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Abstract
Recently, Convolutional Neural Network (CNN) has achieved
excellent performance in the classification task. It is widely
known that CNN is deemed as a ‘black-box’, which is hard
for understanding the prediction mechanism and debugging
the wrong prediction. Some model debugging and explana-
tion works are developed for solving the above drawback-
s. However, those methods focus on explanation and diag-
nosing possible causes for model prediction, based on which
the researchers handle the following optimization of models
manually. In this paper, we propose the first completely au-
tomatic model diagnosing and treating tool, termed as Mod-
el Doctor. Based on two discoveries that 1) each category is
only correlated with sparse and specific convolution kernels,
and 2) adversarial samples are isolated while normal sam-
ples are successive in the feature space, a simple aggregate
gradient constraint is devised for effectively diagnosing and
optimizing CNN classifiers. The aggregate gradient strategy
is a versatile module for mainstream CNN classifiers. Exten-
sive experiments demonstrate that the proposed Model Doc-
tor applies to all existing CNN classifiers, and improves the
accuracy of 16 mainstream CNN classifiers by 1% ∼ 5%.

Introduction
Image classification is a widely studied topic in the computer
vision area. The image classification algorithms are the es-
sential ingredient in many applications, such as, face recog-
nition (Masi et al. 2018), autonomous driving (Bojarski et al.
2016), text recognition (Chen et al. 2020; Ye and Doerman-
n 2015), medical image analysis (Litjens et al. 2017; Feng
et al. 2021), product quality inspection (Lei et al. 2018) and
so on. In recent years, Convolutional Neural Network (CN-
N) based classification networks, e.g., AlexNet (Technicol-
or et al. 2012), VGG-Net (Simonyan and Zisserman 2014),
ResNet (He et al. 2016), DenseNet (Huang et al. 2017), Sim-
pleNet (HasanPour et al. 2016), GoogLeNet (Szegedy et al.
2014), MobileNet (Howard et al. 2017), ShuffleNet (Zhang
et al. 2017), SqueezeNet (Iandola et al. 2016), MnasNet (Tan
et al. 2019), have achieved breakthrough results across a va-
riety of image classification tasks.

Those CNN classifiers achieve high classification perfor-
mance but often lack straightforward interpretability of the
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classifier predictions (Jie et al. 2018; Ras, Haselager, and
Gerven 2018; Riccardo et al. 2018). In other words, the clas-
sifier acts as a blackbox and does not provide details about
why it reaches a specific classification decision.

Some works are developed to explain and debug the ma-
chine learning models (Shouling et al. 2019). Most curren-
t works (Krause, Perer, and Ng 2016; Krause et al. 2017;
Zhang et al. 2019) focus on explaining and diagnosing the
deep learning model’s prediction with visual analysis tech-
niques. Based on those visualized diagnoses and analyses,
researchers interactively optimize the deep learning mod-
els through improving data quality, choosing reliable fea-
tures, and fine-tuning the model parameters. Another kind
of works (Bastani, Kim, and Bastani 2017; Lei et al. 2018)
adopted the explainable random forest to approximate the
deep learning models and analyze the deep learning model
by examining the explainable model. To sum up, all exist-
ing deep model explanation and debugging methods require
humans interaction. There is a lack of an entirely automatic
model diagnosing and treating tool for efficiently and effec-
tively optimize the deep learning models.

In this paper, we put forward a completely automatic
model diagnosing and treating tool, termed as Model Doc-
tor, which is based on two discoveries. The first discovery is
that the target category is highly correlated with sparse and
specific convolutional kernels in the last few layers of the C-
NN classifier. Meanwhile, there are also some incorrect re-
sponses for those corresponding convolutional kernels in the
background areas. The second discovery is that adversarial
samples are isolated while normal samples are successive in
the feature space. So, we devise the gradient aggregation s-
trategy for diagnosing the deficiency of CNN classifiers and
treating them automatically.

In the diagnosing stage, the absolute value of the first-
order derivatives of the predict category w.r.t. each feature
map of each layer are summed into a single correlation in-
dex, which denotes the correlation degree between the target
category and the corresponding convolutional kernel. To al-
leviate the disturbance of inaccurate features, we also calcu-
late the relevance index for the disturbed feature maps that
are synthesized by adding some small noises to the origi-
nal feature maps. Then, we aggregate those correlation in-
dex values in each layer of the CNN classifier for all training
samples of the same category. The aggregated correlation in-
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dex values for each convolutional kernel can be seen as the
criterion for diagnosing the wrong prediction samples.

In the treating stage, we devise the channel-wise and
space-wise constraints for treating CNN classifiers based on
the above correlated convolutional kernels distribution for
each category. The channel-wise constraint is adopted to re-
strain the wrong correlation between the convolutional k-
ernels and the target category. The space-wise constraint is
adopted to restrain the wrong correlation between the un-
related background features and the target category, which
requires extra coarse annotations of the object area. Experi-
ments demonstrate that the proposed Model Doctor can ef-
fectively diagnose the possible causes for the failure predic-
tion of the model and improve the accuracy of the CNN clas-
sifier effectively.

Our contribution is therefore the first completely automat-
ic model diagnosing and treating tool, termed as Model Doc-
tor. We reveal two discoveries and analyze the relationship
between the convolution kernels and categories, which can
be used as the criterion for future researches on deep model
diagnosing and treating. The gradient aggregation strategy
combined with the channel-wise and space-wise constraints
is devised for diagnosing and treating CNN classifiers. Ex-
tensive experiments demonstrate that the proposed methods
effectively improve the accuracy of mainstream CNN classi-
fiers by 1% ∼ 5%. It’s worth noting that the proposed Model
Doctor is built on top of pre-trained CNN classifiers, which
is applicable for all existing CNN classifiers.

Related Work
Model Debugging and Explanation. Due to the com-
plex operation mechanism and low transparency of machine
learning models, there is usually a lack of reliable causes
and reasoning to assist researchers in debugging the mod-
els. Some model explanation techniques are developed as
tools for model debugging and analysis. Cadamuro, Gilad-
Bachrach, and Zhu (2016) proposed a debugging method for
machine learning models to identify the training items most
responsible for biasing the model towards creating this error.
Krause, Perer, and Ng (2016) presented an explanatory de-
bugging method that explains to users how the system made
each of its predictions. The user then explains any necessary
corrections back to the learning system. Kulesza et al. (2010)
presented an explanatory debugging approach for debugging
machine-learned programs. Brooks et al. (2015) presented
an interactive visual analytics tool FeatureInsight for build-
ing new dictionary features (semantically related groups of
words) for text classification problems. Paiva et al. (2015)
proposed a visual data classification methodology that sup-
ports users in tasks related to categorization such as training
set selection, model creation, verification, and classifier tun-
ing. The above methods focused on debugging traditional
machine learning models. The improvement process needs
human interaction.

For the deep learning models, Bastani, Kim, and Bas-
tani (2017); Lei et al. (2018) adopted the explainable ran-
dom forests to approximate the blackbox model and debug
the blackbox model by examining the explainable model.
Krause, Perer, and Ng (2016) proposed an interactive partial

dependence diagnostics to understand how features affec-
t the prediction overall. Krause et al. (2017) proposed the
visual analytics workflow that leverages instance-level ex-
planations, measures of local feature relevance that explain
single instances. Zhang et al. (2019) proposed a framework
that utilizes visual analysis techniques to support the inter-
pretation, debugging and comparison of machine learning
models in an interactive manner. Those methods focused on
diagnosing the possible causes for models’ prediction, based
on which researchers handle the following model debug-
ging and optimization manually. Different from the above
methods, we focus on automatically treating the deep mod-
els based on the diagnosed results.

Attribution Method. Existing attribution methods con-
tain perturbation-based and backpropagation-based meth-
ods. Perturbation-based methods (Zeiler and Fergus 2014;
Zhou and Troyanskaya 2015; Zintgraf et al. 2017; Lengerich
et al. 2017) directly compute the attribution of an input fea-
ture by removing, masking, or altering them and running
a forward pass on the new input, measuring the difference
with the actual output.

For the backpropagation-based method, Baehrens et al.
(2010) first applied the first-order derivative of the predic-
t category w.r.t. the input to explain classification decisions
of the Bayesian classification task. Furthermore, Simonyan,
Vedaldi, and Zisserman (2013) extended the same technique
into the CNN classification network to extract class aware
saliency maps. Sundararajan, Taly, and Yan (2017) took the
(signed) partial derivatives of the output w.r.t the input and
multiplying them with the input itself (i.e., Gradient × In-
put), which improves the sharpness of the attribution maps.
Shrikumar et al. (2016) computed the average gradient while
the input varies along a linear path from a baseline, which is
defined by the user and often chosen to be zero, to the initial
input (i.e., Integrated Gradients). Shrikumar, Greenside, and
Kundaje (2017) recently proposed DeepLift for decompos-
ing the output prediction of a neural network on a specific
input by backpropagating the contributions of all neurons in
the network to every feature of the input. Bach et al. (2015);
Feng et al. (2018) proposed an approach for propagating im-
portance scores called Layerwise Relevance Propagation (L-
RP). Kindermans et al. (2016) showed that the original LRP
rules were equivalent within a scaling factor to the gradient
× input.

With the above techniques, Song et al. (2019) adopted
the Saliency Map, Gradient × Input, and ε-LRP to calcu-
late the attribution map for estimating the transferability of
deep networks. Ancona et al. (2018) analyzed above Gra-
dient × Input, ε-LRP, Integrated Gradients and DeepLIFT
(rescale) from theoretical and practical perspectives, which
shows that these four methods, despite their different formu-
lation, are firmly related, proving conditions of equivalence
or approximation between them.

CAM and Grad-CAM. Another related area is visual fea-
ture localization, which includes gradient-free technique and
gradient-based technique. For the gradient-free technique,
Zhou et al. (2016) proposed the first visual feature local-
ization technique, called Class Activation Mapping (CAM),
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to visualize the predicted class scores on any given image,
highlighting the discriminative object parts detected by the
CNN. CAM computes a weighted sum of the feature map-
s of the last convolutional layer to obtain the class activa-
tion maps. Wang et al. (2020) proposed the score-CAM, a
novel CAM variant, which uses the increase in confidence
for the weight of each activation map. Naidu and Michael
(2020) introduced an enhanced visual explanation for visual
sharpness called SS-CAM, which produces centralized lo-
calization of object features within an image through a s-
mooth operation. Desai and Ramaswamy (2020) proposed
the Ablation-CAM that uses ablation analysis to determine
the importance (weights) of individual feature map units
w.r.t. class, which is time-consuming.

For the gradient-based technique, Selvaraju et al. (2020)
proposed the Grad-CAM, which utilizes a local gradient to
represent the linear weight and can be applied to any average
pooling-based CNN architectures without re-training. Chat-
topadhay et al. (2018) proposed the Grad-CAM++ that used
a weighted combination of the positive high order deriva-
tives of the last convolutional layer feature maps w.r.t a spe-
cific class score as weights to generate better object local-
ization as well as explaining occurrences of multiple object
instances in a single image. Omeiza et al. (2019) proposed
the Smooth Grad-CAM++ that calculates these maps by av-
eraging gradients from many small perturbations of a given
image and applying the resulting gradients in the generalized
Grad-CAM algorithm.

Deconvolutional Visualization. The deconvolutional net-
work (Zeiler et al. 2010; Zeiler, Taylor, and Fergus 2011)
was originally proposed to learning representation in an un-
supervised manner and later applied to visualization (Zeil-
er and Fergus 2014). Zeiler and Fergus (2014) proposed
the first deconvolution visualization approach DeConvNet to
better understand what the higher layers in a given network
have learned. DeConvNet makes data flow from a neuron
activation in the higher layers down to the image. Springen-
berg et al. (2014) extended this work to guided backpropaga-
tion which helped understand the impact of each neuron in a
deep network w.r.t. the input image. Mahendran and Vedaldi
(2016) extended DeConvNet to a general method for archi-
tecture reversal and visualization.

Method
Discovery and Analysis
Discovery 1: The target category is only correlated with s-
parse and specific convolutional kernels in the last few lay-
ers of the CNN classifier. Meanwhile, unrelated background
features will disturb the prediction of the CNN classifier.

Analysis: In this section, we first give the analysis be-
tween the convolutional kernels with the target category. For
the input image I , the feature maps of the (r − 1)-th layer
are denoted as {mr−1

1 ,mr−1
2 ,mr−1

3 , ...,mr−1
T }, as shown in

Fig. 1. With the convolutional kernels {cr1, cr2, cr3, ..., crK},
feature maps {mr

1,m
r
2,m

r
3, ...,m

r
K} of the r-th layer are

calculated as follows:

mr
k = f(crk ~ {mr−1

1 ,mr−1
2 ,mr−1

3 , ...,mr−1
T }), (1)

Figure 1: The relationship between the predicted category
and feature maps (convolutional kernels) in each layer.

where ~ denotes the convolutional operation, f denotes
the following operation, such as pooling operation, acti-
vation function. With feature maps {mr

1,m
r
2,m

r
3, ...,m

r
K}

of the r-th layer, the predicted category yn is denoted as
yn = F ({mr

1,m
r
2,m

r
3, ...,m

r
K}), where F denotes the fol-

lowing operations: convolution, pooling, activation function,
and fully connected layer, decided by the specific network
architecture.

For feature maps {mr
1,m

r
2,m

r
3, ...,m

r
K} of the r-th layer,

the first-order derivative (yn)
′
mr

k
of the predicted category

yn w.r.t the k-th feature map mr
k is calculated as follows:

(yn)
′
mr

k
=

∂yn
∂mr

k

. (2)

The magnitude of the derivative (yn)
′
mr

k
indicates which fea-

ture value in mr
k needs to be changed the least to affect the

class score yn the most.
Then, the summed value an,rk of k-th first-order derivative

(yn)
′
mr

k
is calculated as follows:

an,rk =
⊎
| ∂yn
∂mr

k

|, (3)

where
⊎

denotes summing values of the matrix | ∂yn

∂mr
k
|.

The magnitude of an,rk indicates the importance of the
feature map mr

k to affect the class score yn. From Eqn.
(1), we can see that, with the same input feature maps
{mr−1

1 ,mr−1
2 ,mr−1

3 , ...,mr−1
T } and operation f , the con-

volutional kernel crk determines the different feature maps
{mr

1,m
r
2,m

r
3, ...,m

r
K}. So, the magnitude of an,rk also in-

dicates the degree of correlation between the k-th convolu-
tional kernel and the predicted category yn.

Fig. 2(a) shows the statistical correlation degree between
all categories and the convolutional kernels in the last layer
of GoogLeNet (Szegedy et al. 2015) on the CIFA10 dataset.
For each category, we calculate the sum value

∑100
1 an,rk

for each convolutional kernel crk of 100 images, prediction
confidence of which are larger than 0.90. From Fig. 2(a),
we can observe that each category is only correlated with s-
pare and specific convolutional kernels (bright color), while
most convolutional kernels are not correlated (dark color).
For each image, the convolutional kernels with high correla-
tion are almost identical with the statistical high correlation
kernels in each layer of the network. Furthermore, the num-
ber of convolutional kernels with high correlation reduces
along with the network layer goes deeper. More visual cor-
relation diagrams about a single image and each layer are
given in the supplements.
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Figure 2: (a) the statistical correlation diagram between al-
l categories and the convolution kernels in last layer of
GoogLeNet. (b) the high and low-confidence images cov-
ered with summed derivative maps.

For the image with inaccurate prediction, the summed
derivative map

∑K
k=1 |

∂yn

∂mr
k
| is mapped into the origi-

nal image. Fig. 2(b) shows the high-confidence and low-
confidence prediction images and the corresponding image
covered with the summed derivative maps. We can find that
some background areas have a relatively high correlation.
For images with accurate predictions, there are hardly any
background areas with high correlations. The above phe-
nomenons indicate that those unrelated background features
will disturb the prediction of the CNN classifier.

Discovery 2: Adversarial samples are isolated while nor-
mal samples are successive in the feature space.

Analysis: In the experiment, we find that the performance
of the normal sample with disturbances is more robust than
the adversarial sample. So, we assume that adversarial sam-
ples are isolated while normal samples are successive in the
feature space. For the normal and corresponding adversarial
samples obtained with fast gradient sign method (Goodfel-
low, Shlens, and Szegedy 2015), noises of different ranges
are added into those samples to verify their robustness with
different disturbances. For each image, the noises are ran-
domly added to the arbitrary layer of the network 10 times
separately.

Fig. 3 shows the accuracy curves of normal and adversar-
ial samples with different disturbances. The accuracy curves
are the average results of 100 samples. From Fig. 3, we can
see that a normal sample achieves accuracy close to 100%
when the noise range in value from 0 to 0.3. However, with
some noises, the prediction of the adversarial sample will
turn back to its’ original true label and has accuracy close to
100%. Only less than 10% samples are still be predicted to
the same false label as the adversarial sample. So, we con-
clude the secondary discovery that adversarial samples are
isolated while normal samples are successive in the feature
space.

Figure 3: The accuracy curves of normal and adversarial
samples with different disturbances.

Model Doctor
Based on the above two discoveries, we put forward a sim-
ple gradient aggregation strategy for diagnosing and treating
the mainstream CNN classifiers. In the diagnosing phase,
we accumulate the correlation between the predicted cate-
gory and the convolution kernels in each layer. In most of
the case, the accurate prediction is only correlated with s-
parse and specific convolution kernels in the last few layers
of the CNN classifier (discovery 1). Then, we can adopt the
accumulated correlation distribution of each layer to diag-
nose the cause of why the sample is misclassified. In the
treating stage, two constraints are devised for treating CN-
N classifiers based on diagnosed results and the discovery
2. The channel-wise constraint is proposed to restrain the
incorrect correlative convolution kernels different from the
accumulated correlation distribution. The space-wise con-
straint is proposed for restraining the incorrect correlation
with the background features. The details about diagnosing
and treating are elaborated as follows.

Diagnosing stage. Inspired by the discovery 1, we accu-
mulate the correlation between the target category and con-
volution kernels in each layer. To alleviate the disturbance of
misclassified features, average statistics are adopted to accu-
mulate the correlations between the target category and the
convolution kernels. For the disturbed feature map mr

k + σ,
the noise matrix σ sampled from the interval [−δ, δ] will be
added to the feature map mr

k. The average correlation value
an,rk between the convolution kernel crk and the category yn
is calculated as follows:

an,rk =
1

J

J∑
j=1

⊎
| ∂yn
∂(mr

k + σj)
|, (4)

where σj denotes noise matrix sampled at the j-th time.
For convolution kernels in each layer, Eqn.(4) is adopt-

ed to calculate the correlation with the target category. For
each category, T samples are used for calculating the aver-
age correlation distribution, which can illustrate the relation
between the target category and the convolution kernels in
each layer. T is usually set to 100 according to the experi-
ment results. The illustrated relationship can be used to di-
agnose the possible reasons for the misclassified samples.

Constraint strategy. Before the treating stage, two con-
straints are devised for treating CNN classifiers based on the
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Figure 4: The accuracy and increased accuracy of each category with different constraints on the mini-ImageNet dataset.

accumulated correlation distribution between the target cat-
egory and the convolution kernels in each layer. It’s worth
noting that the treating is applied to the trained classifier.
For the trained CNN classifier and training samples with
high-confidence predictions, the average correlation value
an,rk between each convolution kernel crk and each cate-
gory yn is firstly calculated. Then, for the training image
I with GT label yn, the r-th feature maps are denoted as
{mr

1,m
r
2,m

r
3, ...,m

r
K} and the predicted label is denoted

yn. The channel-wise constraint Lr
ch on the r-th layer for

the image I is denoted as follows:

Lr
ch =

K∑
k=1

1[an,rk < v] ∗
J∑

j=1

⊎
| ∂yn
∂(mr

k + σj)
|

+
K∑

k=1

J∑
j=1

⊎
| ∂ys
∂(mr

k + σj)
|,

(5)

where, the first term is used for restraining the wrong cor-
relation between the predicted category yn and convolution
kernels of r-th layer that are different from average correla-
tion, the second term is used to restrain all the correlations
between the second high-confidence prediction ys and the
convolution kernels of the r-th layer, K denotes the number
of the convolution kernel in each layer, σj denotes noise ma-
trix sampled at the j-th time, 1[an,rk < v] equals 1 if an,rk is
less than the threshold value v; otherwise equals 0.

Furthermore, the space-wise constraint Lsp on the r-th
layer is proposed for restraining the incorrect correlation
with the background features, which is formulated as fol-
lows:

Lr
sp =

⊎ K∑
k=1

J∑
j=1

Irbg ~ |
∂yn

∂(mr
k + σj)

|, (6)

where, Irbg denotes the rescaled background mask that has
the same size as mr

k, ~ denotes the Hadamard product. In
the mask Irbg , the background area has value one, and the
mask Irbg is eroded to preserve the object boundary features.
It’s worth noting that the space-wise constraint requires ad-
ditional annotations, which can be rough boundaries.

Treating Stage. In the treating stage, all constraints can
be applied to any layer of the CNN classifier. Based on the
fact that deep layers of the CNN classifier usually contain
high-level semantic features, the space-wise and channel-
wise constraints are adopted to constrain the deep layers.

The following ablation study on layer depth also verifies
the practicability and effectiveness of the above constrain-
ing way. Furthermore, the above two constraints are usually
appended to the original training loss Lorig as follows:

Lall = Lorig +
∑
r∈Ssp

Lr
sp +

∑
r∈Sch

Lr
ch, (7)

where, Ssp and Sch denote the constrained layer sets of
space-wise constraint and channel-wise constraint, respec-
tively. The two constraints also could be appended to the
original training loss separately. In the treating stage, the pa-
rameter setting and the optimizer are the same as the setting
of the original CNN classifier.

Experiments
In the experiment, the adopted classifiers, datasets, and ex-
periment settings are listed as follows.

Classifier. The selected 16 classifiers cover mainstream
classification network architectures, which are listed as
follows: AlexNet (Technicolor et al. 2012), VGG-16 (Si-
monyan and Zisserman 2014), ResNet-34 (He et al. 2016),
ResNet-50 (He et al. 2016), WideResNet-28 (Zagoruyko
and Komodakis 2016), ResNeXt-50 (Xie et al. 2017),
DenseNet-121 (Huang et al. 2017), SimpleNet-v1 (Hasan-
Pour et al. 2016), EfficientNetV2-S (Tan and Le 2021),
GoogLeNet (Szegedy et al. 2014), Xception (Chollet
2017), MobileNetV2 (Howard et al. 2017), Inception-
v3 (Szegedy et al. 2016), ShuffleNetV2 (Zhang et al. 2017),
SqueezeNet (Iandola et al. 2016), and MnasNet (Tan et al.
2019).

Dataset. The datasets we adopted contain MNIST (Le-
cun et al. 2001), Fashion-MNIST (Xiao, Rasul, and Vollgraf
2017), CIFAR-10, CIFAR-100 (Krizhevsky 2009), SVH-
N (Netzer et al. 2011), STL-10 (Coates, Ng, and Lee 2011)
and mini-ImageNet (Vinyals et al. 2016), which are com-
monly used datasets for the classification task.

Experiment setting. Unless stated otherwise, the default
experiment settings are given as follows: J = 10, T = 100,
the expanded pixel number is 30. More experiment details
are given in the supplements.

The Effect of Model Doctor for SOTA Classifiers
In this section, we conduct massive experiments of 16 main-
stream CNN classifiers on 7 datasets. All results are aver-
ages of three runs. For the space-wise constraint, we on-
ly annotated 20 low-confidence images for each category.
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Dataset MNIST Fashion-MNIST CIFAR-10 CIFAR-100 SVHN STL-10 mini-ImageNet

AlexNet / +All 99.60 / – 93.32 / – 86.32 / – 55.04 / – 93.44 / – 67.59 / +0.66 76.92 / +3.84
+Space / +Channel -1.63 / +0.01 -1.44 / +0.09 -1.91 / +0.31 -6.81 / +1.87 -1.65 / +0.08 +0.59 / +0.62 +3.74 / +3.21

VGG-16 / +All 99.71 / – 95.21 / – 93.46 / – 70.39 / – 94.72 / – 77.65 / +0.79 83.00 / +5.92
+Space / +Channel -0.98 / +0.03 -1.91 / +0.10 -2.52 / +0.74 -7.92 / +1.08 -1.67 / +0.07 +0.69 / +0.73 +5.58 / +5.50

ResNet-50 / +All 99.73 / – 95.33 / – 94.85 / – 77.08 / – 94.81 / – 82.14 / +0.63 90.25 / +3.71
+Space / +Channel -1.20 / +0.00 -0.61 / +0.15 -3.44 / +0.54 -4.70 / +0.95 -0.92 / +0.04 +0.61 / +0.58 +3.61 / +3.59

SENet-34 / +All 99.75 / – 95.35 / – 94.76 / – 74.95 / – 94.67 / – 81.67 / +0.92 89.23 / +2.73
+Space / +Channel -0.88 / +0.01 -3.63 / +0.15 -1.89 / +0.41 -6.21 / +1.22 -1.30 / +0.08 +0.87 / +0.73 +2.12 / +2.63

WideResNet-28 / +All 99.47 / – 93.81 / – 94.26 / – 77.48 / – 94.11 / – 79.34 / +0.85 88.47 / +3.26
+Space / +Channel -1.72 / +0.19 -3.70 / +1.45 -2.94 / +0.35 -5.01 / +0.39 -2.30 / +0.02 +0.82 / +0.81 +3.24 / +3.15

ResNeXt-50 / +All 99.69 / – 95.37 / – 94.34 / – 74.76 / – 94.25 / – 83.21 / +0.49 89.72 / +3.42
+Space / +Channel -1.34 / +0.01 -2.01 / +0.19 -1.77 / +1.21 -6.05 / +2.26 -1.81 / +0.03 +0.34 / +0.47 +3.19 / +3.21

DenseNet-121 / +All 99.72 / – 95.43 / – 95.22 / – 76.92 / – 95.18 / – 84.03 / +0.91 89.83 / +3.29
+Space / +Channel -0.70 / +0.01 -3.38 / +0.00 -3.81 / +0.52 -5.79 / +0.75 -0.94 / +0.01 +0.84 / +0.69 +2.98 / +2.97

SimpleNet-v1 / +All 99.72 / – 95.39 / – 94.61 / – 75.29 / – 94.51 / – 81.92 / +0.67 87.92 / +2.19
+Space / +Channel -1.28 / +0.01 -2.75 / +0.11 -3.67 / +0.80 -4.93 / +1.51 -1.36 / +0.07 +0.66 / +0.53 +1.97 / +1.82

EfficientNetV2-S / +All 99.66 / – 93.82 / – 91.07 / – 61.01 / – 92.14 / – 79.32 / +0.78 86.33 / +4.84
+Space / +Channel -1.11 / +0.05 -1.21 / +0.08 -1.09 / +0.33 -3.91 / +2.65 -1.55 / +0.05 +0.55 / +0.71 +4.73 / +4.67

GoogLeNet / +All 99.75 / – 95.20 / – 94.36 / – 75.28 / – 94.20 / – 83.33 / +0.93 91.33 / +2.32
+Space / +Channel -0.90 / +0.01 -2.98 / +0.17 -4.67 / +0.58 -6.34 / +0.71 -0.82 / +0.13 +0.63 / +0.92 +1.95 / +2.21

Xception / +All 99.75 / – 95.23 / – 93.35 / – 74.15 / – 92.38 / – 79.62 / +0.96 84.25 / +3.81
+Space / +Channel -1.04 / +0.02 -1.40 / +0.05 -3.81 / +0.57 -5.45 / +0.42 -1.20 / +0.04 +0.84 / +0.93 +4.52 / +4.72

MobileNetV2 / +All 99.68 / – 94.58 / – 91.95 / – 68.26 / – 90.43 / – 78.92 / +0.67 86.21 / +4.79
+Space / +Channel -2.83 / +0.00 -2.91 / +0.39 -2.08 / +1.07 -7.91 / +2.75 -0.73 / +0.08 +0.65 / +0.52 +4.61 / +4.51

Inception-v3 / +All 99.70 / – 95.25 / – 94.77 / – 76.93 / – 93.54 / – 89.46 / +0.78 89.41 / +4.10
+Space / +Channel -1.20 / +0.06 +1.29 / +0.08 -2.56 / +0.52 -7.24 / +1.20 -1.72 / +0.01 +0.72 / +0.69 +3.83 / +3.70

ShuffleNetV2 / +All 99.69 / – 94.63 / – 92.28 / – 67.39 / – 92.47 / – 75.21 / +0.64 87.08 / +2.69
+Space / +Channel -1.01 / +0.00 -3.62 / +0.19 -2.81 / +0.64 -3.23 / +0.43 -1.26 / +0.06 +0.56 / +0.43 +2.60 / +2.57

SqueezeNet / +All 99.71 / – 94.74 / – 91.93 / – 67.87 / – 92.65 / – 78.75 / +0.59 88.58 / +3.52
+Space / +Channel -0.92 / +0.01 -1.45 / +0.18 -2.76 / +0.92 -6.81 / +0.60 -0.98 / +0.06 +0.57 / +0.59 +3.19 / +3.01

MnasNet / +All 99.66 / – 93.53 / – 85.55 / – 53.60 / – 91.08 / – 74.32 / +0.31 87.33 / +3.49
+Space / +Channel -1.14 / +0.01 -2.53 / +0.03 -2.58 / +1.37 -3.90 / +0.50 -1.04 / +0.03 +0.29 / +0.19 +2.08 / +3.27

Table 1: The base and improved accuracy of 16 classifiers on 7 datasets. For the small-size image, due to the expanded receptive
field of convolution operation, the feature map of the last few layers will contain mixture features of object and backgrounds,
which leads to negative effective of the space-wise constraint. So, “+All” are not applied to the small-size image datasets.

Of course, the classifier can achieve higher accuracy with
more annotations. Before diagnose and treating, all classi-
fiers have achieved the optimal classification performance
in the setting of original training. From Table 1, we can see
that Model Doctor helps all CNN classifiers improve accu-
racy by 1% ∼ 5%, which verifies the versatility and effec-
tiveness of the proposed gradient aggregation strategy. For
datasets with small-size images, only the channel-wise con-
straint can improve the accuracy. On the contrary, the space-
wise constraint has negative effects on those small-size im-
age datasets. The root reason is that the expanded receptive
field of convolution operation brings the mixture features
of objects and backgrounds in the feature map of the last
few layers, which leads to the wrong scope constraint of the
small-size image. What’s more, Model Doctor has little ef-
fect on high-performance networks such as, 99.7% accuracy
on MNIST dataset. For the regular size image datasets (STL-
10 and mini-ImageNet), the space-wise constraint achieves
a significant accuracy increase, which indicates that back-
ground area features indeed have some distractions for clas-

sifiers. Model Doctor only achieves accuracy close to 1% on
STL-10. The possible reason is that the object almost takes
up the whole image.

To verify the effectiveness of Model Doctor on various
categories, we conduct experiments on randomly selected
10 categories 10 times for the mini-ImageNet dataset, which
contains 100 categories and 480 samples for each category.
Table 1 shows the average results of 10 times. More experi-
ments on mini-ImageNet are given in the supplements. Fig.
4 shows the accuracy and increased accuracy of VGG16 on a
10 category classification task. We can see that Model Doc-
tor can improve higher accuracy increase on low accuracy
categories, which indicates that Model Doctor can accurate-
ly diagnose the classifier failures and effectively treat them.

Visual Results
Furthermore, Fig. 5 shows the visual results of original im-
ages with different constraints and Grad-CAM for visualiz-
ing the differences intuitively. We can see that the space-
wise constraint successfully restrains the irrelevant back-
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Figure 5: Visual results of original images with different
constraints and Grad-CAM on mini-ImageNet datasets.

ground areas. For the visual results of channel-wise con-
straint, most irrelevant areas are also restrained. The associ-
ation maps calculated with Grad-CAM contain some back-
ground areas. The proposed Model Doctor not only can im-
prove the classification accuracy but also regularize the as-
sociation between the category and the input features.

The Ablation Study
This section conducts the ablation study of channel-wise
constraint and space-wise constraint on mini-ImageNet with
VGG16. The layer depth impact for different constraints is
shown in Fig. 6, where we can see that the increased accura-
cy of all constraints will increase when the layer goes deep.
It reveals that the proposed Model Doctor is more suitable
for deep layers of classifiers. The possible reason is that the
deep and shallow layers contain more high-level semantic
features and low-level features, respectively. Constraining
shallow layer will disturb feature extraction ability of classi-
fier on essential features.

Furthermore, we conduct the ablation study on the anno-
tated sample number and the expanded pixel number of the
background mask. From Table 2, we can see that 12% anno-
tated samples for space-wise constraint have achieved near-
optimal accuracy increase, which indicates that only small
part annotations are enough for the space-wise constrain-
t. Table 3 shows that 30-pixel expansion achieves the best
performance and the expanded mask with less than 5 pixels
achieves a negative effect, the reason of which is that bound-
ary features are crucial for the classification task.

+Channel
+Space
+All86%

88%

82%

84%

80%

Figure 6: The ablation study of constraints on layer depth.
Red dash line denotes the original accuracy (83%).

Number 100 200 400 600 800 1000
VGG16 Ratio 2% 4% 8% 12% 16% 20%

83.00% +Space +3.22% +5.58% +6.28% +7.53% +7.96% +8.03%

Table 2: The ablation study of space-wise constraint on an-
notation samples.

VGG16 Pixel 0 5 10 20 30 40

83.00% +Space -7.48% +0.43% +3.45% +4.23% +5.58% +4.07%

Table 3: The ablation study of space-wise constraint on mask
expansion.

Discussion and Future Work

From Table 1 , we can see that the treated classifier still can’t
achieve 100% accuracy. The possible reasons contain multi-
ple aspects: 1) hard samples have different correlations with
convolution kernels from the correlations of normal sam-
ples; 2) the training samples are not sufficient for the clas-
sifier; 3) the classifier may be over-/under-fitting. We will
explore actual causes in future work.

In this paper, we verify Model Doctor on mainstream C-
NN classifiers. Actually, Model Doctor can be extended to a
unified framework for diagnosing and treating deep models
for different tasks. We will focus on exploring the extension
of Model Doctor on segmentation, detection, and key points
identification tasks in the future.

Conclusion
In this paper, we put forward a universal Model Doctor for
diagnosing and treating CNN classifiers in a completely au-
tomatic manner. Firstly, we explore and validate two dis-
coveries that 1) each category is only correlated with sparse
and specific convolution kernels, and 2) adversarial samples
are isolated while normal samples are successive in the fea-
ture space, which can serve as grounds for future research-
es. Based on the above two discoveries, a simple gradien-
t aggregation strategy is devised for effectively diagnosing
and optimizing CNN classifiers. Massive experiments reveal
that the devised two constraints are suitable for deep layers
of the classifier. For trained classifiers, the proposed Mod-
el Doctor can effectively help them improve accuracy by
1% ∼ 5%. Model Doctor can be used as a convenient tool
for researchers to optimize their CNN classifiers.
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