83 83.04
MineGAN No Yes 50.63 34.54 14.84 54.45 93.03
TransferGAN No Yes 48.73 34.06 23.20 52.61 82.38
TransferGAN + DA Yes Yes 39.85 29.77 17.12 49.10 65.57
FreezeD No Yes 41.87 31.22 17.95 47.70 70.46
DA Yes No 46.87 27.08 12.06 42.44 58.85
ADA Yes No 45.69 26.62 12.90 40.77 56.83
LeCam-GAN Yes No 33.16 24.93 10.16 34.18 54.88
DA + GenCo Yes No 32.21 17.79 9.49 30.89 49.63
StyleGAN2 No No 80.20 48.90 34.27 71.71 130.19
LeCam-GAN No No 38.58 41.38 19.88 60.26 112.39
GenCo No No 36.35 33.57 15.50 54.78 94.47

Table 1: Comparison with the state-of-the-arts over 100-shot and AFHQ: Training with 100 (Obama, Grumpy Cat and Panda),
160 (AFHQ Cat), and 389 (AFHQ Dog) samples, GenCo performs the best consistently. It achieves comparable results as
transfer learning methods (Rows 1-5) pre-trained with 70K images. We report FIDs (↓) averaged over three runs.

DA (with massive augmentation)

O
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m
a
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nd

a

GenCo (with massive augmentation)

Figure 3: Qualitative results over 100-shot datasets (e.g., Obama and Panda): The generation by GenCo is clearly more realistic
than that by DA (Zhao et al. 2020), the state-of-the-art data-limited generation method.

where Ld is the general discriminator loss as in Eq.1. Lwd

is the weight discrepancy loss as defined in Eq.3. We apply
Lwd on only one discriminator for simplicity because apply-
ing it on two discriminators does not make much difference.

The overall WeCo loss LWeCo
D1,D2

can thus be defined by:

LWeCo
D1,D2

= LD1
+ LD2

(6)

Data-Discrepancy Co-training

DaCo co-trains two distinctive discriminators D1 and D3

that take different views of the input images. Specifically,
D1 is fed with the original images while D3 takes partial
frequency components (FCs) of the input images (generated
by Random Frequency Component Filter (R)) as input.

The component R consists of three processes including
Rt, Rr, and Rt−1 . Specifically, Rt first converts the images
x to frequency space. Rr then filters some FCs randomly
with the other FCs passed(Yang and Soatto 2020; Huang
et al. 2021b,c). Finally, Rt−1 converts the passed FCs back to
RGB images to form the new inputs of D3. Detailed defini-
tions of Rt, Rr, Rt−1 are available in the supplementary ma-
terial. Note the percentage of the filtered FCs is controlled
by a hyper-parameter P which is empirically set at 0.2.

The loss functions of D1 and D3 can thus be defined by:

LD1
= Ld(D1;x,G(z)) (7)

LD3
= Ld(D3;R(x), R(G(z))) (8)

where the loss of D1 is the same as the loss of D1 (Eq. 4) in
WeCo (they share weights). The loss of D3 is close to that of
D1 and the differences are largely due to the different inputs
by the Random Frequency Component Filter (R).

The overall DaCo loss LDaCo
D1,D3

can thus be defined by:

LDaCo
D1,D3

= LD1
+ LD3

(9)

Overall Training Objective
The generator G learns with information from all three dis-
criminators. Its loss Ltotal

G can be formulated by:

Ltotal
G = Lg(D1;G(z)) + Lg(D2;G(z))

+Lg(D3;R(G(z)))
(10)

The overall training objective of the proposed GenCo can
thus be formulated by,

min
G

max
D1,D2,D3

Ltotal
G + LWeCo

D1,D2
+ LDaCo

D1,D3 (11)
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Methods CIFAR-10 CIFAR-100
100% data 20% data 10% data 100% data 20% data 10% data

Non-saturated GAN 9.83±0.06 18.59±0.15 41.99±0.18 13.87±0.08 32.64 ±0.19 70.5±0.38
LS-GAN 9.07±0.01 21.60±0.11 41.68±0.18 12.43±0.11 27.09±0.09 54.69±0.12
RAHinge GAN 11.31±0.04 23.90±0.22 48.13±0.33 14.61±0.21 28.79±0.17 52.72±0.18
StyleGAN2 + DA 9.89±0.04 12.15±0.09 14.50±0.08 15.22±0.01 16.65±0.06 20.75±0.09
StyleGAN2 + DA + GenCo 6.57±0.01 8.02±0.05 10.61±0.06 8.27±0.01 10.14±0.04 13.48±0.06
BigGAN + DA 8.75±0.03 14.53±0.10 23.34±0.09 11.99±0.02 22.55±0.06 35.39±0.08
BigGAN + DA + GenCo 7.98±0.02 12.61±0.05 18.10±0.13 10.92±0.02 18.44±0.04 25.22±0.06
StyleGAN2 11.07±0.03 23.08±0.11 36.02±0.15 16.54±0.04 32.30 ±0.11 45.87±0.15
GenCo 8.87±0.02 15.65±0.08 27.16±0.12 9.50±0.03 18.77±0.07 33.88±0.09
BigGAN 9.07±0.06 21.86±0.29 48.08±0.10 13.60±0.07 32.99±0.24 66.71±0.01
GenCo 8.83±0.04 16.57±0.08 28.08±0.11 11.90±0.02 26.15±0.08 40.98±0.09

Table 2: Comparing GenCo with the state-of-the-arts over CIFAR: GenCo mitigates the discriminator over-fitting issue and
outperforms the state-of-the-arts consistently. We report FID (↓) scores averaged over three runs.

Methods FFHQ LSUN-Cat
30K 10K 5K 1K 30K 10K 5K 1K

StyleGAN2 12.30 30.79 49.66 100.13 15.92 50.63 96.44 186.88
GenCo 8.27 15.66 27.96 65.31 12.25 20.15 40.79 140.08

Table 3: Quantitative results on the FFHQ and LSUN-Cat
datasets : We report FID (↓) over three runs.

Why is GenCo effective? In data-limited image gener-
ation, one major issue is that discriminator in GANs tends
to suffer from over-fitting by capturing simple structures
and patterns only (Bau et al. 2019; Zhang et al. 2021).
The proposed GenCo mitigates this issue by co-training two
discriminators in WeCo and DaCo. With the co-training
design, although one discriminator (e.g., D1) may overfit
and focuses on learning simple structures and patterns, the
other distinctive discriminator (e.g., D2 in WeCo and D3 in
DaCo) with different parameters or data inputs will be en-
couraged to learn different information like complex struc-
tures and patterns. The two discriminators thus complement
each other to focus on different types of information, which
helps mitigate the discriminator over-fitting issue effectively
(as shown in Fig.2). From another view, the intrinsic cause
of the discriminator over-fitting is the large generator loss
that leads to training divergence. In GenCo, the overall over-
fitting with two distinctive discriminators in either WeCo or
DaCo is reduced which leads to smaller generator loss and
further mitigates training divergence.

In addition, WeCo and DaCo in GenCo also complement
each other to mitigate the overall over-fitting as they achieve
co-training from different perspectives. Specifically, WeCo
achieves co-training by diversifying the discriminator pa-
rameters, whereas DaCo achieves co-training by feeding two
discriminators with different views of the inputs.

Experiments
In this section, we conduct extensive experiments to evaluate
our proposed GenCo. We first briefly introduce the datasets
and evaluation metrics used in our experiments. We then
benchmark GenCo across these datasets and provide a vi-

sualization of GenCo. Moreover, we conduct extensive ab-
lation studies and discussions to support our design choices.

Datasets and Evaluation Metrics
We conduct experiments over multiple public datasets: CI-
FAR (Krizhevsky et al. 2009), 100-shot (Zhao et al. 2020),
AFHQ (Si and Zhu 2011), FFHQ (Karras, Laine, and Aila
2019) and LSUN-Cat (Yu et al. 2015). We follow Zhao
et al. (2020) and perform evaluations with FID (Heusel et al.
2017) and IS (Salimans et al. 2016).

Experments on 100-shot and AFHQ
Rows 6-9 of Table 1 compare GenCo with state-of-the-art
methods in data-limited image generation (i.e., DA (Zhao
et al. 2020), ADA (Karras et al. 2020a) and LeCam-
GAN (Tseng et al. 2021)) over 100-shot and AFHQ. GenCo
performs the best consistently, demonstrating the effective-
ness of GenCo in mitigating discriminator over-fitting.

Table 1 (Rows 10 and 12) compares GenCo with state-
of-the-art GANs (i.e., StyleGAN2 (Karras et al. 2020b)).
It shows that GenCo improves the generation consis-
tently by large margins. In addition, several studies ex-
plore transfer learning by pre-training the model with large
datasets (i.e., Scale/shift (Noguchi and Harada 2019), Mine-
GAN (Wang et al. 2020), TransferGAN (Wang et al. 2018)
and FreezeD (Mo, Cho, and Shin 2020)). The top part
of Table 1 shows their FID scores (pre-trained with 70K
FFHQ images). We can see that GenCo achieves compara-
ble FIDs by using only 100 – 400 training samples instead.
Fig. 3 qualitatively demonstrates that GenCo outperforms
the state-of-the-art in data-limited generation, especially in
terms of the generated shapes and textures.

Experiments on CIFAR-10 and CIFAR-100
Table 2 (Rows 1-3) compares GenCo with several state-
of-the-art GANs (i.e., Non-saturated GAN (Goodfellow
et al. 2014), LS-GAN (Mao et al. 2017) and RAHinge
GAN (Jolicoeur-Martineau 2018)) over CIFAR-10 and
CIFAR-100. And rows 8-11 show the results of GenCo and
two of its baselines (i.e., StyleGAN2 and BigGAN (Brock,
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D1 D2 D3

Figure 4: Activation maps of discriminators in GenCo:
GenCo mitigates discriminator over-fitting with three dis-
tinctive discriminators that capture complementary informa-
tion. As illustrated, D1, D2, and D3 attend to facial styles
(color, brightness, etc.), facial details (wrinkles, face outline,
etc.) and facial expressions (eyes, mouth, etc.), respectively.

Design Choice Cifar-10 100shot
WeCo DaCo 20% data 10% data Obama

- - 23.08 36.02 80.16
✓ - 20.16 32.55 55.34
- ✓ 16.70 28.46 41.96
✓ ✓ 15.65 27.16 36.28

Table 4: Ablation study of GenCo: WeCo and DaCo in
GenCo both mitigate discriminator over-fitting effectively
with improved generation over the baseline. GenCo per-
forms simply the best as WeCo and DaCo are complemen-
tary to each other. The FIDs (↓) are averaged over three runs.

Donahue, and Simonyan 2018) ). We can see that GenCo
performs the best consistently. The superior performance is
largely attributed to the co-training idea in GenCo which
mitigates the discriminator over-fitting effectively.

Rows 4-7 of Table 2 compare GenCo with DA (Zhao
et al. 2020), the state-of-the-art in data-limited generation.
It shows that GenCo outperforms DA consistently under the
massive augmentation setup, demonstrating the effective-
ness of GenCo in mitigating discriminator over-fitting.

Experiments on FFHQ and LSUN-Cat
Table 3 quantitatively compares GenCo with StyleGAN2
over FFHQ and LSUN-Cat. Following DA, we perform ex-
periments on 30K, 10K, 5K and 1K training samples. As
Table 3 shows, GenCo improves the baseline consistently.

Visualization of GenCo
GenCo mitigates the discriminator over-fitting effectively by
co-training multiple distinctive discriminators (D1 and D2

in WeCo, D1 and D3 in DaCo) that learn from different
views and capture complementary information. This can be
observed from their activation maps (Selvaraju et al. 2017)
in Fig. 4, which show that the three discriminators attend and
capture different visual information. The fusion of them pro-
vides more comprehensive supervision signals which lead to
less discriminator over-fitting and better generation.

Ablation study
The proposed GenCo consists of two major components,
namely, WeCo and DaCo. We study the two components
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yl
eG

AN
2

W
eC

o
Da

C
o

G
en
C
o

Figure 5: Qualitative ablation study over 100-shot Obama:
The generation by WeCo (Row 2) and DaCo (Row 3) alone
is clearly more realistic than the generation by the baseline
(Row 1). In addition, the generation by GenCo (Row 4) that
combines WeCo and GenCo is most realistic.

Methods Baseline +GenCo
FID (↓) IS (↑) FID (↓) IS (↑)

BigGAN 48.08 7.09 28.08 8.01
+ noise 47.06 7.12 27.88 8.06
+ CR 44.16 7.27 27.03 8.12
+ GP-0 42.22 7.38 26.58 8.15
+ LeCam-GAN 35.23 7.97 25.89 8.23

Table 5: Experiments on GenCo and regularization-based
generation methods: GenCo and regularization-based meth-
ods are clearly complementary in data-limited generation.
The FIDs (↓) and IS (↑) are averaged over three runs.

separately to examine their contributions. As Table 4 shows,
including either WeCo or DaCo outperforms the baseline
clearly, demonstrating the effectiveness of the proposed co-
training which mitigates discriminator over-fitting by learn-
ing from multiple distinctive views. In addition, combining
WeCo and DaCo performs clearly the best which verifies
that the distinctive views in WeCo (by weight discrepancy)
and DaCo (by input discrepancy) complement to each other.

Qualitative ablation studies in Fig. 5 show that the pro-
posed WeCo and DaCo can produce clearly more realis-
tic generation than baseline. In addition, GenCo produces
the most realistic generation, which verifies that WeCo and
DaCo complement each other.

Discussion
In this subsection, we analyze our GenCo from several per-
spectives. All the experiments are based on the CIFAR-10
dataset with 10% data unless specified otherwise.

Complementary with regularization methods: Exist-
ing regularization methods introduce a regularization term
to network parameters or training losses to improve training
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Methods Baseline +GenCo
StyleGAN2 36.02 27.16
BigGAN 48.08 28.08
LS-GAN 41.68 26.64
RAHinge GAN 48.13 36.47
BigGAN + DA 23.34 18.10

Table 6: Experiments on the generalization of GenCo with
different baselines (FIDs (↓) averaged over three runs).

Metrics Weight- Number of discriminators
Discrepancy 1 2 3 4

FID (↓) x 36.02 35.44 33.56 32.70
IS (↑) x 7.34 7.46 7.55 7.65

FID (↓) ✓ 36.02 32.55 29.16 27.28
IS (↑) ✓ 7.34 7.68 7.80 8.03

Table 7: Experiments with different number of discrimina-
tors in WeCo (results averaged over three evaluation runs).

stability and mitigate the discriminator over-fitting in data-
limited image generation. The proposed GenCo addresses
the same issue from a very different co-training perspec-
tive instead, which can complement these regularization ap-
proaches (i.e., noise (Sønderby et al. 2016), CR (Zhang
et al. 2019), GP-0 (Mescheder et al. 2018) and LeCam-
GAN (Tseng et al. 2021)) effectively. Table 5 reveals that
existing regularization methods do improve the generation
clearly. Meanwhile, incorporating GenCo into them further
improves the generation consistently by large margins.

Generalization of GenCo: The proposed GenCo can
work with various baselines. Table 6 shows that GenCo im-
proves the generation consistently while working with dif-
ferent baselines. The superior generalization is largely at-
tributed to the co-training design in GenCo, which is inde-
pendent of the network architectures and training losses.

More than two discriminators: WeCo and DaCo mit-
igate discriminator over-fitting by co-training two distinc-
tive discriminators. The idea can be easily extended to more
than two discriminators. As WeCo and DaCo share similar
co-training idea, we evaluate on WeCo only with two dif-
ferent setups: the first simply employs multiple discrimi-
nators while the second employs the same number of dis-
criminators but includes weight discrepancy loss between
each pair of discriminators. As Table 7 shows, the gener-
ation improves consistently with the increasing number of
discriminators. This is intuitive as more views from multi-
ple discriminators help mitigate the over-fitting. In addition,
including the discrepancy loss improves the generation con-
sistently as well, indicating the effectiveness of the proposed
weight discrepancy loss which encourages discriminators to
learn more diverse and complementary information.

Effectiveness of DaCo: DaCo performs light data aug-
mentation as R produces a new input for each input image.
To demonstrate that DaCo works due to our co-training de-
sign instead of the light augmentation, we compare DaCo
and its variant that employs R for augmentation only with-

Metrics Baseline R as augmentation DaCo
FID (↓) 36.02 34.86 28.46
IS (↑) 7.34 7.51 7.88

Table 8: Experiments on the random frequency component
filter R in Daco (results averaged over three runs).

Metrics Percentage of filtered frequency components
0.1 0.2 0.3 0.4 0.5

FID (↓) 29.07 27.16 28.04 28.36 29.18
IS (↑) 7.83 8.05 7.92 7.87 7.81

Table 9: Experiments on the amount of filtered frequency
components in DaCo (results averaged over three runs).

out co-training. Table 8 shows that DaCo achieves clearly
better generation than employing R for augmentation only.
This is largely because DaCo employs two distinctive views
of the inputs to co-train two different discriminators to mit-
igate their over-fitting whereas the light augmentation alone
does not expand the data distribution much.

Robustness of DaCo: We introduce a hyper-parameter P
in DaCo to control the percentage of filtered frequency com-
ponents (FCs). We perform experiments to study how differ-
ent P affect the generation performance. As shown in Table
9, different P produce quite similar FID. We conjecture that
the random filtering of different FCs in each input creates
sufficient distinctive views which makes P not that sensitive
to the overall generation performance.

Conclusion
This paper presents a novel Generative Co-training (GenCo)
network that adapts the co-training idea into data-limited
generation for tackling its inherent over-fitting issue.
We propose two instances of GenCo, namely, Weight-
Discrepancy Co-training (WeCo) and Data-Discrepancy Co-
training (DaCo). WeCo co-trains multiple distinctive dis-
criminators by diversifying their parameters with a weight
discrepancy loss. DaCo achieves co-training by feeding two
discriminators with different views of the inputs. We demon-
strate that both instances can improve the generation per-
formance and combining WeCo and DaCo achieves the best
results. We also show that our GenCo complements state-of-
the-art data-augmentation and regularization methods. In ad-
dition, GenCo is a general technique for limited-data GANs,
which could be applied to various downstream tasks.
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