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Abstract

Feature Pyramid Network (FPN) has been widely adopted
to exploit multi-scale features for scale variation in object
detection. However, intrinsic defects in most of the current
methods with FPN make it difficult to adapt to the feature
of different geometric objects. To address this issue, we in-
troduce geometric prior into FPN to obtain more discrimina-
tive features. In this paper, we propose the Geometry-aware
Feature Pyramid Network (GaFPN), which mainly consists of
the novel Geometry-aware Mapping Module and Geometry-
aware Predictor Head. The Geometry-aware Mapping Mod-
ule is proposed to make full use of all pyramid features to
obtain better proposal features by the weight-generation sub-
network. The weights generation subnetwork generates fu-
sion weight for each layer proposal features by using the geo-
metric information of the proposal. The Geometry-aware Pre-
dictor Head introduces geometric prior into predictor head
by the embedding generation network to strengthen feature
representation for classification and regression. Our GaFPN
can be easily extended to other two-stage object detectors
with feature pyramid and applied to instance segmentation
task. The proposed GaFPN significantly improves detection
performance compared to baseline detectors with ResNet-50-
FPN: +1.9, +2.0, +1.7, +1.3, +0.8 points Average Precision
(AP) on Faster-RCNN, Cascade R-CNN, Dynamic R-CNN,
SABL, and AugFPN respectively on MS COCO dataset.

Introduction
As one of the most important computer vision tasks, object
detection serves as a fundamental task for several high level
applications such as panoptic segmentation (Kirillov et al.
2020) and instance segmentation (He et al. 2017). Follow-
ing the advance of Convolutional Neural Networks (CNN)
and benchmarks, the performance of CNN-based object de-
tectors has been greatly improved. Among these detectors,
Feature Pyramid Networks (FPN) (Lin et al. 2017a) is a clas-
sic and effective method for multi-scale object detection. It
first constructs a feature pyramid and then selects one single
level feature for each proposal by heuristic-guided mapping
mechanism. Finally, the features of each proposal fed into
the predictor head by the RoI Align layer (He et al. 2017).
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Figure 1: Defects in feature pyramid network.

Despite the performance of multi-scale object detection
substantially improved by FPN, its potential has not been
fully explored, as shown in Fig. 1. We summarize two po-
tential promotions as follows:

1) Geometry-guided proposal mapping mechanism.
Object proposals are assigned to a certain level of feature
map by heuristic rules, such as the area of proposals. Al-
though the areas of object proposals are similar, the aspect
ratio of them may be significantly different. For example,
a 1000×10 object and a 10×1000 object are assigned to the
same feature map. The problem leads to a major flaw that the
optimal feature may be hard to obtain based on heuristic-
guided. Meanwhile, recent studies (Liu et al. 2018; Guo
et al. 2020) report that selecting only single-layer feature
may generate sub-optimal results, since this way ignores the
valid information of unselected features from other layers.
The geometry-guided proposal mapping mechanism by em-
ploying multi-layer features from the feature pyramid may
alleviate these problems.

2) Geometric feature embedding. The geometric infor-
mation of proposals is key prior knowledge for classification
and location refinement. On the one hand, the extra geomet-
ric prior feature may facilitate the classification learning of
two semantically similar proposals to distinguish them eas-
ily. On the other hand, the regression value may be dynami-
cally changed according to the extra geometric prior feature.
However, after feature mapping, each object proposal is ex-
tracted 7×7 features by RoI Align (He et al. 2017) layer.
Then the extracted features are fed into the detector head
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consisting of fully-connected layers to be classified and re-
gressed. Through the above processes,the geometric infor-
mation of the proposal is largely ignored and damaged. So,
how to embed geometric features into features of the pro-
posal is an urgent problem to generate more accurate results.

These promotions motivate us to propose the Geometry-
aware Feature Pyramid Network (GaFPN), a simple yet
effective feature pyramid network, to improve feature
representation for multi-scale object detection. First, the
Geometry-aware Mapping Module makes full use of all
pyramid features to obtain better proposal features and re-
duce the impact of heuristic-guided mapping by the weight-
generation subnetwork. The weights generation subnetwork
generates fusion weights for each proposal in different lay-
ers by using the geometric information of the proposal. Sec-
ond, the Geometry-aware Predictor Head is utilized to in-
troduce geometric features into the classification and regres-
sion branch by the embedding generation network. It deals
with the geometric prior missing problem and generate more
discriminative features. The embedding generation network
generates geometric embedding values for each proposal by
using the geometric information of the proposal, then the
geometric embedding value embed into features of the pro-
posal by multiplication operation.

Experimental results on MS COCO (Lin et al. 2014)
dataset show that our GaFPN based Faster R-CNN (Ren
et al. 2015) outperforms baseline detectors with ResNet-
50-FPN: GaFPN improves the detection Average Precision
(AP) by +1.9, +2.0, +1.7, +1.3, +0.8 points on Faster-RCNN
(Ren et al. 2015), Cascade R-CNN (Cai and Vasconcelos
2018), Dynamic R-CNN (Zhang et al. 2020), SABL (Wang
et al. 2020), and AugFPN (Guo et al. 2020), respectively.

Our contributions are three-fold: (1) We systematically re-
visit the FPN detectors. Our study reveals two defects that
limit the detection performance. (2) We propose a new fea-
ture pyramid network named GaFPN to address these prob-
lems by combining new components: Geometry-aware Map-
ping Module, Geometry-aware Predictor Head. (3) We ver-
ify the proposed GaFPN equipped with various detectors,
backbones and tasks on MS COCO, and it consistently ob-
tains significant improvements over FPN-based detectors.

Related Work
Object Detectors
Benefit from CNN, object detectors have achieved dramatic
improvements in recent years. CNN-based detectors can be
divided into two types: two-stage and one-stage. R-CNN
(Girshick et al. 2014) was first employed as a two-stage de-
tector. To achieve end-to-end detector, SPP (He et al. 2015),
Fast R-CNN (Girshick 2015) and Faster R-CNN (Ren et al.
2015) were gradually proposed. Faster R-CNN introduces
Region Proposal Network (RPN), a novel proposal genera-
tor, to replace traditional methods, then develop an end-to-
end detector. FPN (Lin et al. 2017a) introduces feature pyra-
mid architecture to tackle the scale variation. Cascade R-
CNN (Cai and Vasconcelos 2018) introduces a classic cas-
cade architecture and becomes a multi-stage detector. DCN
(Dai et al. 2017; Zhu et al. 2019) introduces 2d offsets into

standard sampling for accurate object detection. Dynamic
RCNN (Zhang et al. 2020) proposed the dynamic training
strategy based on the statistics of proposals.

In addition, one-stage detectors such as YOLO (Redmon
et al. 2016; Redmon and Farhadi 2017, 2018) and SSD (Liu
et al. 2016) be widely used for their high speed. To improve
the accuracy of one-stage detectors, RetinaNet (Lin et al.
2017b) utilizes a novel focal loss which is a flexible manner
to solve the extreme class imbalance problem and introduces
the feature pyramid architecture into the backbone.

Mapping Strategy
Selecting the appropriate feature in FPN for each proposal is
a key problem. FASF (Zhu, He, and Savvides 2019) makes
the assignment by dynamically selecting the pyramid fea-
ture based on the minimal instance loss level during train-
ing. PANet (Liu et al. 2018) makes the mapping strategy
which selects features of all pyramid levels for each proposal
to fed into fully-connected layers independently and fuses
them by the element-wise maximize operation. To better-
exploited features from different levels, AugFPN (Guo et al.
2020) fuses features from all levels according to the learned
weights for the two-stage detector. There is a distinct differ-
ence that we propose a geometry-aware strategy to obtain
weights according to the external abstract geometric infor-
mation of the proposal rather than the convolution features
of the proposal itself between these methods and our work.

Predictor Heads
Many predictor heads to improve classification and localiza-
tion accuracy have been proposed in recent years. Cascade
R-CNN (Cai and Vasconcelos 2018) employs multi-stage
R-CNN heads with different Intersection over Union (IoU)
thresholds stage-by-stage to obtain more accurate results.
Fitness NMS (Tychsen-Smith and Petersson 2018) designs
subnetworks to predict the probabilities of localization. IoU-
Net (Jiang et al. 2018) propose an IoU prediction module
to predict the IoU for each proposal. Both of the latter two
methods want to optimize the classification confidence ac-
cording to the location quality (IoU), but the prediction of
IoU is difficult and needs to introduce a complex structure.
Another line of effort aims to decouple the classification and
localization. Double-Head R-CNN (Wu et al. 2020) employs
a fully-connected head for classification and a convolution
head for regression. TSD (Song, Liu, and Wang 2020) de-
couples the classification and localization from proposals
and feature extractors. Different from them, our method em-
beds geometric features into the predictor head to compen-
sate for the lack of geometric information caused by the RoI
Align layer (He et al. 2017).

Method
In this section, we introduces the Geometry-aware Feature
Pyramid Network (GaFPN). Our framework is shown in
Figure 2. GaFPN consists of three components: Geometry-
aware Mapping Module (GMM), Geometry-aware Predic-
tor Head (GPH) and Feature Augmentation Pyramid (FAP).
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Figure 2: (a) is overall pipeline of GaFPN based detector. (1)-(3) are three main components of GaFPN: Feature Augmentation
Pyramid, Geometry-aware Mapping Module, and Geometry-aware Predictor Head. (b) is the details of Feature Augmentation.

First, intrinsic feature hierarchy in the backbone are de-
noted as {C2, C3, C4, C5}. Then these features reduced
to the same channel by a 1 × 1 conv are denoted as
{M2,M3,M4,M5}. The same channel features employ
Feature Augmentation inspired by ASPP (Chen et al. 2017)
and attention mechanism (Hu, Shen, and Sun 2018; Woo
et al. 2018; Li et al. 2019) to strength feature and construct
the Feature Augmentation Pyramid. The new generated fea-
tures are denoted as {P2, P3, P4, P5}. Finally, the new fea-
tures are fed into the GMM and the GPH to be classified and
regressed. The GMM fuses multi-layer features of the pro-
posal adaptively according to geometric information. The
GPH embeds geometric information into features of the pro-
posal. Two components of GaFPN will be described in detail
below.

Geometry-aware Mapping Module
The feature level for each proposal is mapped based on
the area of proposals in the conventional FPN. It may pro-
duce sub-optimal results. Meanwhile, features from other
levels may be beneficial for object classification or regres-
sion. These findings motivates us to explore a geometry-
guided proposal mapping mechanism and utilize multi-level
features to obtain better proposal features.

We propose the Geometry-aware Mapping Module
(GMM), which adaptively utilizes each pyramid level of
features to enrich feature representation instead of using
only one level of features guided by heuristics. The adap-
tive mechanism is realized by employing the weights gener-
ation subnetwork to generate the weight for each level. The
subnetwork directly takes the geometric information of pro-
posals as input.

Geometric feature generating: We first normalize the
coordinates (x1, y1, x2, y2) of each proposal, which is com-
puted as follows:

x′
1 =

x1

W
, y′1 =

y1
H

, x′
2 =

x2

W
, y′2 =

y2
H

. (1)

where W,H denote the size of train image, which is used as
a normalization term.

Then we use the normalized coordinates to generate addi-
tional geometric features such as width, height, aspect ratio

(r), and area (a), which is computed as follows:

w = x′
2 − x′

1, h = y′2 − y′1, r =
w

h
, a = w×h. (2)

Finally, these features are concatenated together as the in-
put X ∈ R8 for the weight generation subnetwork, which
can be formulated as follows:

X = CAT(w, h, r, a, x′
1, y

′
1, x

′
2, y

′
2) (3)

Weight calculation: After the geometric feature generat-
ing stage, we calculate weights for each proposal in each
layer feature pyramid. We first use the weight generation
subnetwork which is only consists of fully connected layers
and ReLU to transform the geometric feature. The geometric
feature representation is enhanced through transformation.
Then the transformed feature is used to generate different
weights for different levels by a sigmoid operator, which is
defined as follows:

w = σ(MLPWG(X))

= σ(δW4(δW3(δW2(δW1(X))))) (4)

where δ denotes the Rectified Linear Unit (ReLU), σ is the
Sigmoid function. The MLPWG(·) is the weight generation
subnetwork. The W1 is a dimension increasing layer, and
the W2,W3,W4 is a dimension reduction layer. The out-
put weights w = [w1, w2, w3, w4] ∈ R4. The detailed struc-
ture of the weight generation subnetwork is illustrated in
Figure 3 (a).

Feature aggregation: Finally, we obtain an integrated
feature V by the adaptive multi-level weighted aggregation
for each proposal. The multi-level proposal feature extracted
by the RoI Align layer are denoted as {P ′

2, P
′
3, P

′
4, P

′
5}, and

the integrated feature is computed as follows:

V =
5∑

i=2

wi−1 · P ′
i (5)

where V ∈ R7×7×256, P ′
i ∈ R7×7×256.

In this way, we make full use of pyramid features to en-
rich feature representation instead of using only one level of
features guided by heuristics. The GMM softens the rigid
heuristic mapping strategy into an adaptive strategy that can
be jointly trained with the detector by back-propagation.
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Figure 3: (a) is the process of fusing different levels proposal features for Geometry-aware Mapping Module. (b) is the process
of Geometry-aware Predictor Head.

Geometry-aware Predictor Head
In FPN, each proposal is extracted as a fixed size 7×7×256
feature by the RoI Align (He et al. 2017) layer and fed into
the predictor head. Through the above processes, the geo-
metric information is largely ignored and damaged.

To address this issue, we proposed the Geometry-aware
Predictor Head (GPH), which learns to generate geomet-
ric aware features by the embedding generation subnetwork.
The geometric aware features compensates for the lack of
geometric information caused by the RoI Align layer. Fur-
thermore, to alleviate the side effects of classification and
regression sharing features, different embedding features are
generated for different tasks.

Specifically, the embedding generation subnetwork is
similar to the mapping weights generation subnetwork of the
GMM. The geometric features in Eq. (5) are used as the in-
put X to obtain embedded features.

Embedding value generating: After obtaining the geo-
metric feature, we first use the embedding generation sub-
network to generate embedding value for each proposal. The
subnetwork is only consists of fully connected layers and
ReLU. The embedding value is defined as follows:

E = MLPEG(X) = W3(δW2(δW1(X))) (6)
where δ denotes the Rectified Linear Unit (ReLU),
MLPEG(·) is the embedding generation subnetwork. W1

is a dimension increasing layer, and W2,W3 is a dimen-
sion reduction layer. The output embedding value E =
[E1, E2] ∈ R2.

Feature embedding: Finally, the embedded features
U′

cls,U
′
reg are generated by combining embedding value

and features from the classification and regression branch
(Ucls,Ureg), which is computed as follows:

U′
cls = E1 ·Ucls,U

′
reg = E2 ·Ureg (7)

where Ucls,Ureg,U
′
cls,U

′
reg ∈ R1024.

The detailed structure of the embedding generation sub-
network is illustrated in Figure 3 (b). It is worth noting that
the embedding generation subnetwork is not activated by the
sigmoid at the end, which is different from the weighted gen-
eration subnetwork. The GPH is jointly trained with the de-
tector by back-propagation. In this way, geometric features
are embedded into proposal features, which enriches fea-
ture representation and improves classification and regres-
sion performance.

Experiments
Dataset and Evaluation Metrics
All experiments are performed on the MS COCO (Lin et al.
2014) 2017 dataset with 80 object categories. It consists
of 115k training images (train-2017), 5k validation images
(val-2017) and 20k testing images (test-dev). The model
training is conducted on the train-2017 sets, and the eval-
uation is performed on the val-2017 or test-dev sets. All re-
ported results follow standard COCO-style Average Preci-
sion (AP) metrics that include AP (averaged over different
IoUs), AP50 (AP for IoU 0.5), AP75 (AP for IoU 0.75). We
also include APS , APM and APL, which correspond to the
results on small, medium, and large area respectively.

Implementation Details
For fair comparisons, we conduct all experiments based
on PyTorch, and mmdetection (Chen et al. 2019). ResNet
(He et al. 2016) which is pretrained on the ImageNet (Rus-
sakovsky et al. 2015) is used as backbone. The shorter side
of input images is resized to 800 pixels, and the maximum
size is less than 1333 pixels. By default, the models are
trained on 4 NVIDIA RTX 2080Ti GPUs (2 images per
GPU) for 12 epochs, known as 1× schedule. The 2× means
doubling the total training epochs and learning rate sched-
ules accordingly. We initialize the learning rate as 0.02 and
decreased by a factor of 0.1 at 8th-epoch and 11th-epoch.
We use Stochastic Gradient Descent (SGD) (Krizhevsky,
Sutskever, and Hinton 2012) as an optimizer. Only hori-
zontal flipping augmentation is used for training. All other
hyper-parameters in this paper follow the settings in mmde-
tection (Chen et al. 2019) if not specifically noted.

Main Results
In this section, we compare GaFPN with other state-of-the-
art object detection approaches on the COCO test-dev set.
For fair comparisons, we report our re-implemented results
of the corresponding baseline methods equipped with FPN.
All results are shown in Table 1. Applying the GaFPN on
Faster R-CNN with ResNet-50 achieves 37.8 AP, which is
1.9 points higher than Faster R-CNN based on ResNet50-
FPN. Besides, the GaFPN can consistently improve perfor-
mance even with more powerful backbone networks and
longer iteration steps. For example, when using ResNet101
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Method Backbone Schedule AP AP50 AP75 APS APM APL

Faster R-CNN* ResNet-50 1× 35.9 57.4 38.7 20.9 38.9 43.9
Faster R-CNN* ResNet-101 1× 37.9 59.3 41.3 21.9 41.0 46.9
Faster R-CNN* ResNet-101 2× 39.3 60.8 42.9 22.3 42.5 49.2
Faster R-CNN* ResNext-101 1× 39.8 61.5 43.3 23.8 43.2 48.8
Faster R-CNN† ResNet-50 1× 37.7 58.9 40.7 21.9 40.7 46.5
Cascade R-CNN* ResNet-50 1× 40.2 58.2 43.6 23.0 42.6 50.5
Cascade R-CNN* ResNet-50 2× 41.3 59.6 44.8 23.3 43.7 52.4
Dynamic R-CNN* ResNet-50 1× 38.3 56.8 42.1 21.4 40.7 48.4
SABL* ResNet-50 1× 39.3 57.3 42.2 22.4 42.3 48.5
AugFPN* ResNet-50 1× 38.3 60.5 41.6 23.0 41.4 47.3
Mask R-CNN* ResNet-50 1× 36.9{33.9} 58.2{55.0} 39.9{36.0} 21.6{18.3} 39.6{36.3} 45.4{43.9}
Mask R-CNN* ResNet-101 1× 39.0{35.6} 60.3{57.2} 42.6{38.1} 22.5{18.9} 42.1{38.4} 48.3{46.4}
Mask R-CNN* ResNet-101 2× 40.3{36.6} 61.5{58.5} 44.1{39.4} 22.9{19.3} 43.5{39.5} 50.6{47.9}
Faster R-CNN** ResNet-50 1× 37.8[+1.9] 60.3 40.7 22.5 40.7 46.5
Faster R-CNN** ResNet-101 1× 39.4[+1.5] 61.8 43.1 23.0 42.6 49.2
Faster R-CNN** ResNet-101 2× 40.6[+1.3] 63.0 44.1 23.3 43.8 51.0
Faster R-CNN** ResNext-101 1× 40.8[+1.0] 63.3 44.5 24.3 44.1 50.7
Faster R-CNN†** ResNet-50 1× 39.4[+1.7] 61.2 42.6 22.9 42.4 49.2
Cascade R-CNN** ResNet-50 1× 42.2[+2.0] 61.2 45.8 24.4 45.0 53.4
Cascade R-CNN** ResNet-50 2× 43.1[+1.8] 62.2 46.8 24.6 45.6 54.9
Dynamic R-CNN** ResNet-50 1× 40.0[+1.7] 59.2 43.8 22.8 42.5 50.9
SABL** ResNet-50 1× 40.6[+1.3] 58.9 43.7 23.4 43.5 50.6
AugFPN** ResNet-50 1× 39.1[+0.8] 61.5 42.5 23.4 42.3 48.6
Mask R-CNN** ResNet-50 1× 38.5[+1.6]{35.3[+1.4]} 60.7{57.3} 41.7{37.5} 22.6{18.9} 41.2{37.8} 47.8{46.1}
Mask R-CNN** ResNet-101 1× 40.3[+1.3]{36.8[+1.2]} 62.5{59.1} 43.9{39.3} 23.2{19.5} 43.5{39.7} 50.4{48.3}
Mask R-CNN** ResNet-101 2× 41.7[+1.4]{37.9[+1.3]} 63.9{60.6} 45.5{40.5} 24.2{20.2} 45.0{40.8} 52.6{50.3}

Table 1: Comparison with the single-model and single-scale state-of-the-art methods evaluated on COCO test-dev set. The
symbol ’*’ means the results from our re-implementation. The symbol ’**’ means the results from our method. The symbol†
means the results based on mmdet2.4. For Mask R-CNN, the results in { } stands for the corresponding mask results. The bold
numbers means the relative improvement. The 1×, 2× training schedule follows the setting as Detectron (Girshick et al. 2018).

and ResNext101-32x4d as the backbone, our method still
improves the performance by 1.5 and 1.0 AP, respectively.
In the 2× training scheme, our method with ResNet101 still
improves the performance by 1.3 AP. These results show that
GaFPN significantly improves the performance of the con-
ventional FPN-based Faster R-CNN.

Next, we evaluate the effectiveness of GaFPN on sev-
eral variants of Faster R-CNN (Ren et al. 2015) detector,
i.e., Cascade R-CNN (Cai and Vasconcelos 2018), Dynamic
R-CNN (Zhang et al. 2020), SABL (Wang et al. 2020),
AugFPN (Guo et al. 2020). Considering a multi-stage pre-
dictor head in Cascade R-CNN, each predictor head is re-
placed by our Geometry-aware Predictor Head (GPH). As
shown in Table 1, when using ResNet50 as the backbone,
Cascade R-CNN can be improved by 2.0 AP and 1.8 AP
in the 1× or 2× training scheme. Meanwhile, Dynamic R-
CNN is boosted to 40.0 AP from 38.3 AP when replacing
FPN with GaFPN. Since SABL (Wang et al. 2020) employ
SABL Head which is very different from traditional FPN-
based predictor head, the GPH is not included. SABL with
GaFPN achieves 40.6 AP, which is 1.3 points higher than
the SABL baseline. The result shows that the other compo-
nent still strengthen the feature representation even without
the GPH. Even though AugFPN is a very strong FPN vari-
ant, our method can still improve 0.8 AP when introducing
GaFPN into AugFPN. The result shows that our GaFPN and
AugFPN are complementary and solve different problems.

Generality to Instance Segmentation. Finally, we ver-
ify the performance of GaFPN for the instance segmentation
task. By introducing GaFPN into Mask R-CNN (He et al.

2017) instead of FPN, Mask R-CNN using ResNet50 as the
backbone improves the performance by 1.6 AP on the de-
tection and 1.4 AP on instance segmentation. When using
ResNet101 as the feature extractor, the performance of Mask
R-CNN with GaFPN is boosted by 1.3 AP on the detection
and 1.2 AP on instance segmentation, respectively. In the 2×
training scheme, our method based on Mask R-CNN with
ResNet101 still improves the performance by 1.4 AP on the
detection and 1.3 AP on instance segmentation, respectively.
As shown in Table 1, experiments on different backbones,
detectors, and even different tasks show that GaFPN can
obtain consistent performance improvement. These results
fully demonstrates the robustness and generalization ability
of GaFPN. We believe that the proposed method can also be
applied to other computer vision tasks.

Ablation Study
In this section, extensive ablation experiments are per-
formed to demonstrate the effectiveness of each proposed
component in our method.

Ablation studies on the importance of each component.
To demonstrate the effects of each component in GaFPN,
we gradually apply Geometry-aware Mapping (GMM),
Geometry-aware Predictor Head (GPH), and Feature Aug-
mentation Pyramid (FAP) on ResNet-50 FPN Faster R-CNN
(baseline). Simultaneously, we also introduce the improve-
ment brought by the combination of different components,
which shows that these components are complementary to
each other. All experiment results are reported in Table 2.
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GMM GPH FAP AP AP50 AP75 APS APM APL

35.6 57.0 38.5 21.1 39.0 45.6
✓ 36.2 57.9 39.1 20.7 40.0 46.4

✓ 36.1 57.6 39.0 20.9 39.8 46.5
✓ ✓ 36.9 58.7 40.0 21.6 40.4 47.9
✓ ✓ ✓ 37.3 59.7 40.4 23.0 41.2 48.1

Table 2: Ablative experiments for our GaFPN on the COCO
val2017. We study the effect of GMM: Geometry-aware
Mapping Module, GPH: Geometry-aware Predictor Head,
FAP: Feature Augmentation Pyramid.

As shown in Table 2, the GMM obtains 0.6 AP absolute
gains over the baseline. It can be seen that most of the final
improvements are from APM (+1.0 AP) and APL (+0.8 AP),
which means that the GMM makes the large proposal which
originally mapped to single higher-level features can obtain
spatial information by combined with lower-level features.

The GPH improves the detection performance from 35.6
to 36.1 AP. The benefits from that the GPH obtain more dis-
criminative semantic features of the lager proposal by em-
bedding the geometric information of proposals.

We also analyze the detection performance of combining
two components. For example, the GMM and the GPH
together can obtain 1.3 AP improvement. It is worthy
to note that the two components introduce few extra
parameters. Finally, When combining three components,
the detection performance is boosted to 37.3 AP with 1.7
AP improvement from 35.6 AP, especially on the AP50, we
get a 2.7 AP improvement. To sum up, these results show
that the three components are complementary and deal with
different problems.

Ablation studies on Geometry-aware Mapping Module.
The results of ablative experiments on Geometry-aware
Mapping Module (GMM) are shown in Table 3. We first
study the influence on the number of features in the weight
generation subnetwork. As shown in Table 3, single-use of
area or aspect ratio features can bring 0.4 AP performance
improvement. Combining the features of area and aspect ra-
tio can improve the performance by 0.6 AP. The combina-
tion of area, aspect ratio, and coordinate features can also
improve the performance by 0.6 AP. Although the features
of coordinates does not improve the performance for this
dataset, considering that the overall feature dimension is not
high and the features of coordinates may be beneficial to
other datasets, our final model employs a combination of the
area, aspect ratio, and coordinates features as the input fea-
tures in the weight generation subnetwork. Next, we study
different methods of fusing multi-level features. As shown
in Table 3, we can find that sum fusion and max fusion both
improve 0.2 AP than the baseline method. Sum fusion means
that the fused features are all levels of features summation.
Max fusion means that the fused features are the maximum
of all levels of features. The idea of max fusion originated
from adaptive pooling in PANet (Liu et al. 2018). Because
our main purpose is to explore the fusion method with less
resource cost. The difference between max fusion in this ex-
periment and adaptive pooling is that we did not employ ex-

Setting AP AP50 AP75 APS APM APL

baseline 35.6 57.0 38.5 21.1 39.0 45.6
area 36.0 57.6 38.7 20.9 39.9 46.6
aspect ratio 36.0 57.6 38.6 20.8 40.0 46.1
area+aspect ratio 36.2 57.7 38.8 21.2 40.0 46.2
area+aspect ratio+coord. 36.2 57.9 39.1 20.7 40.0 46.4
sum 35.8 57.4 38.6 21.1 39.8 45.2
max 35.8 57.2 38.5 20.6 39.4 45.6
Adaptive Spatial Fusion 36.2 58.2 39.0 21.0 40.2 46.7

Table 3: Ablative experiments of Geometry-aware Mapping
Module on the COCO val2017. area means the area of the
proposal. aspect ratio means the width, length and aspect
ratio of the proposal. coordinates means the coordinates of
the proposal. sum and max means fusion type.
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Figure 4: Multi-level aggregation weights for Geometry-
aware Mapping Module. The figures from left to right cor-
respond to the proposals originally assigned to P2 − P5.

tra fully-connected layers to adapt the proposal feature be-
fore fusion. The GMM achieves 36.2 AP, which is 0.4 points
higher than the two fusion methods. Our performance are
comparable to those of the Adaptive Spatial Fusion (ASF)
(Guo et al. 2020). However, the parameters and FLOPs of
ASF are larger than those of our method, as can be seen from
Table 6. These results indicate that the GMM can adaptively
learn fusion weights and produce more powerful features of
the proposals under low complexity.

Quantitative analysis of the weight. To analyze the fu-
sion weights at different levels generated by the GMM, we
map proposals on COCO val2017 into four levels based on
heuristic-guided mapping strategy. For each proposal, we
first obtain four weights corresponding to four feature lev-
els. Then, we calculate the average weight of the proposals
at each level. The results corresponding to four pyramid lev-
els are shown in Figure 4. We can observe that the proposals
originally mapped to pyramid level P2 require more features
from higher pyramid levels and the importance of demand
diminishes as the pyramid level increases. Meanwhile, the
proposals originally mapped to P3 − P5 require more fea-
tures from lower and higher pyramid levels. In particular, the
features of proposals in P3 and P4 are dominated by higher-
level features. To sum up, features from multi-levels con-
tribute together to generate more powerful features of each
proposal. These results demonstrate that features from other
levels are also beneficial to classification and regression.
Ablation studies on Geometry-aware Predictor Head.
The results of ablative experiments on Geometry-aware
Predictor Head are shown in Table 5. Since there are two
branches in the predictor head, we first explore the influence
of feature embedding (product) on different branches. As
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Setting AP AP50 AP75 APS APM APL

baseline 35.6 57.0 38.5 21.1 39.0 45.6
cls 35.9 57.6 38.7 20.9 39.9 46.6
reg 35.5 56.9 38.5 20.8 39.0 45.1
cls+reg 36.0 57.5 38.7 21.1 39.5 45.8
cls reg 36.1 57.6 39.0 20.9 39.8 46.5
cls+reg* 35.6 57.0 38.3 20.9 39.1 44.8

Table 4: Ablative experiments of Geometry-aware Predic-
tor Head on the COCO val2017. cls: classification, reg: re-
gression. cls+reg means that classification and regression
branches share features. cls reg means no share features.
cls+reg* means that feature embedding by summation.

Setting AP AP50 AP75 APS APM APL

PAFPN* 35.7 57.2 38.5 20.8 39.3 45.9
PAFPN+GaFPN 37.3 59.4 40.2 23.0 41.0 47.4
BiFPN* 36.0 55.9 39.1 20.0 39.1 47.1
BiFPN+GaFPN 38.0 59.0 41.1 22.6 41.9 49.5

Table 5: Ablative experiments of generality to other varia-
tions of FPN. The ’*’ means our re-implementation.

shown in Table 5, feature embedding on the classification
branch improves the baseline method by 0.3 AP. The
result show that the GPH generate more discriminative
features for classification. Feature embedding on regression
branch gains no improvement. The improvement of shared
feature embedding on both classification and regression
branches reaches 0.4 AP. Then we explore the influence of
with/without shared feature embedding for two branches.
As shown in the fifth row in Table 5, the performance of
unshared feature embedding in two branches is 0.1 AP
higher than that of shared feature embedding. Finally, we
verify the influence of different embedding methods. When
feature embedding by summation is employed, there is no
improvement. Through the above analysis, we adopt un-
shared feature embedding and the product embedding type
for two branches in the GPH. These results demonstrate the
GPH is beneficial for classification and regression branches
to produce more discriminative features.

Generality to other variants of FPN. We find that our
GaFPN can also be introduce into the other variants of FPN.
Thus, we conduct experiments to evaluate the effectiveness
of the GaFPN on PAFPN (Liu et al. 2018) and BiFPN (Tan,
Pang, and Le 2020). As shown in Table 5, our method can
consistently improve the performance of detection. Specif-
ically, our GaFPN can achieve 1.6 AP increase on PAFPN
and 2.0 AP increase on BiFPN. Especially under the AP50,
the improvement is more larger. We believe that the pro-
posed method can be applied to other similar detectors. Fi-
nally, we show some examples of detection results in Figure
5, where GaFPN generates more accurate results compared
to the FPN based baseline.

Runtime Analysis
We analyze the increased FLOPs and Params of two compo-
nents and the total FLOPs and Params of the GaFPN, as can

Setting AP Params(M) FLOPs(G)
Adaptive Spatial Fusion 36.2 0.27 13.32
Geometry-aware Mapping 36.2 0.02 0.02
FPN 35.6 41.53 207.07
GaFPN* (without FAP) 36.9 41.55 207.09
GaFPN 37.3 41.1 194.6

Table 6: Ablative experiments of FLOPs and Params on the
COCO val2017. All the reported FLOPs are calculated when
input a 1280 × 800 image.

Figure 5: Comparison of object detection results between
FPN (left) and GaFPN (right) on COCO val2017.

be seen from Table 6. Specifically, our method does not in-
troduce large Params and FLOPs compared with the baseline
method. We also measure the inference time with and with-
out GaFPN. When inputting a shorter size of 800 pixels im-
age, GaFPN*, GaFPN, and FPN can run at 11.8 fps, 10.8 fps,
and 13.4 fps, respectively. The inference time is the average
inference time over COCO val5000 split, including the time
of data loading, network forwarding, and post-processing.
All the runtimes are tested on NVIDIA RTX 2080Ti GPU.

Conclusion
In this paper, we revisit the training process of FPN-based
detectors and present some promotions in the model archi-
tecture. Based on the observation, we propose a new feature
pyramid network called GaFPN to further enhance feature
representation for multi-scale object detection. The GaFPN
consists of three components: Geometry-aware Mapping
Module, Geometry-aware Predictor Head and Feature Aug-
mentation Pyramid. By equipping with these simple but ef-
fective components, GaFPN brings a large margin improve-
ment compared with various detectors and tasks on the chal-
lenging MS COCO dataset.
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