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Abstract

Existing permutation-invariant methods can be divided into
two categories according to the aggregation scope, i.e. global
aggregation and local one. Although the global aggregation
methods, e. g., PointNet and Deep Sets, get involved in sim-
pler structures, their performance is poorer than the local
aggregation ones like PointNet++ and Point Transformer. It
remains an open problem whether there exists a global ag-
gregation method with a simple structure, competitive per-
formance, and even much fewer parameters. In this paper,
we propose a novel global aggregation permutation-invariant
network based on dual MLP dot-product, called DuMLP-
Pin, which is capable of being employed to extract features
for set inputs, including unordered or unstructured pixel, at-
tribute, and point cloud data sets. We strictly prove that any
permutation-invariant function implemented by DuMLP-Pin
can be decomposed into two or more permutation-equivariant
ones in a dot-product way as the cardinality of the given input
set is greater than a threshold. We also show that the DuMLP-
Pin can be viewed as Deep Sets with strong constraints under
certain conditions. The performance of DuMLP-Pin is evalu-
ated on several different tasks with diverse data sets. The ex-
perimental results demonstrate that our DuMLP-Pin achieves
the best results on the two classification problems for pixel
sets and attribute sets. On both the point cloud classifica-
tion and the part segmentation, the accuracy of DuMLP-Pin
is very close to the so-far best-performing local aggregation
method with only a 1-2% difference, while the number of re-
quired parameters is significantly reduced by more than 85%
in classification and 69% in segmentation, respectively. The
code is publicly available on https://github.com/JaronTHU/
DuMLP-Pin.

Introduction
Convolutional neural networks (CNNs) have superiority in
feature extraction on structured data like text, images, or
other sequences. For unordered or unstructured set inputs,
however, permutation-invariant methods seem to be pre-
ferred.

According to the aggregation scope, existing permutation-
invariant networks, hereafter referred to as Pin, can be di-
vided into global aggregation and local aggregation meth-
ods. Pioneer work uses global aggregation to achieve
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permutation-invariance. For instance, PointNet (Qi et al.
2017a) employs global max pooling, while global sum pool-
ing is adopted in Deep Sets (Zaheer et al. 2017). In general,
there are simple structures in global aggregation methods.
But they are not good at extracting local features. Com-
pared to these, local aggregation methods like PointNet++
(Qi et al. 2017b) and Point Transformer (Zhao et al. 2021)
overcome such limitation by defining the local aggregation
operation and scope. Accordingly, they yield better perfor-
mance, though they usually have more complex structures.

In this paper, we propose a dual MLP dot-product
permutation-invariant network (DuMLP-Pin) for set fea-
ture extraction. The key to DuMLP-Pin is the use of
two multilayer perceptrons (MLPs) in order to aggregate
information globally. It does gain permutation-invariance
through the dot-product of outputs of two MLPs. We strictly
prove that the dot-product decomposition always exists
for any permutation-invariant function. Compared to other
permutation-invariant methods on the same task, DuMLP-
Pin is highly parameter-efficient, which means that it only
needs a small number of parameters. Furthermore, we also
show that the optimization of DuMLP-Pin can be viewed
as the constrained optimization of Deep Sets under certain
conditions.

The contributions of this paper are summarized as fol-
lows:
• We propose a novel global aggregation permutation-

invariant network based on dual MLP dot-product de-
composition, called DuMLP-Pin.

• We strictly prove that a dot-product decomposition
for any permutation-invariant function implemented by
DuMLP-Pin always exists if and only if the cardinality
of input sets is greater than a pre-specific threshold.

• We explain the high efficiency of DuMLP-Pin and show
that under certain conditions DuMLP-Pin can be consid-
ered as Deep Sets with strong constraints.

We evaluate DuMLP-Pin on several problems with dif-
ferent types of data elements. Experimental results demon-
strate that DuMLP-Pin yields the best performance on both
the pixel classification and the attribute set one, compared
to other permutation-invariant methods. On the point cloud
classification, the performance of the proposed method al-
most reaches the best-performing local aggregation method
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with a difference of only 1.4%, but the number of required
parameters is remarkably reduced by more than 85%. In ad-
dition, it is also approximately close to the best local ag-
gregation method on the point cloud part segmentation task
in performance, where there is only a 1.8% difference be-
tween them, but the reduction in the number of required pa-
rameters exceeds 69%. Technical appendix is available on
https://arxiv.org/abs/2203.04007.

Related Work
Global Aggregation
Recently, a collection of researches focus on constructing
feature extractors for unordered or unstructured data inputs.
In pioneer work, global pooling functions are often em-
ployed to gain permutation-invariance. Specifically, Point-
Net (Qi et al. 2017a) utilizes max pooling to directly tackle
unordered point cloud data. Feature transformations are also
exploited to boost performance in such network architecture.
Although PointNet mainly gets involved in point cloud prob-
lems, it is easily transferred to other unordered data as well.
Meanwhile, Deep Sets (Zaheer et al. 2017; Ravanbakhsh,
Schneider, and Poczos 2017) makes use of sum pooling to
aggregate information. It also points out that conditional
mapping could be adopted as additional meta-information
is available. The core of Deep Sets is to add up all represen-
tations and then apply nonlinear transformations. BRUNO
(Korshunova et al. 2018) is a recurrent model for Bayesian
inference on set inputs, where joint distribution over ob-
servations is permutation-invariant. Besides the above-
mentioned simple pooling functions, attention-based archi-
tecture is also popular when building permutation-invariant
or permutation-equivariant functions. Ilse, Tomczak, and
Welling proposes an attention-based aggregation operator
to learn the Bernoulli distribution related to multiple in-
stance learning problems (Maron and Lozano-Pérez 1998).
Set Transformer (Lee et al. 2019) is another Transformer-
based neural network that is designed to process sets of data.
In such a model, several attention-related set operations are
presented under different problem settings. There are many
research works associated with permutation-invariance and
permutation-equivariance in Transformer (Zhao, Jia, and
Koltun 2020; Khan et al. 2021), where some of them lever-
age permutation-invariance, but some do not. Unlike previ-
ous methods directly approximating global features, RepSet
(Skianis et al. 2020) generates them by solving the maxi-
mum matching problem between the elements of two sets.

Global aggregation methods have simple structures,
whose permutation-invariance is gained by either global
pooling functions or attention mechanisms. Such two types
of methods, however, have different limitations. Wagstaff
et al. analyzes the limitation of pooling architectures and
provides a solution by imposing a constraint on the dimen-
sionality of the latent space. For Transformer-based global
aggregations, there is usually a relatively heavy computa-
tional complexity. Some researchers argue that full attention
in Transformer is not necessary (Sukhbaatar et al. 2019; Ki-
taev, Kaiser, and Levskaya 2019; Liu et al. 2021), and ac-
cordingly, different ways are delivered to do computation

more efficiently.

Local Aggregation
Global aggregation methods are always weak in capturing
local information, which generally results in relatively poor
performance, especially in the point cloud settings. To over-
come this drawback, local aggregation methods are pro-
posed. PointNet++ (Qi et al. 2017b) captures local structures
by recursively applying PointNet on the partitioning of point
cloud inputs. In the PointNet++ model, two density adaptive
layers, i.e. multi-scale grouping and multi-resolution group-
ing, are proposed to group local regions and combine fea-
tures from different scales. PointASNL (Yan et al. 2020)
focuses on tackling point clouds with noise and presents
adaptive sampling and local-nonlocal modules to seize lo-
cal and long-range dependencies. Point Cloud Transformer
(Guo et al. 2021) is also based on Transformer architectures.
Unlike Set Transformer, however, it uses the offset-attention
module with neighbor embedding for augmented local fea-
ture aggregation. Point Transformer (Zhao et al. 2021) estab-
lishes attention mechanisms based on (Zhao, Jia, and Koltun
2020). It also employs relative positional encoding to aggre-
gate local information. In summary, local aggregation meth-
ods generally have more complex structures since they have
to carefully define aggregation operations and scopes.

DuMLP-Pin
In this section, we first formulate the permutation-invariant
learning problem and then propose a novel global aggrega-
tion permutation-invariant network based on dual MLP dot-
product decomposition (DuMLP-Pin).

Problem Formulation
Suppose that P denotes the permutation matrix and PN the
set of all permutation matrices with size N ×N , where N is
the number of elements in a given input set. Let p and r in-
dicate the dimension of the input and output vectors, respec-
tively. According to the definition of permutation-invariance
and permutation-equivariance (Zaheer et al. 2017), we can
rewrite them in a matrix form.
Definition 1 (Permutation-invariant) The function f :
RN×p → Y is permutation-invariant if

f(PX) = f(X) for ∀X ∈ RN×p, ∀P ∈ PN . (1)

Definition 2 (Permutation-equivariant) The function g :
RN×p → RN×r is permutation-equivariant if

g(PX) = Pg(X) for ∀X ∈ RN×p, ∀P ∈ PN . (2)

In this paper, we pay attention to the set classifica-
tion problem with supervised learning. Accordingly, the
permutation-invariant learning problem can be described as
follows:
Definition 3 (Permutation-invariant Learning) Given M
training samples in the form of {(Xi, yi)}Mi=1, where Xi ∈
RN×p represents a set input and yi ∈ Y a label, find the
function f : RN×p → Y such that the corresponding f -
related performance metric evaluated on test sets is maxi-
mized.
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Minimum Dimension Decomposition
We can construct a bijection u : Rm×n → Rmn through
simply reshaping, which means that u(x)in+j = xi,j .
Clearly, if a function can represent any matrices of size
m × n, it can then express any vectors of length mn by
adding a flattening module. In the following discussion, we
will focus on the representation of feature matrices instead
of feature vectors. First of all, we introduce Lemma 1 for
minimum dimension decomposition (MDD).

Lemma 1 (MDD) ∀A ∈ Rm×n,m ≤ n, ∀l ≥ m, ∀B
∈ {X ∈ Rm×l

∣∣ rank(X) = m}. Let S =
{
C ∈ Rl×n|

BC = A}, then

S 6= Φ and S =
{
Cp +XhΛ|Λ ∈ R(l−m)×n

}
, (3)

where Cp stands for a particular solution of BC = A, and
the columns of Xh are basis of Ker(B).

The proof is supplemented in the technical appendix. Ob-
viously there exist infinite tuples (B,C) for any A through
MDD. Therefore, we have more choices when we represent
A through the decomposition of B and C.

Permutation-Invariance through Dot-Product
Decomposition
By substituting matrices into matrix functions in Lemma 1,
we may always decompose one matrix function by two ma-
trix functions. In Theorem 1, we show that any permutation-
invariant function can be decomposed into two permutation-
equivariant functions through a dot-product decomposition.

Theorem 1 For any permutation-invariant function f :
RN×p → Rs×t, there exist two permutation-equivariant
functions g(1) : RN×p → RN×s, g(2) : RN×p → RN×t,
such that

∀X ∈ RN×p, f(X) =
(
g(1)(X)

)T
g(2)(X) (4)

if and only if N ≥ min{s, t}.

The proof is also seen in the technical appendix for de-
tails. Unlike the theorems given in previous work (Qi et al.
2017a; Zaheer et al. 2017), Theorem 1 discuss the relation-
ship between the shape of the feature matrix min{s, t} and
the cardinality of the input set N . An intuition is that when
N < min{s, t}, the term

(
g(1)(X)

)T
g(2)(X) cannot be

full-rank according to linear algebra. Therefore, it cannot
represent full-rank feature matrices, which extremely lim-
its the expression capability. In practice, it is much eas-
ier to construct a permutation-equivariant function since
any function that processes each element independently is
permutation-equivariant. It is also the main reason that we
refer to two permutation-equivariant functions to represent
one permutation-invariant function. When generating fea-
ture vectors of length C, the outputs of both MLPs can be
only as small as

√
C (when N ≥

√
C), which leads to a

great reduction of parameters.

Aggregation Block and Broadcast Block
DuMLP-Pin is mainly constructed by two kinds of blocks:
aggregation block and broadcast block. The aggregation
block, which performs global feature aggregation, consists
of two vanilla MLPs. It achieves permutation-invariance
through the dot-product of the outputs of these MLPs. How-
ever, sometimes we need not only set features that represent
all unordered or unstructured elements, but also element fea-
tures for element label prediction. Thus we need to broadcast
the set feature to each element. In the following, we design
the broadcast block to address such a problem. Formally, let
element feature x ∈ Rdx , set feature y ∈ Rdy . Then we use
Equation 5 to generate combined feature z ∈ Rdz .

z = (Wxy · x) · y +Wx · x+Wy · y + b, (5)

where Wxy ∈ Rdz×dy×dx ,Wx ∈ Rdz×dx ,Wy ∈ Rdz×dy ,
and b ∈ Rdz . Although Wxy involves direct interaction be-
tween x and y, it increases computational burden tremen-
dously. We observe that involving such term only leads to
insignificant performance improvement in experiment. Con-
sequently, we balance efficiency and effectiveness by setting
Wxy = 0. The structures of aggregation block and broadcast
block are shown in Figure 1 (a) and (b), respectively.

input:�(N,�C)

MLP1
(N,�C1)

MLP2
(N,�C2)

(C1,�C2)

flatten

output:�(C1C2,�)

(a) Aggregation block
input:�(N,�C)

MLP3
(N,�C3)

Aggregation�block

(C4,�)

MLP4

combine

output:�(N,�C6)

(C5,�)

(b) Broadcast block

Figure 1: Structure design for aggregation block and broad-
cast block.

Nonlinear Activation Function
Nonlinear activation functions are essential for the success
of deep learning. Besides the common-used ReLU (Nair and
Hinton 2010), there are many works focusing on designing
novel nonlinear activation functions, including ELU (Clev-
ert, Unterthiner, and Hochreiter 2016), SELU (Klambauer
et al. 2017), Mish (Misra 2020), etc. We do not discuss gen-
eral preferences on the choice of nonlinear activation func-
tions. Instead, we only focus on the last layers of two MLPs
in the aggregation block.
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Without loss of generality, suppose that both MLPs com-
prise only one linear layer without any bias. Let W1 and W2

be weights. α1 and α2 are assumed to be nonlinear activation
functions used by MLP1 and MLP2, respectively. Since we
argue both MLPs must be permutation-equivariant, here we
only discuss element-wise activation functions like ReLU
and set-wise ones like softmax. Then for input X ∈ RN×C ,
the output is computed as:

f(x) = α′1(WT
1 X

T )α2(XW2), (6)
where α′1 satisfies that α′1(WT

1 X
T ) = αT

1 (XW1). We find
that the model always shows better performance when using
at least one nonlinear activation function. Why nonlinear ac-
tivation functions are essential? Assume that both MLPs do
not use nonlinear activation function. In this case, Equation
6 turns into Equation 7, i.e.,

f(x) = WT
1 X

TXW2 = WT
1 (XTX)W2. (7)

It is easy to see that f(X) is dominated by XTX ∈
RC×C . This is inappropriate and even destructive especially
when C � N . For example, the feature dimension of the
input element is relatively small under some point cloud
settings, which is much smaller than the number of points.
If no nonlinear activation function is used, then unfeasible
constraints that for X1, X2 ∈ RN×C , XT

1 X1 = XT
2 X2 ⇒

f(X1) = f(X2) will be imposed. However, using even one
nonlinear activation function can overcome this problem by
cutting off the direct combination between XT and X .

Besides, we observe that set-wise softmax generally out-
performs element-wise activation functions. We argue that
set-wise softmax involves direct interaction among elements
in inputs, thus leading to better results than element-wise
ones. We will discuss this more in the ablation study.

Further Discussion
In this part, we methodologically make comparisons of our
DuMLP-Pin with other global aggregation methods includ-
ing Deep Sets, PointNet, and Set Transformer.

Relation to both Deep Sets (Zaheer et al. 2017) and
PointNet (Qi et al. 2017a). Both Deep Sets and PointNet
build permutation-invariant functions in a similar manner:

Deep Sets: f(X) = γ

(∑
xi

{h(xi)}

)
,

PointNet: f(X) = γ

(
max
xi

{h(xi)}
)
.

The main difference lies in the pooling function, which
is also the core of permutation-invariance. To illustrate how
DuMLP-Pin works, let us suppose that each row is processed
independently. It implies that any interaction between ele-
ments does not get involved. Thus we make the derivation
below:

f(X) =
(
g(1)(X)

)T
g(2)(X)

=
∑
xi

(
g(1)(xi)

)T (
g(2)(xi)

)
=
∑
xi

h′(xi).

Therefore, DuMLP-Pin also takes advantage of the sum
pooling over element features. However, unlike h(xi) in
Deep Sets, h′(xi) ∈ RC1×C2 is subject to the following
strong constraints:

rank [h′(xi)] ≤ 1. (8)

From this perspective, DuMLP-Pin can be regarded as
Deep Sets with strong constraints on element features. We
argue that the direct optimization of h is generally tougher
and more unstable than optimizing g(1) and g(2) concur-
rently. This is because we shrink the search space by im-
posing constraints without loss of theoretical expression ca-
pability. If we use set-wise softmax, then g(xi) can be mod-
ified as g(xi)p(X) where p(X) is a global pooling. But it
does not change the low-rank constraints.

Relation to Set Transformer (Lee et al. 2019). Although
Pooling by Multihead Attention Block (PMA) in Set Trans-
former is similar to our aggregation block, they are different
in many aspects as shown in Equation 9. Set Transformer
is based on Transformer architecture, which implies that it
mainly employs linear mapping for feature transformation,
while our DuMLP-Pin uses MLPs for the same sake. In
addition, the aggregation block does not leverage the self-
attention mechanism, layer normalization, and multi-head
architecture. The output of Set Transformer has different
meanings on different dimensions (i.e. sample and feature).
But our DuMLP-Pin takes both dimensions as features, mak-
ing it natural to flatten for further use.

fPMA(X) = Attention (S,X,X) ,

fDuMLP-Pin(X) = Flatten
[
MLP1 (X)

T MLP2 (X)
]
.

(9)

Possibility of High-order Dot-Product Decomposition.
DuMLP-Pin can be viewed as Deep Sets with strong con-
straints on element features, which is derived by raising fea-
ture dimensions from 1D vector to 2D matrix. Is it possible
that we construct 3D, 4D, or even nD feature tensors to fur-
ther shrink search space and boost performance? We dive
into such a problem and formulate the result as Theorem 2.

Theorem 2 For any permutation-invariant function f :
RN×p → Rc1×···×cn , there exist n permutation-equivariant
functions g(1) : RN×p → RN×c1 , · · · , g(n) : RN×p →
RN×cn , such that (1 ≤ aj ≤ cj)

∀X ∈ RN×p, f(X)a1,··· ,an
=

N∑
i=1

n∏
j=1

(
g(j)(X)

)
i,aj

if N ≥
∏n

j=1 cj

maxj cj
and only if N ≥

∏n
j=1 cj∑n
j=1 cj

and N ≥ max
C⊂{c1,··· ,cn}

min

∏
c∈C

c,
∏
c∈C

c

 .

The proof is also supplemented in the technical appendix.
We compare the performance of different feature orders in
the ablation study.
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Experiments
On several problems with different types of data elements,
we evaluate the performance of our DuMLP-Pin. In the ex-
periments, we employ the MNIST for pixel set classification,
the CelebA for attribute set anomaly detection, the Model-
Net40 for point cloud classification, and the ShapeNetPart
for point cloud part segmentation, respectively. We indepen-
dently run all experiments 5 times and report the evaluation
metric on test sets. More details about the architectures and
hyper-parameters are available in the technical appendix.

Pixel Set Classification
The MNIST (LeCun et al. 1998) is a well-known handwrit-
ten digit classification dataset with 60,000 images in the
training set and 10,000 images in the test set. We transform
images into pixel sets by appending relative coordinates to
intensities and shuffling the order randomly. Accordingly,
our DuMLP-Pin is compared with PointNet and PointNet++,
respectively, since they also consider images as pixel sets.
We use the error rate as the evaluation metric. Both results
quoted are taken from the cited papers.

Method #Params(M) Error Rate(%)

PointNet (2017a) 3.47 0.78
PointNet++ (2017b) 1.47 0.51

DuMLP-Pin-S 0.28 0.80 ± 0.053
DuMLP-Pin-L 1.13 0.48 ± 0.034

Table 1: The MNIST pixel set classification results.

We evaluate two models of different sizes: DuMLP-Pin-
S with only one aggregation block and DuMLP-Pin-L with
one aggregation block and two broadcast blocks. From Table
1, it is readily observed that DuMLP-Pin-S performs slightly
worse than PointNet while DuMLP-Pin-L is slightly bet-
ter than PointNet++. However, unlike PointNet++ as a lo-
cal aggregation method, DuMLP-Pin has no access to local
structures, making the results more competitive. It is pos-
sible to construct a DuMLP-Pin model with better hyper-
parameters, which may further improve the performance.
The experiment shows that DuMLP-Pin has the potential to
process simple images. We use t-SNE (van der Maaten and
Hinton 2008) to visualize feature vectors preceding classi-
fiers, as shown in Figure 2.

Attribute Set Anomaly Detection
CelebA (Liu et al. 2015) is a large-scale face attributes
dataset including 202,599 face images with 40 attribute an-
notations per image. We randomly sample 9 images with the
same 2 attributes and 1 image without those. Each image
in CelebA is forced to appear at most once in the sampled
dataset. We formulate this problem as a set feature extraction
problem because the anomaly is in the minority and most
normal members do not deviate much from the set feature.
All methods are the same except the set feature extractor
part.

Figure 2: The t-SNE embeddings of DuMLP-Pin-S on the
MNIST test set. Feature vectors are generated by one aggre-
gation block with only 17.9K parameters.

Method #Params(K) OA(%)

Max-pooling 65.8 60.4 ± 0.44
Mean-pooling 65.8 65.0 ± 0.16

PointNet (2017a) 131.6 62.3 ± 0.22
Deep Sets (2017) 132.6 65.0 ± 0.35

Set Transformer (2019) 263.4 66.4 ± 0.45

DuMLP-Pin 83.3 66.8 ± 0.43

Table 2: The CelebA attribute set anomaly detection results.

We evaluate all methods under the end-to-end setting
without access to the attributes. We use overall accuracy
(OA) as the evaluation metric. The structures of other meth-
ods are selected from a series of candidates through grid
search. From Table 2, DuMLP-Pin and Set Transformer out-
perform other methods by a significant margin, but DuMLP-
Pin using fewer parameters. Figure 3 shows some samples
from the set anomaly detection dataset.

Figure 3: Samples from set anomaly detection datasets,
the blue frame denotes anomaly and the red frame de-
notes wrong-classified image. We visualize the probability
by adding a blue bar under each image.

Point Cloud Classification
The ModelNet40 (Wu et al. 2015) is a 40-class 3D shape
dataset with 9,843 CAD models in the training set and 2,468
CAD models in the test set, respectively. We utilize 1,024
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points with normal vectors from the sampled point cloud of
Qi et al. for fair comparisons. We take overall accuracy as
the evaluation metric. All results quoted are taken from the
cited papers.

Method #Params(M) OA(%)

PointNet (2017a) 3.48 89.2
Deep Sets (2017) 1.34 90 ± 0.3

Set Transformer (2019) 1.14 90.4 ± 1.73
PointNet++ (2017b) 1.74 91.9

PCT (2021) 2.88 93.2
Point Transformer (2021) ∼9.6∗ 93.7

DuMLP-Pin 0.29 92.3 ± 0.12

Table 3: The ModelNet40 point cloud classification results.
Note that ∗ indicates that the number of parameters is esti-
mated from unofficial code implementation.

We also evaluate two models of different sizes, but they
have similar performance, meaning that the model is prior
to overfitting when adding more parameters. Therefore, we
only focus on the small one. The performance of DuMLP-
Pin is better than other methods for sets (Deep Sets and Set
Transformer) and pioneer methods for point clouds (Point-
Net and PointNet++), but still 1%∼2% worse than state-
of-the-art local aggregation methods for point clouds. As
a global aggregation method, DuMLP-Pin cannot capture
more local information. But the result is competitive since
the structure of DuMLP-Pin is simpler and the number of
required parameters is remarkably decreased by more than
85%. We adopt the same model retrieval method as that in-
troduced in (Qi et al. 2017a) in Figure 4.

Figure 4: Model retrieval results from the ModelNet40 test
set. The left column is the query point cloud, and the others
are top-5 retrieved point clouds. Red means incorrect classi-
fication.

Point Cloud Part Segmentation
The ShapeNetPart (Yi et al. 2016) is a 3D object part seg-
mentation dataset with 14,006 objects in the training set and
2,874 ones in the test set. It consists of 16 shape categories
and 50 part ones, respectively. We utilize 2,048 points like
the sampled point clouds of Qi et al. for fair comparisons.
The mIoU is employed as the evaluation metric and all their
results are quoted from the cited papers.

Method #Params(M) mIoU(%)

PointNet (2017a) 7.83 83.7
PointNet++ (2017b) 1.30 85.1

PCT (2021) 3.14 86.4
Point Transformer (2021) ∼19.2∗ 86.6

DuMLP-Pin-S 0.70 83.5 ± 0.06
DuMLP-Pin-L 0.98 84.8 ± 0.04

Table 4: The ShapeNetPart point cloud part segmentation
results. Note that ∗ implies that the data is roughly calculated
based on unofficial code implementation.

Like that in previous experiments, we evaluate two mod-
els of different sizes: DuMLP-Pin-S with two broadcast
blocks and DuMLP-Pin-L with four broadcast blocks. From
Table 4, it is observed that DuMLP-Pin-S somewhat under-
performs PointNet and DuMLP-Pin-L is slightly inferior to
PointNet++. But DuMLP-Pin has its own advantages. For
instance, it does not use any normal vectors as input. Without
the use of local features, it is reasonable that the performance
of DuMLP-Pin is only 2% lower than that of attention-based
local aggregation methods for point cloud problems. We
visualize some of the segmentation examples obtained by
DuMLP-Pin in Figure 5.

Figure 5: Segmentation results on the ShapeNetPart test set.
For each group of point clouds, on the left is the ground
truth, while on the right is our prediction.

Computational Complexity Analysis
We compare the computational complexity of different
methods in the point cloud classification task, as listed in
Table 5. It is readily observed that DuMLP-Pin has the low-
est number of parameters and MACs per sample among all
the methods. There are two reasons behind such minimum
time-consuming advantage. First, the proposed method has
smaller hidden layer dimensions. Second, it also has linear
complexity with respect to the number of points, while the
computational complexity of transformer-based methods is
generally quadratic.
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Method #Params(M) MACs/sample(M)

PointNet 3.48 440
Deep Sets 1.34 135

Set Transformer 1.14 1,284
PointNet++ 1.74 3,932

PCT 2.88 2,286
Point Transformer ∼9.6∗ ∼18,314∗

DuMLP-Pin 0.29 19

Table 5: The comparison of time efficiency among all the
methods in the point cloud classification. ∗ indicates that the
value is estimated from unofficial code implementation.

Ablation Study
The analysis of the influence of several factors including
nonlinear activation function, factorization, and decompo-
sition order are further conducted. All experiments are done
with ModelNet40, where all MLPs adopted in DuMLP-Pin
contain three hidden layers with sizes of 32, 128, and k
which may vary in different experiments, respectively.

Nonlinear Activation Function. All models are the same
except the activation functions of two MLPs. For set-
wise activation functions, we adopt squashing introduced in
(Sabour, Frosst, and Hinton 2017) besides softmax. Figure
6 visualizes different activation functions used in our work.
It can be seen that softmax dominates the table with all met-
rics around 1% greater than their non-softmax counterparts.
Squashing seems to lose so much information that it has
poor performance. Generally, we prefer using two softmax
or one softmax and the other no activation.

Figure 6: Influence of nonlinear activation function.

Factorization. By controlling the dimension of feature
vectors as 1,024, we experiment on several different factor-
izations. The influence of factorization does not seem critical
because the OA of the best model is only 0.7% larger than
the worst model in Table 6. However, since the square fac-
torization (32× 32) needs the fewest parameters, it is highly
recommended to use square factorization first and try other
factorizations as well if possible. To control the variable, we
use both activation functions as softmax, which makes the

result slightly different from that with one single softmax in
Figure 6.

Factorization #Params(K) OA(%)

1× 1, 024 143.8 91.8
2× 512 76.9 92.1
4× 256 43.6 91.6
8× 128 27.4 91.7
16× 64 20.0 91.9
32× 32 17.9 92.3

Table 6: Influence of factorization.

Decomposition Order. By setting N = 1, 024 and con-
trolling the dimension of feature vectors as 1,024, the de-
composition always exists according to Theorem 2. Because
multiple softmax makes the value too small, we only use
one softmax in all experiments except the first one (since it
all degenerates to one). From Table 7, the performance of
order 2 is better than all the other methods. The possible
reason is that the use of high-order decomposition is equiv-
alent to adding stronger constraints. In this case, it is hard to
use any vanilla MLPs to parameterize each function in the
decomposition.

Order Factorization #Params(K) OA(%)

1 1, 024 138.9 90.3
2 322 17.9 92.5
3 16× 82 18.5 92.0
4 82 × 42 22.2 91.6
5 45 26.5 91.2

10 210 50.3 91.3

Table 7: Influence of decomposition order.

Conclusion
In this paper, we propose a novel global aggregation
permutation-invariant network based on dual MLP dot-
product decomposition, which is called DuMLP-Pin. We
strictly prove that two or more permutation-equivariant
functions can be leveraged to set up one permutation-
invariant function. The high efficiency of DuMLP-Pin is
also analyzed by converting the optimization problem of
DuMLP-Pin to that of Deep Sets with strong constraints.
Finally, we evaluate the performance of our DuMLP-Pin
on different tasks. The experimental results illustrate that
DuMLP-Pin achieves the best results on the pixel set classifi-
cation and the attribute set anomaly detection. Additionally,
the performance of DuMLP-Pin is only slightly lower than
existing SOTA methods, while the number of required pa-
rameters is significantly reduced. In the future, we hope the
DuMLP-Pin could extensively be exploited as a competitive
global aggregation baseline for a wide range of unordered
or unstructured data problems in terms of its distinguishing
performance.
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