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Abstract
Underwater images suffer from degradation due to light scat-
tering and absorption. It remains challenging to restore such
degraded images using deep neural networks since real-world
paired data is scarcely available while synthetic paired data
cannot approximate real-world data perfectly. In this paper,
we propose an UnSupervised Underwater Image Restora-
tion method (USUIR) by leveraging the homology prop-
erty between a raw underwater image and a re-degraded im-
age. Specifically, USUIR first estimates three latent compo-
nents of the raw underwater image, i.e., the global back-
ground light, the transmission map, and the scene radiance
(the clean image). Then, a re-degraded image is generated
by randomly mixing up the estimated scene radiance and the
raw underwater image. We demonstrate that imposing a ho-
mology constraint between the raw underwater image and the
re-degraded image is equivalent to minimizing the restoration
error and hence can be used for the unsupervised restoration.
Extensive experiments show that USUIR achieves promising
performance in both inference time and restoration quality.

Introduction
Deep learning has achieved great success in various low-
level computer vision tasks. However, such success re-
lies heavily on manually labeled datasets, which are time-
consuming and expensive to obtain (Liu et al. 2020; Li et al.
2019a). For example, it is hard even impossible to collect
a large-scale dataset with the clean ground truth image for
underwater image restoration.

Underwater images suffer from color distortion and poor
visibility (Akkaynak et al. 2017) because the light is ab-
sorbed and scattered when it propagates through turbid wa-
ter mediums. Such degradations will lead to poor perfor-
mance in underwater computer vision applications, e.g., un-
derwater object tracking (Panetta et al. 2021), marine ani-
mal detection (Fan et al. 2020) and robotic navigation. The
degradations in underwater images can be described via the
modified Koschmieder’s light scattering model (Jaffe 1990)
where the transmission map is changed into a channel-wise
component and the atmospheric light is replaced by the
global background light.
∗These authors contributed equally.
†Corresponding author.
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Plenty of techniques have been proposed for underwa-
ter image restoration. Most of the approaches either provide
handcrafted priors (Li et al. 2016) or deep learning based so-
lutions for the restoration (Li et al. 2021b). Most of the deep
learning based methods rely on synthetic training data due
to the absence of large-scale real-world underwater image
datasets with ground-truths. Data synthesis may not capture
the complex features of the real-world degradation, and thus,
suffer from domain-shift problems (Ben-David et al. 2007).
In addition, a few deep learning based solutions belong to
weakly supervised approaches that use generative adversar-
ial networks (Li, Guo, and Guo 2018).

Recently, “zero-shot” approaches (Li et al. 2021a; Kar
et al. 2021; Gandelsman, Shocher, and Irani 2019; Shocher,
Cohen, and Irani 2018) have been developed which learn
the restoration task using a single image and train a small
image-specific network at test time. As such “zero-shot”
methods do not use other supervision information beyond
the input image itself, they require to leverage self/un-
supervised losses or regularizers for training. For exam-
ple, the unsupervised single image restoration (Kar et al.
2021) estimates the parameters of Koschmieder’s model
through a controlled perturbation. The unsupervised im-
age decomposition method (Gandelsman, Shocher, and Irani
2019) applies multiple “Deep-image-Prior” (DIP) networks
(Ulyanov, Vedaldi, and Lempitsky 2018) and the power of
the internal patch recurrence to separate images into their
basic components. Although “zero-shot” approaches need
no extra training examples other than the input image, they
are probably inefficient to be applied for real-world applica-
tions due to a large number of optimization iterations at test
time.

In this paper, we propose an UnSupervised Underwater
Image Restoration method (USUIR), a novel deep neural
network trained for real-world and real-time underwater im-
age restoration. Different from the “zero-shot” approaches,
USUIR applies a set of training instances to train the deep
neural network. To this end, we design a disentanglement
network with the homology constraint. Concretely, in each
iteration, we first disentangle the raw underwater image into
three latent components, i.e., the global background light,
the transmission map, and the scene radiance (the clean
image). Then, we randomly mix up the estimated scene
radiance and the raw underwater image to generate a re-
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degraded image. We demonstrate that performing a homol-
ogy constraint between the raw underwater image and the
re-degraded image is equivalent to minimizing the restora-
tion error. This finding motivates us to design an unsuper-
vised underwater image restoration method from the per-
spective of homology. Note that the homology of underwa-
ter images defined in this paper should satisfy the two con-
straints: 1) the underwater images share the same underlying
clean image; 2) the underwater images share the same for-
mation model. USUIR is optimized in an unsupervised man-
ner, and it is expected to learn the underwater degradation
model using deep neural networks. Extensive experiments
on two real-world underwater image datasets demonstrate
the effectiveness and efficiency of the proposed method. To
summarize, our work contributes in the following ways:

• We propose an unsupervised neural network (i.e.,
USUIR) for real-world and real-time underwater image
restoration 1.
• USUIR performs layer disentanglement using three joint

sub-modules. Among them, two of which are convolu-
tional neural networks to estimate the clean image and
the transmission map, another one is a Gaussian blur
module to calculate the global background light.
• To achieve the unsupervised restoration, we design an

underwater image re-degradation scheme and a homol-
ogy constraint between the raw underwater image and
the re-degraded image.
• Despite being an unsupervised approach, USUIR is com-

parable with the state-of-the-art methods in terms of the
image quality and the inference time.

Related Work
In addition to traditional model-free methods, e.g., his-
togram equalization, automatic white balance, retinex-based
method (Fu et al. 2014), and fusion-based approaches (Gao
et al. 2019; Ancuti et al. 2012), the existing underwater im-
age restoration techniques can be roughly classified into two
groups: prior-based methods and learning-based methods.

Prior-Based Methods
Prior-based methods are widely used in the underwater im-
age restoration community. They estimate the parameters of
the underwater imaging model based on prior assumptions.
For example, the work (Peng and Cosman 2017) proposed
an underwater image depth estimation method based on light
absorption and image blurriness. The clean image is restored
via the underwater imaging model with the estimated depth
map. The work (Peng, Cao, and Cosman 2018) proposed a
generalization of the dark channel prior for image restora-
tion under extreme imaging conditions. The work (Akkay-
nak and Treibitz 2018) proposed a new underwater forma-
tion model in which the coefficients of backscatter are dif-
ferent than those of direct transmission. Based on this model,
the work (Akkaynak and Treibitz 2019) proposed a new un-
derwater image restoration method using RGBD images.

1Our code is available at: https://github.com/zhenqifu/USUIR

Accurately estimating the underwater imaging parameters
is challenging in current prior-based methods, especially for
diverse and complex underwater scenes. As a result, prior-
based methods are sensitive to different conditions of un-
derwater images (Liu et al. 2020). Incorrect parameters es-
timation of the formation model tends to produce either
over/under-restored outputs or introduce severe color distor-
tions.

Learning-Based Methods
Motivated by the success of recent deep neural networks,
there are several attempts made to improve the performance
of underwater image restoration through a deep learning
strategy. For example, the pioneering work (Li et al. 2018)
employed the underwater image model and generative ad-
versarial networks to generate synthetic image pairs for su-
pervised training. The work (Li, Anwar, and Porikli 2020)
trained ten underwater image restoration models for differ-
ent types of underwater images. The work (Li et al. 2019b)
collected a real-world underwater image dataset for train-
ing deep networks and proposed a gated fusion network for
the restoration. The work (Uplavikar, Wu, and Wang 2019)
applied adversarial learning to extract domain agnostic fea-
tures of multiple water types and generated the clean image
from those features. The work (Li et al. 2021b) proposed
an underwater image restoration network via medium trans-
mission guided multi-color space embedding. Currently, a
few “zero-shot” approaches (Kar et al. 2021; Gandelsman,
Shocher, and Irani 2019) have been proposed, which per-
form the restoration using a single image.

However, most of the learning-based methods rely on syn-
thetic images to learn a deep neural network, which may suf-
fer from domain shift issues. On the other hand, although
“zero-shot” approaches leverage the input image itself to
train a restoration model, they are probably time-consuming,
prohibiting their applications in practice.

Method
Given a set of underwater images, we aim to learn the map-
ping from the degraded image to the clean image in an un-
supervised manner. The basic idea of our approach is to dis-
entangle each image into three latent components based on
Koschmieder’s model and leverage the homology constraint
between the raw underwater image and a re-degraded image.
As shown in Figure 1, our approach simultaneously feeds
the raw underwater image into a scene radiance estima-
tion network (J-Net), a transmission map estimation network
(T-Net), and a global background light estimation module
(GB). To supervise the disentangling process, we combine
the three components to reconstruct the input image through
Koschmieder’s model. After that, a re-degraded image is
generated by randomly mixing up the estimated scene radi-
ance and the raw underwater image. We perform the homol-
ogy constraint between the re-degraded image and the raw
underwater image. In addition, we also leverage an unsuper-
vised color loss to correct the potential color deviations of
the restored image. Note that the whole model is learned in
a self-supervised manner and all sub-modules are optimized
in an end-to-end pipeline.
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Figure 1: The framework of USUIR, which consists of three joint sub-modules, i.e., the scene radiance estimation network
(J-Net), the transmission map estimation network (T-Net), and the global background light estimation module (GB). Taking a
raw underwater image as the input, these three sub-modules disentangle the input into three basic components, i.e., the global
background light, the transmission map, and the scene radiance. USUIR generates a re-degraded image by randomly mixing up
the raw underwater image and the estimated scene radiance. USUIR performs the homology constraint between the raw image
and the re-degraded image. A reconstruction loss and a Gray-world assumption based color loss are applied at the top layer
of USUIR to supervise the layer decomposition process and correct potential color deviations, respectively. Note that the two
J-Nets share parameters, and a stop-gradient operation is applied on the raw image side when calculating the homology loss.

Underwater Image Degradation Model
USUIR is based on the modified Koschmieder’s light scat-
tering model that describes the degradations of underwa-
ter images, where the transmission map is modified into a
channel-wise component and the atmospheric light is re-
placed by the global background light (Li et al. 2021a). As
the Beer-Lambert law, light propagation is associated with
an attenuation factor e−βd where d is the distance from the
source and β is the channel-wise extinction coefficient de-
pending on the water quality. Guided by the Beer-Lambert
law, in the water medium, the effect of light scattering at a
distance d from the source can be formulated as:

S (d) =
(

1− e−βd(x)
)
A (1)

where A represents the global background light and the
attenuated quantity S (d) is called the veiling light or
space-light. Similarly, according to the existing notion
(Narasimhan and Nayar 2003; Berman et al. 2021), the scene
radiance J also gets attenuated by the factor e−βd. Thus, we
get:

D (x) = J (x) e−βd(x) (2)
Based on the above effects of light scattering, the degrada-

tion of underwater images can be formulated as the additive

combination of S (d) and D (x) as follows:

I (x) = J (x) e−βd(x) +
(

1− e−βd(x)
)
A (3)

where I represents the observed underwater image, J is the
scene radiance, x is an image pixel, and d(x) is the scene
depth at that pixel. Equation (3) is known as Koschmieder’s
light scattering model that explains underwater image for-
mation. In (3), t (x) = e−βd(x) is known as the transmis-
sion value. For underwater light propagation, the transmis-
sion value t(x) of the degraded image is different for each
primary color channel due to the wavelength selective char-
acteristics of the attenuation.

Exploiting Homology for Underwater Image
Restoration
Supposing I1 and I2 are two degraded underwater images,
as mentioned before, if I1 and I2 are homologous, they need
to satisfy: 1) I1 and I2 share the same clean image; 2) I1 and
I2 share the same degradation formulation.

Consider the underwater degradation model in (3), we
rewrite here as follows for simplicity:

I1 = Jt1 + (1− t1)A1 (4)
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Figure 2: An example of the restoration error in different
iterations. The numbers in the images indicate the training
steps. (a) the raw image; (b) the reference image; (c) scene
radiance with homology constraint; (d) the error map of (c);
(e) scene radiance without homology constraint; (f) the error
map of (e).

where I1 represents the raw underwater image, J refers to
the scene radiance. Our objective is to restore the scene ra-
diance J from the degraded observation I1.

Let Ĵ = J + ε be the estimation of i-th iteration of (4), ε
denotes the error map. After obtaining Ĵ , we generate a re-
degraded image I2 by simply mixing up the raw underwater
image I1 and the estimated scene radiance Ĵ , which can be
formulated as below:

I2 = αI1 + (1− α) (J + ε) (5)
where α is a random mixing ratio, α ∼ Beta (1, 1). Substi-
tuting I1 from (4) in (5), we get:
I2 = J (αt1 + 1− α) + α (1− t1)A1 + (1− α)ε (6)
Let t2 = αt1 + 1− α, equation (6) becomes:

I2 = Jt2 + (1− t2)A1 + (1− α)ε (7)
Comparing (7) with (4), one can find that, when ε tends to

zero, (7) becomes Koschmieder’s model, which shows the
formation of the re-degraded image I2 from the scene ra-
diance J , similar to (4) which explains the formation of I1
from J . Specifically, when ε is a small value, I1 and I2 are
approximately homologous. I1 and I2 are perfectly homolo-
gous when ε = 0. Therefore, it is reasonable to perform the
homology constraint to regularize the estimated scene radi-
ance of (4) and (7). In Figure 2, we exhibit the error map ε in
different iterations using the proposed homology constraint.
As can be seen, compared with (e), the error map of (c) grad-
ually decreases as the iteration increases, which intuitively
demonstrates the validity of our homology constraint.

The above analyses suggest that performing a homol-
ogy constraint between the raw underwater image and
the generated re-degraded image enables minimizing the
restoration error. This property of re-degradation through
Koschmieder’s model can be leveraged for unsupervised
training.

Network Architecture
Figure 1 illustrates the network architecture of the proposed
USUIR which contains three sub-modules, i.e., J-Net, T-Net,
and GB.

J-Net J-Net aims to estimate the scene radiance from the
raw underwater image. As illustrated in Figure 1, J-Net is
very simple, which only consists of five convolutional lay-
ers, four instance normalization layers, and four ReLU acti-
vation layers. In the output layer, J-Net employs the sigmoid
function to normalize the output into [0, 1]. J-Net takes a
non-degenerate network architecture, i.e., J-Net does not use
down-sampling operations, thus can prevent the loss of de-
tails in the restored image. In J-Net, the kernel size of all
convolutional layers is 3×3, and the channel size of all con-
volutional layers is 64. More details about the implementa-
tion of J-Net could refer to the experimental settings.

T-Net Since the scene radiance and the transmission map
are dependent on the input image, USUIR adopts a similar
network structure for J-Net and T-Net. The output layer of
T-Net is of three channels. The reason is that light with dif-
ferent wavelengths is subjected to varying degrees of atten-
uation when it propagates through the water medium. Due
to the wavelength selective characteristics of the attenuation,
the transmission value is different for different primary color
channels. This is a primary cause of color distortion. Note
that there is no explicit loss for T-Net. The optimization of
T-Net is based on a reconstruction loss at the top layer of
USUIR, which will be described in the next section.

GB Gaussian Blur (GB) module aims to estimate the
global background light from the input image. Different
from the scene radiance and the transmission map, the
global background light is independent of the image con-
tent and reflects the global property. Therefore, we perform
the Gaussian blur to remove content details and obtain the
global attribute. In our implementation, the filter size is[

1
4 (w + h)

]
× 2+1, where [∗] denotes the nearest integer

less than or equal to ∗, w and h denote the width and height
of the input image, respectively. Note that GB enforces the
global background light to be smooth, and therefore, the
high-frequency details will be enforced on the output of J-
Net and T-Net.

Loss Functions
Since USUIR is based on the image decomposition and the
homology constraint, a self-supervised reconstruction loss
and a homology loss are employed in this paper. The former
enforces the latent components could reconstruct the input
image, while the latter performs the homology constraint on
input images. In addition, USUIR adopts an unsupervised
color loss to correct the potential color distortion of the re-
stored image. The adopted loss functions are detailed below.

Homology Loss The homology loss LH is one of the pri-
mary losses developed in this paper. To supervise J-Net,
we design a re-degradation scheme that randomly mixes up
the raw underwater image and the estimated scene radiance.
We demonstrate that performing a homology constraint be-
tween the raw underwater image and the re-degraded image
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is equivalent to minimizing the restoration error. Consider-
ing the definition of homology is from two aspects, the con-
straint of homology should also have two folds.

Since we have demonstrated that the re-degraded image
has a similar formation with the raw underwater image in
(7), it is easy to implement the constraint of sharing the same
formation model. Instead of explicitly imposing a loss, we
adopt the natural capability of the Siamese network. As il-
lustrated in Figure 1, the two J-Nets are required to share
parameters, which enforces the two degradation models (we
focus on J-Net) are thoroughly the same.

Then, the constraint can be converted into that we only
need to ensure the two outputs of J-Nets are the same. There-
fore, we compute the homology loss as follows:

LH = ‖J2 − stopgrad (J1)‖2
2 (8)

where J1 and J2 refer to the clean images estimated from
the raw underwater image and the re-degraded image, re-
spectively. Note that a stop-gradient operation (stopgrad) is
performed on J1, which makes the training stable.

Reconstruction Loss Reconstruction loss is another basic
loss function used in USUIR to supervise the layer decom-
position process. USUIR simultaneously feeds the raw un-
derwater image into a scene radiance estimation network (J-
Net), a transmission map estimation network (T-Net), and a
global background light estimation module (GB). Naturally,
the outputs of them can be further combined to reconstruct
the input image at the top layer of USUIR through the for-
mation model. Formally, we calculate the reconstruction loss
LR as follows:

LR = ‖I (x)− x‖2
2 (9)

where x denotes the raw underwater image, and I (x) de-
notes the reconstructed image according to Koschmieder’s
model in (3).

Color Loss Following the Gray-world assumption of nat-
ural image statistics, we design a color loss to correct the
potential color deviations in the restored image. The color
loss LC used in this paper is expressed as:

LC =
∑
c∈Ω

‖µ (Jc)− 0.5‖2
2 (10)

where Ω = {R,G,B} is a set of color channels with Red
(R), Green (G), and Blue (B) colors. J refers to the restored
image. µ (Jc) represents the mean of the color channel c.
LC penalizes deviation from the Gray-world assumption.

Total Loss The total loss of our USUIR is expressed as:

L = ω1LH + ω2LR + ω3LC (11)

where ω1, ω2, and ω3 are the weights. We set ω1 = 1, ω2 =
1, and ω3 = 0.01 empirically.

Experiments
In this section, we evaluate our method on two real-world
underwater image restoration datasets. We compare our
method with six baseline methods in terms of full-reference

and no-reference quality assessment metrics. In the follow-
ing contents, we will first introduce the experimental set-
tings, and then show the qualitative and quantitative results
on the datasets. Furthermore, we conduct experiments to in-
vestigate the inference time of USUIR with baseline meth-
ods. The ablation study is also presented to verify the effec-
tiveness of our method. Finally, we extend the USUIR for
image dehazing.

Experimental Settings
In this part, we introduce the used datasets, the baselines, the
evaluation metrics, and the implementation details.

Datasets We conduct experiments on two underwater im-
age restoration datasets, i.e., UIEBD (Li et al. 2019b) and
RUIE (Liu et al. 2020). UIEBD dataset consists of 890
real-world underwater images with corresponding reference
images. Note that the reference image in UIEBD is ob-
tained from 12 existing underwater image restoration meth-
ods. Specifically, UIEBD conducts subjective comparisons
to select the best result among 12 restored images as the
potential reference image. RUIE is a large-scale underwater
benchmark that contains three subsets, i.e., underwater im-
age quality subset (3630 images), underwater color cast sub-
set (300 images), and underwater higher-level task-driven
subset (300 images). Different from UIEBD that contains
reference images, RUIE only contains raw underwater im-
ages. In this paper, we choose the underwater image quality
subset for training and testing since it contains various un-
derwater conditions and different levels of image quality. As
the training and testing images are not clearly assigned in
UIEBD and RUIE, we divide UIEBD and RUIE as follows:
1) we apply the first 700 images for training and the rest 190
images for testing on the UIEBD dataset; 2) the underwater
image quality subset of RUIE is originally divided into five
parts evenly (each part has 726 images) according to the im-
age quality. Therefore, we use the first 600 images of each
part for training and the rest for testing.

Baselines We compare the proposed USUIR with six
methods which are divided into three groups, namely, two
prior-based methods (IBLA (Peng and Cosman 2017) and
Histogram-Prior (Li et al. 2016)), two fully-supervised
methods (Water-Net (Li et al. 2019b) and Ucolor (Li
et al. 2021b)), and two “zero-shot” methods (DIP (Ulyanov,
Vedaldi, and Lempitsky 2018) and DDIP (Gandelsman,
Shocher, and Irani 2019)). It should be noted that both the
prior-based and “zero-shot” methods restore underwater im-
ages without using the ground-truth clean image, and their
major difference is that the former is hand-crafted while the
latter is based on deep neural networks.

Evaluation Metrics Since UIEBD consists of ground
truth images, the evaluation can be conducted in a standard
way. Similar to (Guo et al. 2020) and (Wang et al. 2021),
two popular full-reference image quality assessment metrics
(i.e., PSNR and SSIM) are used in the quantitative compar-
isons. Since RUIE only contains raw underwater images, we
use two no-reference underwater image quality assessment
metrics (i.e., UIQM (Panetta, Gao, and Agaian 2015) and
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(a) Inputs (b) IBLA (c) Histogram-Prior (d) Water-Net (e) Ucolor (f) DIP (g) DDIP (h) Ours

Figure 3: Visual comparisons of different restoration approaches on real-world underwater images, from which we can observe
that our method obviously improves the contrast and restores the colors.

UCIQE (Yang and Sowmya 2015)) to objectively measure
the quality of restored images.

Experimental Configurations We conduct experiments
on an NVIDIA RTX 2080Ti GPU in PyTorch. We employ
the ADAM optimizer to optimize USUIR, the default learn-
ing rate is 1e−4, the batch size is 1, and the maximal epoch
is 50. We augment the training data with rotation, flipping
horizontally and vertically. The training images are resized
to 128× 128. We record the results of all baselines by using
the source codes provided by the authors and adopting the
original parameter settings for fair comparisons.

Visual and Perceptual Comparisons
Figure 3 presents the visual results on UIEBD and RUIE
datasets. As can be seen, our approach outperforms the com-
petitors in terms of naturalness preservation, contrast and
brightness improvement, and color cast correction. IBLA
and Histogram-Prior produce over/under-restoration arti-
facts because they employ handcrafted priors to estimate pa-
rameters of the underwater formation model, their predic-
tions may be dominated by the characteristics of the priors.
“zero-shot” approaches tend to produce color deviation and
incorrect contrast. USUIR yields natural colors and clear
details and achieves comparable even better visual quality
compared with supervised methods.

Quantitative Comparisons
Table 1 presents the quantitative results on UIEBD and
RUIE datasets according to full-reference and no-reference
quality assessment metrics. Higher values of these metrics
indicate better performance. As can be seen, prior-based
methods depend on the characteristics of the priors, their
performance is not stable. USUIR performs better or as well
as the supervised approaches, despite that it is an unsuper-

(a) Input (b) USUIR

(c) w/o (d) w/o (e) w/o 

Figure 4: Ablation study of the contribution of each loss (ho-
mology loss LH , reconstruction loss LR, color loss LC).

vised method. Compared with the “zero-shot” approaches,
USUIR enables leveraging more information from massive
training data with the well-designed unsupervised pipeline.
As a result, USUIR obtains better performance.

Comparisons on Inference Time
In this subsection, we conduct experiments to show the com-
putational efficiency of USUIR. We measure the inference
time of different methods averaged on 100 images of size
512 × 512 on an NVIDIA RTX 2080Ti GPU and Intel(R)
Xeon(R) E5-2678 v3 @ 2.50GHz CPU. Table 2 shows the
experimental results. For IBLA and Histogram-Prior, only
the codes of the CPU version are available. In Table 2, “zero-
shot” approaches are time-consuming because they need to
train the network at test time. USUIR is computationally
efficient, benefited from the lightweight network structure
with the homology constraint.
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Datasets Metrics
Techniques

Prior-based Supervised “Zero-shot” Unsupervised
IBLA Histogram-Prior Water-Net Ucolor DIP DDIP Ours

UIEBD PSNR 14.39 18.51 19.31 21.65 17.08 12.42 20.31
SSIM 0.573 0.762 0.830 0.840 0.619 0.381 0.841

RUIE UIQM 1.249 4.210 3.562 3.622 1.840 2.172 3.788
UCIQE 24.66 33.74 28.42 28.95 19.68 23.44 32.01

Table 1: Quantitative comparisons on UIEBD and RUIE datasets in terms of objective quality assessment metrics. The best
result is marked in bold while the second best one is underlined.

Methods IBLA Histogram-Prior Water-Net Ucolor DIP DDIP Ours

Time(s) CPU 23.33 0.87 2.34 21.19 >5k >5k 1.07
GPU – – 0.49 3.36 1005 827 0.004

Table 2: Inference time comparisons (in second). The best result is marked in bold while the second best one is underlined.

LH LR LC PSNR/SSIM
X X 12.46/0.521

X X 12.57/0.457
X X 18.40/0.810
X X X 20.31/0.841

Table 3: Ablation study on UIEBD dataset.

(c) DCP(b) Ours(a) Inputs (e) YOLY(d) DDIP

Figure 5: Visual results of real-world hazing images.

Ablation Study
To verify the effectiveness of our loss functions, we conduct
an ablation study on the UIEBD dataset by using different
combinations of loss functions. The quantitative results are
shown in Table 3 and the visual results are presented in Fig-
ure 4, one could observe that: 1) the homology loss LH and
the reconstruction loss LR mainly drive our unsupervised
framework. Removing either LH or LR, the restoration per-
formance drops significantly; 2) the color lossLC is not nec-
essary for stably training the network, although it could im-
prove the performance to a certain extent; 3) each loss has
its respective role in restoring the underwater image, and the
combination of all losses achieves the best performance.

Image Dehazing
Similar to underwater images, haze in an image can be
described by Koschmieder’s model, where the pixel-wise
transmission map is the same for all primary color chan-
nels. In this subsection, we further perform image dehaz-
ing using the proposed unsupervised framework. In the ex-
periment, we simply replace the three-channel transmission

map component of the model in (3) with a one-channel map
for image dehazing. Other parameter settings and the net-
work structure are the same. The network is trained on real-
world dehazing datasets (i.e., I-Haze (Ancuti et al. 2018a)
and O-Haze (Ancuti et al. 2018b)). We randomly select 80%
of images for training and the rest for testing. We show
the visual comparisons with three typical image dehazing
methods (i.e., DCP (He, Sun, and Tang 2010), DDIP (Gan-
delsman, Shocher, and Irani 2019), and YOLY (Li et al.
2021a)) in Figure 5. As can be seen, our method presents
a favorite recovery with natural colors and contrasts, which
demonstrates the effectiveness of our unsupervised frame-
work. Note that USUIR is not optimized for image dehazing
currently, since that we leverage a simple GB module to cal-
culate the atmospheric light. We assume that a more accurate
estimation of atmospheric light will promote the dehazing
performance.

Conclusion
We proposed USUIR, an unsupervised deep neural network
for underwater image restoration from a homology perspec-
tive. USUIR is simple yet effective. The basic idea is to
disentangle the underwater image into three latent compo-
nents and leverage the homology constraint between the raw
underwater image and the re-degraded image. Experiments
demonstrate the superiority of USUIR against existing meth-
ods. The potential usage of our framework for image de-
hazing is also demonstrated. The success of our unsuper-
vised framework shows that the homology property can be
leveraged for unsupervised training through a suitable re-
degradation operation. In future works, we will try to inves-
tigate and design similar frameworks for other applications,
where such a homology constraint can be employed.
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