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Abstract

Simultaneous Localization and Mapping (SLAM) and Au-
tonomous Driving are becoming increasingly more important
in recent years. Point cloud-based large scale place recogni-
tion is the spine of them. While many models have been pro-
posed and have achieved acceptable performance by learning
short-range local features, they always skip long-range con-
textual properties. Moreover, the model size also becomes a
serious shackle for their wide applications. To overcome these
challenges, we propose a super light-weight network model
termed SVT-Net. On top of the highly efficient 3D Sparse
Convolution (SP-Conv), an Atom-based Sparse Voxel Trans-
former (ASVT) and a Cluster-based Sparse Voxel Trans-
former (CSVT) are proposed respectively to learn both short-
range local features and long-range contextual features. Con-
sisting of ASVT and CSVT, SVT-Net can achieve state-of-
the-art performance in terms of both recognition accuracy
and running speed with a super-light model size (0.9M pa-
rameters). Meanwhile, for the purpose of further boosting
efficiency, we introduce two simplified versions, which also
achieve state-of-the-art performance and further reduce the
model size to 0.8M and 0.4M respectively.

Introduction
Large scale place recognition is the spine of a wide range
of applications like Simultaneous Localization and Map-
ping (SLAM) (Mur-Artal and Tardós 2017), Autonomous
Driving (Levinson et al. 2011), Robot Navigation (Ravankar
et al. 2018), etc. Commonly, the place recognition result can
be used for loop-closure (Chen et al. 2020) in a SLAM sys-
tem or for user location in a indoor vision positioning sys-
tem, when GPS signal is not available. Fig. 1 (Top) illus-
trates a common pipeline of large place recognition. For a
large scale region, a database of scenes (usually represented
by point clouds or images ) tagged with UTM coordinates
acquired from GPS/INS readings are constructed in advance.
When a user traverses the same region, he/her may collect a
query scene from scratch. Then the most similar scene to the
query scene should be retrieved from the database to deter-
mine where the location of the query scene is.
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Figure 1: (Top) Pipeline of point cloud based place recogni-
tion. (Bottom) Model size and accuracy.

A straight-forward idea for this task is to use images to
learn global descriptors for accurate and efficient scene re-
trieval (Li, Snavely, and Huttenlocher 2010; Han et al. 2017;
Yu et al. 2019). However, images are sensitive to illumina-
tion, weather change, diurnal variation, etc, making mod-
els based on them unstable and unreliable. Besides, images
are short of perceiving 3D scenes due to lack of depth in-
formation. Recently, a line of point cloud based deep learn-
ing models (Uy and Lee 2018; Zhang and Xiao 2019; Sun
et al. 2020; Liu et al. 2019; Fan et al. 2020; Xia et al.
2021; Komorowski 2021) for large scale place recognition
have been proposed. Since point clouds are invariant to illu-
mination and weather changes, point cloud based methods
are more robust than image based methods. Besides, since
point clouds contain richer 3D information, global descrip-
tors learned from them are stronger in describing 3D scenes
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than image descriptors and therefore they always achieve
better performance.

Though better, existing point cloud based methods still
face three main challenges. 1) Most of existing methods
learn descriptors from point-wise point cloud encoders,
which are sensitive to local noise. These local noise may
stand for scene details and being important for some fine
grained level tasks such as segmentation. However, they are
useless for place recognition but even become a burden for
the network to understand the scene. Therefore, they should
be regarded as noise and outliers. 2) We observe that most of
previous methods only consider how to better extract short-
range local features, while the equally important long-range
contextual properties have long been skipped. And we argue
that lacking awareness of long-range contextual properties,
power of the learned descriptors would be greatly limited.
3) Most of existing models are suffered from huge model
size, which stops their application in resource constrained
portable devices. Considering the above issues, we claim
that designing a local noise-insensitive light-weight point
cloud descriptor extraction model that can capture long-
range contextual features is necessary.

In this paper, we propose a novel super light-weight net-
work named SVT-Net for point cloud based large scale
place recognition. SVT-Net’s nework architecture is built
upon the delicate light weight 3D Sparse Convolution (SP-
Conv) (Choy, Gwak, and Savarese 2019). The reason why
we choose SP-Conv lies in two aspects. First, the sparse
voxel representation require to voxelize point cloud, which
reduces local noise but retains most of overall scene geome-
tries. Therefore, it can liberate the model from understand-
ing useless scene details. Second, the SP-Conv is efficient
and fast. It only computes outputs for predefined coordinates
and saves them into a compact sparse tensor. In other words,
it meets our requirements for building a light-weight model.

However, simply stacking SP-Conv layers may cause
neglect of long-range contextual properties. A direct way
to solve this problem is introducing Vision Transformers
(Dosovitskiy et al. 2020) for learning long-range contex-
tual features. There indeed exists point cloud Transform-
ers (Guo et al. 2020) in literature, however, they are not
suitable for the point cloud based place recognition task. It
is because all existing point cloud Transformers are point-
wise modules and therefore not efficient enough. Besides, as
mentioned before, point-wise modules may suffer from lo-
cal noise. Therefore, we propose two kinds of Sparse Voxel
Transformers (SVTs) tailored for large scale place recogni-
tion on top of SP-Conv layers named Atom-based Sparse
Voxel Transformer (ASVT) and Cluster-based Sparse Voxel
Transformer (CSVT) respectively. ASVT and CSVT implic-
itly extract long-range contextual features from the sparse
voxel representation through two perspectives: attending on
different key atoms and clustering different key regions in
the feature space, thereby helping to obtain more discrimina-
tive descriptors through interacting different atoms (to learn
inter-atoms long-range features) and different clusters (to
learn inter-clusters long-range features) respectively. Since
SP-Conv only conducts convolution operation on non-empty
voxels, it is computational efficient and flexible, so do the

two SVTs built upon it. Thanks to the strong capabilities
of the two SVTs, our proposed model can learn sufficiently
powerful descriptors from an extremely shallow network ar-
chitecture. And thanks to the shallow network architecture,
model size of SVT-Net is very small as shown in Fig. 1 (Bot-
tom).

We conduct extensive experiments on Oxford RobotCar
dataset (Maddern et al. 2017) and three in-house datasets
(Uy and Lee 2018) to verify the effectiveness and efficiency
of SVT-Net. Results show that though light-weight, SVT-
Net can achieve state-of-the-art performance in terms of
both accuracy and speed. What’s more, to further increase
speed and reduce model size, we introduce two simplified
version of SVT-Net: ASVT-Net and CSVT-Net, which also
achieve state-of-the-art performances with further reduced
model sizes of only 0.8M parameters and 0.4M parameters
respectively.

Our main contributions are three folds. 1) We propose
a novel light-weight point cloud based place recognition
model named SVT-Net as well as two simplified versions:
ASVT-Net and CSVT-Net, which all achieve state-of-the-art
performance in terms of both accuracy and speed with a ex-
tremely small model size. 2) We propose Atom-based Sparse
Voxel Transformer (ASVT) and Cluster-based Sparse Voxel
Transformer (CSVT) for learning long-range contextual fea-
tures hidden in point clouds. To the best of our knowledge,
we are the first to propose Transformers for sparse voxel
representations. 3) We have conducted extensive quantita-
tive and qualitative experiments to verify the effectiveness
and efficiency of our proposed models and analysed what
the two proposed Transformers actually learn.

Related Work
Large Scale Place Recognition
Large scale place recognition plays an important role in
SLAM and autonomous driving and has been interested in
by many researchers for a long time. In early years, hand-
craft features (Gálvez-López and Tardos 2012; Fernández-
Moral et al. 2013; Johns and Yang 2011) or learned features
(Arandjelovic et al. 2016; Yu et al. 2019; Hausler et al. 2021)
extracted from images are used for place recognition. These
methods, though straight-forward, are suffered from vulner-
ability of features caused by images’ sensitivity towards il-
lumination, weather change, diurnal variation, etc.

Compared to image, point cloud is more insensitive to
environmental changes, therefore it is a better alternative
for place recognition. PointNetVLAD (Uy and Lee 2018)
adopts PointNet (Qi et al. 2017) and NetVLAD (Arand-
jelovic et al. 2016) to learn global point cloud descriptors
for this task. Then, a series of following works (Zhang and
Xiao 2019; Sun et al. 2020; Fan et al. 2020; Liu et al. 2019;
Xia et al. 2021; Komorowski 2021) are proposed. They use
graph networks, attentions and voxel representation to learn
powerful global descriptors for this task respectively. How-
ever, most of them are suffered from three aspects: first, they
fail to learn long-range contextual features of scenes from
point cloud; second, model size and efficiency are not con-
sidered in their methods; third, they are sensitive to local
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noise. In our work, we design two light-weight but strong
Sparse Voxel Tranformers to tackle the above problems.

Vision Transformers
Transformer (Vaswani et al. 2017) is one of the
most successful design for natural language processing
(NLP)(Devlin et al. 2018; Hu, Shen, and Sun 2018; Yang
et al. 2019; Kim, Son, and Kim 2021; Chen, Fan, and Panda
2021; Chen et al. 2018), the core of which is a self-attention
mechanism to capture long-range contextual features. Re-
cently, inspired by the great success of Transformer in NLP,
researchers begin to design Transformers tailored for com-
puter vision tasks.

Therefore, Vision Transformer (ViT) (Dosovitskiy et al.
2020) is proposed recently. It adopts the idea of self-
attention and divides images to 16x16 visual words. In this
way, images can be processed like nature language. Then,
a variety of following works (Wu et al. 2020; Wang et al.
2021; Liu et al. 2021; Jiang, Chang, and Wang 2021) are
proposed based on it. However, all the above introduced vi-
sion Transformers are designed for learning from images.
To boost the performance of point cloud based tasks, point-
wise vision Transformers like (Zhao et al. 2020; Guo et al.
2020) are proposed. Though tailored for point clouds, they
are not suitable for the place recognition task. Because they
are not light-weight enough and are suffered from small
local noise in raw point clouds. In contrast, we propose
two kinds of super-light Sparse Voxel Transformers to learn
global features from scenes, which are less suffered from lo-
cal noise and are much more efficient. To our knowledge,
this is the first work designs Sparse Voxel Transformers for
point clouds.

Methodology
Problem Definition
Let Mr = {mi|i = 1, 2, ...,M} be a database of pre-defined
3D submaps (represented as point clouds), and Q be a query
point cloud scan. The place recognition problem is defined
as retrieving a submap ms from Mr with the goal of ms is
the closest one to Q. To achieve accurate retrieving, a deep
learning model F (∗) that can embed all point clouds into
discriminative global descriptors, e.g. Q → fq ∈ Rd, is
required so that a following KNNs algorithm can be used
for finding ms.

To meet the goal, we choose to use the sparse voxel rep-
resentation of point cloud as input and choose 3D Sparse
Convolution (SP-Conv) (Choy, Gwak, and Savarese 2019)
as the basic unit to build the deep learning model. To em-
ploy SP-Conv, we first voxelize all point clouds into sparse
voxel representations, e.g. Q → Qv ∈ RL×W×H×1, where
for each voxel, 1 means that it is occupied by any points in
Q, called non-empty voxel, and otherwise 0, called empty
voxel. SP-Conv operation is only conducted on non-empty
voxels. Hence, it is very efficient and flexible. Next, we will
introduce the two proposed Transformers: the Atom-based
Sparse Voxel Transformer (ASVT) and the Cluster-based
Sparse Voxel Transformer (CSVT) respectively. And then,
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Figure 2: Network architecture of ASVT.

the overall network architecture of SVT-Net as well as net-
work architectures of the two simplified versions (ASVT-
Net and CSVT-Net) will be introduced in detail. The loss
function will be presented finally.

Atom-Based Sparse Voxel Transformer
As mentioned before, simply stacking SP-Conv layers may
cause the loss of learning long-range contextual features.
To make up for this loss, we design the first Transformer,
ASVT, which adopts the idea of self-attention to aggregate
information from both nearby and far-away voxels to bet-
ter capture sparse voxel features. In ASVT, we define each
individual voxel as an atom. During processing, each atom
should be interacted with all other atoms according to the
learned per-atom contributions. By doing so, different key
atoms could be attended by other atoms so that both local
relationship of nearby atoms and long-range contextual re-
lationship of far way atoms will be learned, i.e, inter-atoms
long-range contextual features are learned. Note that learn-
ing such kind of inter-atoms long-range contextual relation-
ship is very important for the model. For example, in a scene,
assume there are two atoms that belong to different instances
of the same category. If only SP-Conv is used, the ”same-
category” information may be ignored due to the small re-
ceptive field. While if AVST is added to learn such kind
of information, the model can better encode what the scene
describes. Hence the final global descriptor would be more
powerful. The architecture of ASVT is illustrated in Fig. 2.

Let Xin ∈ RL×W×H×C be the input sparse voxel
features learned by SP-Convs (SP-voxel features for sim-
plicity). We first learn the sparse voxel values (SP-values
for simplicity) Xv ∈ RL×W×H×C , SP-queries Xq ∈
RL×W×H×Cr , and SP-keys Xk ∈ RL×W×H×Cr through
three different SP-Convs respectively:

Xv = SPConv(Xin)

Xq = SPConv(Xin)

Xk = SPConv(Xin)

(1)

where we often set Cr < C to reduce computational cost in
later steps. That is to say, the dimension of SP-queries and
SP-keys are reduced from C to Cr for efficiency. After that,
SP-voxel features of SP-values (SP-queries/keys) are rear-
ranged to a tensor of N ×C (N ×Cr), where N is the num-
ber of non-empty voxels. The rearrange step is easy. Since
coordinates and features of non-empty voxels have been al-
ready stored as sparse tensors in SP-Conv’s output, we only
need to take out the feature tensor from its data structure for
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rearrange. Note that N � L×W ×H and N � Np, where
Np is point number of the raw point cloud, therefore, the SP-
Conv and the following matrix multiplications based on the
feature tensor are all very computational efficient.

Then, we use Xq and Xk to calculate the SP-attention
map S:

S = softmax(Xq ·XT
k ) (2)

where S ∈ RN×N encodes the contribution relationship
of each atom with all the other atoms. In the following at-
tending operation, these relationships will contribute to ag-
gregating both short-range local information and long-range
contextual information by interacting atoms. The attending
operation can be summarized as:

Xs = SPConv(S ·Xv) (3)

where Xs ∈ RN×C is called atom-attended SP-voxel fea-
tures. In Xs, features of each atom xi have adaptively ac-
cepted contributions from all the other atoms according to
the implicit mode hidden in S. Thus meaningful contextual
and semantic information can be represented in Xs to de-
scribe the scene.

Finally, we rearrange Xs back to sparse voxel representa-
tions with a dimension of L×W ×H×C and regard it as a
residual term. The final ASVT feature is defined as the sum
of Xin and Xs:

Xasvt = Xin +Xs (4)

Cluster-Based Sparse Voxel Transformer
Another observation we find is: in the sparse voxel repre-
sentation, some atoms may share the same characteristics.
For example, atoms of a wall always form a plane like struc-
ture, while atoms of a flower bed easily form a cylinder like
structure. This means that atoms can actually cluster into
different clusters according to their geometric or semantic
characteristics, and the long-range contextual properties can
also be extracted from the perspective of interacting between
these clusters, i.e, learning inter-clusters long-range contex-
tual features. Motivated by this intuition, we propose the
second Transformer: CSVT. As shown in Fig. 3, CSVT con-
sists of three component, a Tokenizer module, a Transformer
module and a Projector module. They cooperatively learn
how to implicitly group atoms into characteristics-similar
clusters and interact clusters for enhancing learned features.
Next, we will introduce them in detail.
The Tokenizer module is used to transform the input SP-
voxel features into tokens, where each token represents
a cluster in the latent space. We again define Xin ∈
RL×W×H×C as the initial SP-voxel features. To achieve the
goals of the tokenizer, we first use a SP-Conv operation fol-
lowed by a rearrange operation to generate a grouping map
Xg ∈ RN×Lt :

Xg = softmax(RE(SPConv(Xin))) (5)

where RE is the rearrange operation. Lt is the number of
tokens we choose to generate and N is the number of non-
empty voxels. Xg stores the probabilities of each voxel be-
longing to each token. Therefore, we can use Xg to capture

representations of tokens as grouping different tokens into
different clusters in an implicit way:

T = XT
g · SPConv(Xin) (6)

where T ∈ RLt×C denotes representations of Lt tokens
with each of them being described by C features.
The Transformer module is then used to learn inter-
clusters long-range contextual features through interacting
these tokens. First, we generate values, keys, and queries us-
ing shared convolutional kernel Conv1d:

Tv = Conv1d(T ), Tq = Conv1d(T ), Tk = Conv1d(T )
(7)

Then, tokens are interacted with each other through the fol-
lowing attention operation:

Ts = T + Conv1d(softmax(Tq · TT
k ) · Tv) (8)

where Ts ∈ RLt×C is the attended tokens. Through the
Transformer module, relationship between different clusters
are learned to characterize the distribution characteristics of
the scene with high quality. For example, the final descrip-
tor may memorize that there is a rectangular building in the
scene stands 5 meters away from a cylindrical building, or
remember that there is a spherical building stands behind a
slender tree.
The Projector module is then used to project token features
back to the sparse voxel representation. Specifically, we use
Ts to calculate a re-projection map Mp ∈ RN×Lt :

Tp = Conv1d(Ts) (9)

Mp = softmax(RE(SPConv(Xin)) · TT
p ) (10)

where Tp ∈ RLt×C . Then, the re-projection operation is
defined as:

Xs = SPConv(Mp · Tp) (11)
Again, we rearrange Xs back to sparse voxel representations
with a dimension of L×W×H×C and regard it as a residual
term. The final CSVT feature is defined as:

Xcsvt = Xin +Xs (12)

Note that, though both aim to learn long-range contex-
tual features, roles and working mechanisms of ASVT and
CSVT are different. The ASVT focus on learning relation-
ship between similar and dissimilar individual atoms and
learns inter-atoms long-range contextual features in a fine-
grained level, while CSVT focus on learning relationship
between different characteristics-similar clusters so that it
learns inter-clusters long-range contextual features in a rela-
tive coarser level. They are complementary to each other.

Network Architecture
The overall architecture of SVT-Net is built upon the above
introduced ASVT and CSVT as well as the light-weight SP-
Conv. Specifically, as shown in Fig. 4. The initial sparse
voxel representation is fed into the first SP-Conv layer with
an output dimension of 32 to learn initial SP-features. Then
two SP-Res-Blocks (each consists of two SP-Convs with a
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Figure 3: Network architecture of CSVT.

skip connection) are used to enhance learned features and
increase the feature dimension to 64. Next, another SP-conv
layer is used to increase the feature dimension to the final
descriptor’s dimension d. After that, the SP-features are fed
into two branches for learning ASVT features and CSVT
features using the two proposed Sparse Voxel Transform-
ers(SVTs) respectively. Then, the learned ASVT features
and CSVT features are fused by directly adding them to-
gether. Finally, the final global descriptor is calculated by us-
ing a GeM Pooling operation (Radenović, Tolias, and Chum
2018):

f = [f1, · · ·, fk, · · ·, fd], fk =
1

|Xfinal,k|
∑

x∈Xfinal,k

(xpk)
1
pk

(13)
where f ∈ d is the final descriptor, Xfinal is Xcsvt+Xasvt,
and pk is a learnable control parameter.

Other details of the network architecture can be found in
Supp. Thanks to the strong power of ASVT and CSVT, our
proposed model SVT-Net can achieve superior performance
compared to previous methods, even though our network ar-
chitecture is simpler and smaller (from another words, it is
shallower). Note that ASVT and CSVT can also be indi-
vidually utilized in different networks. Therefore, we pro-
pose two simplified versions of SVT-Net: ASVT-Net and
CSVT-Net, by eliminating the ASVT module and CSVT
module, respectively, to verify the effectiveness of the two
modules. According to experimental results, both ASVT-Net
and CSVT-Net also achieve state-of-the-art performances
but further reduce the model size for a large margin.

Loss Function
In view of its superior performance in (Komorowski 2021),
we adopt the following triplet loss to train our model:

L(fi, f
p
i , f

n
i ) = max{d(fi, fp

i )− d(fi, f
n
i ) +m, 0} (14)

where fi is the descriptor of the query scan, fp
i and fn

i are
descriptors of positive sample and negative sample respec-
tively, and m is a margin. d(x, y) means the Euclidean dis-
tance between x and y. To build informative triplets, we use
batch-hard negative mining following (Komorowski 2021).

After the network is trained, all point clouds are embed-
ded into descriptors using the model. And we use the KNNs
algorithm to find ms in the database, which is the closest
one to the query scan Q.

CSTV
Module

ASTV
Module

Voxelize
SP-Conv
Blocks

(Stride 2)

G
eM

 PoolingInput

Output

Figure 4: Pipeline of SVT-Net. The circle-add symbol means
element-wise sum.

Experiments
Datasets and Metrics
To fairly compare with other methods, we use the bench-
mark datasets proposed by (Uy and Lee 2018) to evalu-
ate our method, which are now recognized as the most in-
fluential datasets for point cloud based place recognition.
The benchmark contains four datasets: one outdoor dataset
named Oxford generated from Oxford RobotCar (Maddern
et al. 2017) and three in-house datasets: university sector
(U.S.), residential area (R.A.) and business district (B.D.).
The benchmark contains 21711, 400, 320, 200 submaps for
training and 3030, 80, 75, 200 submaps for testing for Ox-
ford., U.S., R.A. and B.D. respectively. Each point cloud
contains 4096 points, which is the common setting of point
cloud based place recognition. We use average recall at top
1% and average recall at top 1 as main metrics as previous
methods for a fair comparison.

Implementation Details
In all experiments, we voxelize 3D point coordinates with
0.01 quantization step. The voxelization and the following
SP-Conv operation are performed by the MinkowskiEngine
auto differentiation library (Choy, Gwak, and Savarese
2019). The dimension of the final descriptor is set to 256.
The number of tokens Lt is set to 8. Following previous
work, we train two versions of models: baseline model and
refined model. The baseline model is trained only using
the training set of Oxford dataset, and the refined model is
trained by adding the training set of U.S. and R.A. (Note
that training set of B.D. is not added). Random jitter, random
translation, random points removal and random erasing aug-
mentation are adopted for data augmentation during train-
ing. All experiments are performed on a Tesla V100 GPU
with a memory of 32G. More details can be found in the
Supp.
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Average recall at top-1% (%) Average recall at top-1 (%)
Method Oxford U.S. R.A. B.D. Oxford U.S. R.A. B.D.
PointNetVLAD 80.3 72.6 60.3 65.3 - - - -
PCAN 83.8 79.1 71.2 66.8 - - - -
DAGC 87.5 83.5 75.7 71.2 - - - -
SOE-Net 96.4 93.2 91.5 88.5 - - - -
SR-Net 94.6 94.3 89.2 83.5 86.8 86.8 80.2 77.3
LPD-Net 94.9 96.0 90.5 89.1 86.3 87.0 83.1 82.3
Minkloc3D 97.9 95.0 91.2 88.5 93.0 86.7 80.4 81.5
SVT-Net(Ours) 97.8 96.5 92.7 90.7 93.7 90.1 84.3 85.5
ASVT-Net(Ours) 98.0 96.1 92.0 88.4 93.9 87.9 83.3 82.3
CSVT-Net(Ours) 97.7 95.5 92.3 89.5 93.1 88.3 82.7 83.3

Table 1: Comparison with the state-of-the-art methods under the baseline setting.

Main Results

In this section, we experimentally verify the effectiveness
and efficiency of our method. Specifically, we first compare
our models with PointNetVLAD (Uy and Lee 2018), PCAN
(Zhang and Xiao 2019), DAGC (Sun et al. 2020), SR-Net
(Fan et al. 2020), LPD-Net (Liu et al. 2019), SOE-Net (Xia
et al. 2021) and Minkloc3D (Komorowski 2021) in terms of
recognition accuracy. Then, we compare the inference time
and model size between our models with them. Finally, we
qualitatively analyze what the two SVTs have learned.

Accuracy: In Table 1, we show the results of all methods
on the baseline setting. It can be found that SVT-Net signif-
icantly outperforms all state-of-the-art methods, especially
for the average recall at top 1 metric on U.S., R.A., and B.D.,
where SVT-Net wins for 3.4%, 3.9%, 4% compared to Min-
kloc3D respectively. Compared to SVT-Net, performances
of ASVT-Net and CSVT-Net drop to some extent. How-
ever, their performances still largely outperform the previ-
ous best model Minkloc3D. We contribute the accuracy gain
to the two novel SVTs we design. Note that Minkloc3D is
also built upon SP-Conv and shares the same loss function
as our model, while its performance is not as excellent as
our models, which further confirms the superiority of our
two proposed SVTs. Specifically, our SVT-Net build light-
weight sparse voxel transformers based on SPConv, while
Minkloc3D simply stacks SPConv layers, which is the main
difference between Minkloc3D and our model, and therefore
it is the two SVTs being the main force make our model per-
form better. What’s more, SOE-Net also use self-attention in
its network architecture to learn long range context depen-
dencies, but our model outperforms SOE-Net. This demon-
strates that sparse voxel transformers are more effective than
point-wise transformers for large scale place recognition.
We also note the self-attention module in SOE-Net is inef-
ficient especially when the number of points is large due to
computing attention weights for each of the Np raw points.
In contrast, the novel ASVT and CSVT in our SVT-Net are
built for processing sparse voxels, which are much more ef-
ficient because we only need to compute attention weights
for each of N (N � Np) non-empty voxels. Recall curves
of the baseline setting can be found in Supp. We also visual-
ize some top-k matching results in Fig. 5 to provide readers

Query sample Top 1 Top 2 Top 3

Figure 5: Visualization of top 3 matching results.

Method Time Parameters
PointNetVLAD - 19.8M
PCAN - 20.4M
LPD-Net - 19.8M
Minkloc3D 12.16ms 1.1M
SVT-Net(Ours) 12.97ms 0.9M
ASVT-Net(Ours) 11.04ms 0.4M
CSVT-Net(Ours) 11.75ms 0.8M

Table 2: Efficiency comparison.

with a comprehensive view to understand our place recogni-
tion results.

For a comprehensive comparison, we also show the re-
sults of all models at the refined setting in Supp. We find
that at the refined setting, our models still significantly out-
perform all models except Minkloc3D. In fact, our models
still perform better than Minklo3D in most cases, although
only by a small margin. The difference between our three
models becomes narrow. We attribute this to that all models
have reached the performance upper bound.

Model size and speed: To verify the efficiency of our
method, we compare our models with previous works in
terms of model size and inference time in Table 2 and Fig.
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Oxford B.D.U.S. R.A.

Figure 6: Visualization of what ASVT and CSVT have learned. First row: original point clouds. Second row: features learned
by ASVT, ”same category” atoms are attended similarly, e.g, in Oxford, two walls of the same height share the same color.
Third row: features learned by CSVT, atoms belong to the same geometric shape are clustered together and interacted with each
other, e.g, in B.D., all the atoms in the same flowerbed (colored in Crimson) form a cube and are clustered together.

Average recall at top-1% (%) Average recall at top-1 (%)
Method Oxford U.S. R.A. B.D. Oxford U.S. R.A. B.D.
A: Lt=4, d=256, add 97.9 96.4 92.5 89.0 93.7 89.0 83.9 82.5
B: Lt=6, d=256, add 98.0 96.2 92.3 90.1 93.8 88.3 83.7 84.4
C: Lt=10, d=256, add 97.9 96.2 92.0 89.4 93.8 87.2 83.3 83.5
D: Lt=8, d=128, add 97.8 95.2 92.0 89.0 93.3 88.9 81.9 82.5
E: Lt=8, d=384, add 98.2 94.8 92.5 89 94.4 86.9 84.9 83.7
F: Lt=8, d=512, add 98.0 97.3 92.1 88.2 93.9 90.1 84.0 82.7
G: Lt=8,d =512, cat 97.5 93.4 85.8 84.7 92.7 81.9 73.9 77.1
H: Lt=8, d=256, cat&spconv 96.5 89.8 84.5 82.4 89.5 78.2 71.2 74.0
SVT-Net: Lt=8, d=256, add 97.8 96.5 92.7 90.7 93.7 90.1 84.3 85.5

Table 3: Results of ablation study for our SVT-Net.

1 respectively. For model size, it can be seen that SVT-Net
and CSVT-Net save 18.2% and 27.3% parameters respec-
tively compared to the existing smallest model Minkloc3D.
As for ASVT-Net, it even only has 36.4% parameters of
Minkloc3D, which is a significant reduction. And it is worth
noting that all of our three models outperform Minkloc3D
for a large margin in terms of accuracy at the baseline set-
ting. The ability of significantly improving accuracy under
the condition of drastically reduced parameters further fully
demonstrates the superiority of our two SVTs. For speed,
compared to the current fastest model Minkloc3D, SVT-
Net only add ignorable additional inference time. And both
ASVT-Net and CSVT-Net run faster than Minkloc3D. Ap-
proximately, voxelization and SP-Conv blocks cost about
half of the running time, while ASVT and CSVT cost the
another half. We find the speed increase is not as significant
as the model size reduction, which is because that the in-
herent Transformer operation requires multiple matrix mul-
tiplications. Summing up the above results, we can conclude
that our models are good enough in terms of both model size
and running speed. Note, compared to Minkloc3D, our net-
work architectures are much shallower, that’s why our mod-

els are more light-weight than it. And since the main differ-
ence between our models with Minkloc3D is the two SVTs
we design, we can contribute all performance gains into the
learned long-range contextual features.

We believe that expect recognition accuracy, both storage
efficiency and recognition accuracy are also significant fac-
tors to make solid and convincing comparisons. In this work,
extensive results show that our model outperforms the SOTA
in all the three aspects. Besides, we also find our three ver-
sion show different specialties towards the three different as-
pects, and so we can accordingly make different utilization
choice. Specifically, SVT-Net is larger than ASVT-Net and
CSVT-Net, but performs better in most cases. Therefore, if
there is enough resource, we recommend to use SVT-Net for
the place recognition task. If you only have limited compu-
tational resource and can’t fine-tune the model on new sce-
narios, we recommend to use CSVT-Net because its gener-
alization ability towards new scenarios is better than ASVT-
Net. Otherwise, ASVT-Net is a better choice because it is
the fastest and the smallest one.

What Transformers have learned: One may be interested
in what ASVT and CSVT have learned that could make our
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models so elegant. To explore this question, we show some
visualization results in Fig. 6. The first row shows the origi-
nal point clouds randomly selected from Oxford, U.S., R.A.
and B.D respectively.

In the second row, we visualize the features of each non-
empty voxel after ASVT using T-SNE (Van der Maaten and
Hinton 2008). Different colors represent different distribu-
tion of these features in the feature space. It can be seen that
by interacting each atom with all the others, the model in-
deed learns the relationship between atoms. Specifically, it
is obvious that nearby atoms share the same color, which
means they are attended similarly since they may belong to
the same object parts. And it can be seen that far away atoms
in the 3D space sharing the same implicit mode have simi-
lar colors, which means inter-atoms long-range features like
relationship between far way semantic similar atoms (e.g.,
the ”same-category” information) has been discovered by
the model. A typical example that can prove the above anal-
ysis is: in Oxford, two walls of the same height share the
same color, which means atoms of them are attend similarly.

In the third row, we visualize which token that each non-
empty voxel belongs to. Different color represents different
tokens. It can be seen that voxels belong to the same to-
ken always represent the same objects and share some com-
mon geometric characteristics. For example, in B.D., all the
atoms in the same flowerbed (colored in Crimson) form a
cube and are clustered together. This observation means that
voxels indeed have been clustered together in the feature
space according to their geometric characteristics. And ob-
viously, the interaction between clusters or tokens could en-
hance model’s understanding towards the scene. The inter-
clusters long-range context properties like the relative posi-
tions between clusters would be encoded through such kind
of interaction. In a word, the visualization results have con-
firmed our intuition of designing ASVT and CSVT and they
have all contributed to the performance improvement.

Ablation Study
We have verified the effectiveness and efficiency of ASVT
and CSVT in the Main Results section. Next, we ex-
perimentally study the effectiveness of other key designs.
Specifically, we study the impact of the number of tokens Lt,
dimension of descriptors d, Transformer feature fusion strat-
egy and training stability. We design experiments from A to
H for this study. Table 3 shows the results. ”SVT-Net” in the
last row of Table 3 refers to the model we finally choose.
Impact of number of tokens: The number of tokens (Lt)
decides how many clusters we divide the scene into. We
change the value of Lt and compare the results in Table 3.
Comparing the experiment A, B, C and SVT-Net, we find
that setting Lt as 8 is the best choice. When Lt is too small,
interaction between different geometric characteristic (hid-
den in different clusters) would be limited. When Lt is too
large, it is easy to cause over-fitting.
Impact of descriptor’s dimension: To a certain extent, the
dimension d determines the descriptor’s capability of de-
scribing a scene. From experiment D, E, F and SVT-Net in
Table 3, we find that overall larger dimension leads to bet-

ter performance. However, when it is larger than 256, the
accuracy increase is minimal while the model size is signifi-
cantly increased to 1.8M and 3.0M for d = 384 and d = 512
respectively. Therefore, for a better trade-off between accu-
racy and model size, we choose d = 256 in our implemen-
tation.

Impact of fusion strategy: In SVT-Net, we need to fuse fea-
tures learned by ASVT and CSVT before aggregating voxel
features into a global descriptor. In experiment G, we inves-
tigate the effectiveness of another fusion method, concatena-
tion. In this way, the output dimension is 512. However, the
performance of concatenating the two features is not as good
as simply adding them (the dimension is 256). Then, we sus-
pect if it is the higher dimension that causes the performance
drop. Therefore, in experiment H , we add an additional SP-
Conv layer after concatenation to make the dimension be
256. Unfortunately, the model’s performance becomes even
worse than before. Therefore, finally, we believe that direct
adding together is the best way to fuse the features of the
two SVTs.

Training stability: We notice that for each training time,
there are some small differences on the evaluation results.
To avoid conclusion bias, we train each model for multiple
times and show the boxplot of each model in Supp, which
reflects the training stability of each model. Considering the
trade off between accuracy, model size, and training stabil-
ity, we claim that SVT-Net is the best performed model.

Conclusions
In this paper, we proposed a super light-weight network for
large scale place recognition named SVT-Net. In SVT-Net,
two Sparse Voxel Transformers: Atom-based Sparse Voxel
Transformer (ASVT) and Cluster-based Sparse Voxel Trans-
former (CSVT) are proposed to learn long-range contextual
properties. Extensive experiments have demonstrated that
SVT-Net as well as its two simplified versions ASVT-Net
and CSVT-Net can all achieve state-of-the-art performance
with an extremely light-weight network architecture.
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