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Abstract

Large-scale pre-training has recently revolutionized vision-
and-language (VL) research. Models such as LXMERT and
UNITER have significantly lifted the state of the art over a
wide range of VL tasks. However, the large number of pa-
rameters in such models hinders their application in prac-
tice. In parallel, work on the lottery ticket hypothesis (LTH)
has shown that deep neural networks contain small match-
ing subnetworks that can achieve on par or even better per-
formance than the dense networks when trained in isolation.
In this work, we perform the first empirical study to assess
whether such trainable subnetworks also exist in pre-trained
VL models. We use UNITER as the main testbed (also test
on LXMERT and ViLT), and consolidate 7 representative VL
tasks for experiments, including visual question answering,
visual commonsense reasoning, visual entailment, referring
expression comprehension, image-text retrieval, GQA, and
NLVR2. Through comprehensive analysis, we summarize our
main findings as follows. (i) It is difficult to find subnetworks
that strictly match the performance of the full model. How-
ever, we can find “relaxed” winning tickets at 50%-70% spar-
sity that maintain 99% of the full accuracy. (ii) Subnetworks
found by task-specific pruning transfer reasonably well to the
other tasks, while those found on the pre-training tasks at
60%/70% sparsity transfer universally, matching 98%/96%
of the full accuracy on average over all the tasks. (iii) Be-
sides UNITER, other models such as LXMERT and ViLT can
also play lottery tickets. However, the highest sparsity we can
achieve for ViLT is far lower than LXMERT and UNITER
(30% vs. 70%). (iv) LTH also remains relevant when using
other training methods (e.g., adversarial training).

Introduction
Inspired by the success of BERT (Devlin et al. 2019), vision-
and-language pre-training (VLP) has becoming an increas-
ingly central paradigm for vision-and-language (VL) re-
search. Models such as LXMERT (Tan and Bansal 2019),
ViLBERT (Lu et al. 2019a) and UNITER (Chen et al.
2020d), have achieved state-of-the-art performance across a
wide range of VL tasks, such as visual question answering
(VQA) (Antol et al. 2015; Goyal et al. 2017), visual com-
monsense reasoning (VCR) (Zellers et al. 2019), and image-
text retrieval (Lee et al. 2018). Despite its empirical success,

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Overview of our training paradigm for playing lot-
tery tickets with vision and language. Matching subnetworks
(or winning tickets) can be found by Iterative Magnitude-
based Pruning (IMP). We then re-train the found ticket
with the original parameter initialization to verify the down-
stream performance. Not only task-specific winning tickets
can be found when running IMP on each downstream task
separately, a task-agnostic winning ticket is also discovered
via IMP on joint pre-training. The task-agnostic ticket re-
sults in universally transferable subnetworks at 60%/70%
sparsity that matches 98%/96% of the full accuracy aver-
aged over all the tasks considered.

the memory and computation footprint of these pre-trained
models is huge because of their large number of parame-
ters, making it infeasible to use them in resource-constrained
scenarios. A natural question that came to our mind: Can we
prune a large pre-trained VL model while preserving its per-
formance and transferability?

In this work, we aim to answer this question via the
lens of lottery ticket hypothesis (LTH) (Frankle and Carbin
2019), which states that there exist matching subnetworks
in dense neural networks that can be trained in isolation
from initialization to reach a comparable accuracy to the
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full model within similar training iterations. LTH has been
shown great success in various fields (Yu et al. 2020; Renda,
Frankle, and Carbin 2020; Chen et al. 2020b), and its prop-
erties have been widely studied (Malach et al. 2020; Pen-
sia et al. 2020; Frankle et al. 2020). However, LTH has not
been introduced to VL tasks yet, it could be a powerful tool
to understand the parameter redundancy in the current pre-
vailing VLP models. To start, we use UNITER (Chen et al.
2020d) as the main testbed, and consider 7 representative VL
tasks for experiments, including VQA (Goyal et al. 2017),
VCR (Zellers et al. 2019), GQA (Hudson and Manning
2019), NLVR2 (Suhr et al. 2018), visual entailment (Xie
et al. 2019), referring expression comprehension (Yu et al.
2016), and image-text retrieval (Lee et al. 2018). In our con-
text, a ticket means a VLP subnetwork, and a winning ticket
means a subnetwork that can match the performance of the
original full VLP model. Based upon this, we ask the fol-
lowing three questions:
• Existence: Can we draw winning tickets successfully for

various VL tasks?
• Transferability: Can we find tickets that transfer univer-

sally to all downstream VL tasks?
• Compatibility: Do the LTH observations still hold when

switching to different backbones (e.g., LXMERT (Tan
and Bansal 2019), ViLT (Kim, Son, and Kim 2021)), and
training strategies (e.g., adversarial training)?

First, can we draw VL winning tickets? To answer this, we
use the pre-trained weights as our model initialization for
task-specific finetuning, and use Iterative Magnitude-based
Pruning (IMP) (Han, Mao, and Dally 2015) to draw the tick-
ets for each VL task. However, finding tickets through iter-
ative and repeated train-prune-retrain cycles for each task
is very time-consuming, primarily when a large pre-trained
model is used here. Then, it becomes critical to ask: how can
we find subnetworks that transfer universally? If this can be
achieved, the extraordinary cost of finding a winning ticket
can be amortized by transferring it to a range of downstream
tasks. Inspired by Chen et al. (2020b), a natural idea is to
perform IMP on the pre-training tasks using the pre-training
data, and assess whether such learned tickets are transferable
or not, since pre-training can be considered as task-agnostic.
Besides this, we further comprehensively analyze the trans-
fer behavior among all the downstream tasks to better under-
stand the found task-specific winning tickets.

The above analysis is conducted on UNITER, which is
a one-stream model and uses an object detection module to
first extract visual features offline. To study the compatibil-
ity of LTH, we also experiment on LXMERT (a two-stream
model instead), and ViLT (directly taking image patches and
word tokens as model inputs). Moreover, instead of cross-
entropy training, we further test LTH under adversarial train-
ing (Gan et al. 2020) to investigate its corresponding training
behaviors. Through comprehensive analysis, we summarize
our main findings as follows.
• VLP can play lottery tickets too: It is difficult to find

UNITER subnetworks that strictly match the full perfor-
mance, even with rewinding. However, it is encouraging
that “relaxed” winning tickets that match 99% of the full

accuracy can be found at 50%-70% sparsity across all the
VL tasks considered.

• One ticket to win them all: Matching subnetworks found
via IMP on pre-training tasks transfer universally. In-
terestingly, matching subnetworks found on each down-
stream task also transfer to other tasks well, indicating
that the learned task-specific subnetworks do not aggres-
sively overfit to one specific task.

• Different VLP models behave differently: Though all the
VLP models can play lottery tickets, we also observe that
the highest sparsity we can achieve for ViLT is far lower
than LXMERT and UNITER (30% vs. 70%).

• Playing lottery tickets adversarially: Compared with
standard cross-entropy training, we observe that sparse
winning tickets can also be identified with adversarial
training, with enhanced performance.

We conclude that the primary LTH observations found in
computer vision, NLP, and other areas also hold in the con-
text of vision and language.

Related Work
Vision-and-Language Pre-training (VLP). The past two
years have witnessed a boom of VLP methods. By adopt-
ing transformer (Vaswani et al. 2017) as the building block,
early approaches use a two-stream architecture for multi-
modal fusion (Lu et al. 2019a; Tan and Bansal 2019; Lu et al.
2019b), while single-stream architecture has gained popu-
larity later on (Su et al. 2019; Li et al. 2019b,a; Chen et al.
2020d; Zhou et al. 2019; Gan et al. 2020; Li et al. 2020;
Zhang et al. 2021). While most of these methods rely on an
object detection module to extract visual features offline, re-
cently, end-to-end VLP methods (Huang et al. 2020, 2021;
Kim, Son, and Kim 2021; Xue et al. 2021; Li et al. 2021;
Dou et al. 2021) are becoming increasingly popular.

Different from these efforts on making VLP models
larger and stronger, we focus on a different direction, mak-
ing VLP models smaller. Note that two recent works,
MiniVLM (Wang et al. 2020a) and DistilVLM (Fang et al.
2021), have also attempted to train a smaller VLP model;
however, our focus is different from theirs. Specifically,
MiniVLM directly adopts MiniLM (Wang et al. 2020b) for
the transformer module, while spending a larger portion of
efforts on designing a compact image feature extractor; Dis-
tilVLM focuses on knowledge distillation. Here, we study
the over-parameterization of VLP models via the lens of lot-
tery ticket hypothesis, a popular concept in deep learning
nowadays, but not introduced to VL research yet.

Lottery Ticket Hypothesis (LTH). LTH (Frankle and
Carbin 2019) claims the existence of sparse, separate train-
able subnetworks that are able to match or even surpass the
performance of the original dense network. Though orig-
inally working only on small networks, later on, rewind-
ing is found to be a useful technique to scale up LTH to
large networks (Renda, Frankle, and Carbin 2020; Fran-
kle et al. 2020). Since its birth, LTH has received wide at-
tention and becomes an emerging subfield in deep learn-
ing. The properties of LTH are widely studied for image
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classification (Liu et al. 2019; Evci et al. 2019; Frankle,
Schwab, and Morcos 2020; Savarese, Silva, and Maire 2020;
Wang, Zhang, and Grosse 2020; You et al. 2020; Ma et al.
2021). Recently, LTH has also been evidenced across other
fields, such as NLP (Gale, Elsen, and Hooker 2019; Yu et al.
2020; Prasanna, Rogers, and Rumshisky 2020; Chen et al.
2020b,c), object detection (Girish et al. 2020), generative ad-
versarial networks (Chen et al. 2021d; Kalibhat, Balaji, and
Feizi 2020; Chen et al. 2021a), graph neural networks (Chen
et al. 2021b), reinforcement learning (Yu et al. 2020), and
life-long learning (Chen et al. 2021c).

Recent work has also started to investigate the existence
of winning tickets in self-supervised pre-training of visual
encoders (Chen et al. 2020a) and language models (Chen
et al. 2020b,c). However, to the best of our knowledge, the
study of lottery tickets in VLP remains untouched. As VLP
becomes increasingly popular, it is critical to understand the
parameter redundancy in such models, potentially making
them small without sacrificing the performance.

Preliminaries
In this section, we detail the techniques we use to identify
winning tickets, and present our setup for empirical study.

Backbones. We use UNITER (Chen et al. 2020d) as an
example to introduce the backbone, which shares the same
structure as BERT, except that the input is a mixed sequence
of two modalities. Specifically, given a dataset that consists
of image-text pairs x = (ximg,xtxt), UNITER first en-
codes the corresponding image regions and textual tokens
into low-dimensional feature vectors zimg = gbu(ximg)
and ztxt = gemb(xtxt), where gbu(·) is the fixed bottom-
up image feature extractor (Anderson et al. 2018), gemb(·)
is a learnable word embedding function. Then, a trans-
former is applied on top to obtain contextualized representa-
tions: z̃img, z̃txt, z̃cls = f1(ximg,xtxt;θ), where a special
[CLS] token is employed whose embedding z̃cls is con-
sidered as the joint multimodal representation. θ ∈ Rd1 in-
cludes all the trainable parameters. For a particular down-
stream task, we add a final, task-specific classification layer
on top of z̃cls to obtain the output logit vector f2(z̃cls;φ),
where φ ∈ Rd2 denotes task-specific parameters. The whole
UNITER network is abbreviated as f(x; θ,φ) that absorbs
both f1(·, ·) and f2(·). For LXMERT (Tan and Bansal 2019),
it takes the same image features from object detection as
model input, but adopts a two-stream model architecture in-
stead. For ViLT (Kim, Son, and Kim 2021), it uses the same
one-stream architecture, but directly takes image patches
and word tokens as inputs, and models all the intra- and
inter-modality interaction via a single unified transformer.

Given the task-specific supervision signal y (typically a
label in VL tasks), model training can be summarized as:

min
θ,φ

E(x,y)∼D[L(f(x; θ,φ),y)] , (1)

where L(·) is the cross-entropy loss, and D denotes
the dataset for a downstream task. We use the official
UNITER/LXMERT/ViLT code bases for experiments.

Subnetworks. A subnetwork of f(x;θ,φ) means a net-
work f(x;m � θ,φ) with a binary pruning mask m ∈
{0, 1}d1 indicating which part of the parameters are set to 0,
and � is the element-wise product. Following Frankle and
Carbin (2019), we define a matching subnetwork as a sub-
network that can be trained to the full accuracy of the dense
network within similar training iterations. A winning ticket
is defined as a matching subnetwork f(x;m� θ0, ·) where
θ = θ0, which is typically is a random weight initializa-
tion. However, in our context, θ0 represents the pre-trained
model weights. We also define a “relaxed” winning ticket as
one that matches p% of the the full accuracy, where p is set
to a large number close to 100 (such as 99).

Finding Subnetworks. As used in many lottery ticket pa-
pers, we use Iterative Magnitude-based Pruning (IMP) (Han,
Mao, and Dally 2015) to find the subnetwork. Specifically,
the pruning maskm is determined by training the unpruned
network to completion on a downstream task, then prun-
ing individual weights with the lowest magnitudes globally
throughout the network. The weights are then reset to the
pre-trained initialization θ0 (or, θi for a specific rewinding
step i in training), and only the learned mask m is stored.
We prune a certain amount (e.g., 10%) of non-zero weights
after completion, and re-train the network several times to
meet the sparsity requirement. The full IMP procedure is
provided in the Appendix.

We consider finding subnetworks via both (i) task-specific
finetuning and (ii) task-agnostic pre-training,1 hoping that
universal transferable subnetworks can be identified. For
UNITER pre-training, we use all the pre-training tasks
to learn the mask, including Masked Language Model-
ing, Masked Region Modeling, Image-Text Matching, and
Word-Region Alignment. See Chen et al. (2020d) for de-
tails of these tasks. As our model is initialized by pre-trained
UNITER, we further pre-train only 10% of original training
steps in each pruning round (we prune 9 rounds in total).
Therefore, the total time spent for a full IMP process roughly
equals the time used for pre-training UNITER from scratch.

Evaluation of Subnetworks. For a particular downstream
task, after obtaining a subnetwork f(x;m � θ, ·), we re-
set the weights to θ0 or θi (if rewinding is used), and then
completely re-train the subnetwork to test whether the fi-
nal subnetworks can still achieve the original accuracy. For
pre-training, since the performance of the pre-training tasks
validation loss does not correlate to the task-specific perfor-
mance (Chen et al. 2020d), we finetune and test the iden-
tified subnetworks on all the downstream tasks. We use
both the in-domain and out-of-domain image-text datasets
for IMP-based pre-training, including COCO (Lin et al.
2014), Visual Genome (Krishna et al. 2017), Conceptual
Captions (Sharma et al. 2018), and SBU Captions (Ordonez,
Kulkarni, and Berg 2011).

Downstream Tasks. We consider 7 VL tasks for experi-
ments. (i) For VQA (Goyal et al. 2017), GQA (Hudson and

1We only perform pre-training on UNITER, since pre-training
is heavy; we perform finetuning for UNITER, LXMERT, and ViLT.
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Dataset VQA GQA VCR NLVR2 SNLI-VE RefCOCO+ Flickr30k IR Flickr30k TR
mini-dev† test-dev Q→AR val dev val vald R@1 R@1

# Sparsity 70% 70% 50% 60% 60% 70% 60% 60%
1 UNITERB (paper) 70.75 − 54.94 77.18 78.59 75.31 72.52 85.90
2 UNITERB (reimp.) 70.64±0.06 59.64±0.15 54.37±0.31

‡ 76.75±0.19 78.47±0.10 74.73±0.06 71.25±0.11
? 84.63±1.02

?

3 ×99% 69.93 59.04 53.83 75.98 77.69 73.98 70.54 83.78
4 f(x;mIMP · θ0) 69.98±0.05 59.26±0.09 53.15±1.02 76.32±0.41 77.69±0.07 74.06±0.27 70.15±0.71 83.77±0.76

5 f(x;mRP · θ0) 60.45 55.95 25.35 52.42 71.30 72.95 61.44 76.80
6 f(x;mIMP · θ′0) 67.98 58.45 50.39 54.15 76.45 71.09 63.38 79.30
7 f(x;mIMP · θ′′0 ) 60.46 47.49 6.25 51.52 69.32 67.34 38.94 48.00

Table 1: Performance of subnetworks at the highest sparsity for which IMP finds “relaxed” winning tickets that maintains
99% of the full accuracy on each task. Entries with ± are the average across three runs. IMP: Iterative Magnitude Pruning; RP:
Random Pruning; θ0: pre-trained UNITER weights; θ′0: pre-trained BERT weights; θ′′0 : randomly shuffled pre-trained UNITER
weights. (†) To avoid submitting results to the VQA test server too frequently, instead of reporting results on test-dev/-std sets,
we use a mini-dev set for comparison. The same min-dev set was also used in UNITER. (‡) For fair comparison on transfer
learning, we did not perform 2-nd stage pre-training for VCR task as in UNITER. (?) To rule out other factors that may influence
results besides pruning, we did not use hard negative mining as in UNITER.

Manning 2019) and VCR (Zellers et al. 2019), given an im-
age and an input question, the model selects an answer from
a candidate pool. (ii) For NLVR2 (Suhr et al. 2018), given a
pair of images and a natural language description, the model
judges the correctness of the description based on the in-
put image pair. For Visual Entailment (Xie et al. 2019), the
model predicts whether a given image entails a given sen-
tence. (iii) For Referring Expression (RE) Comprehension,
we evaluate on RefCOCO+ (Yu et al. 2016), where given
a text description, the model selects the described region
from a set of image region proposals. (iv) For Image-Text
Retrieval (ITR), we consider both image retrieval and text
retrieval on Flickr30k dataset.

For VCR, 2nd-stage pre-training was found useful in
UNITER finetuning. For simplicity and ease of study of
transfer learning, we do not use 2nd-stage pre-training. For
ITR, hard negative mining is necessary to boost perfor-
mance. We do not use this as it is computationally heavy,
and we aim to study LTH rather than chasing state-of-the-
art performance. For VQA, we mainly report results on an
internal mini-dev set for faster evaluation of the found tick-
ets, and avoid submitting results to the VQA test server
too frequently. This same mini-dev set is also used in
UNITER (Chen et al. 2020d).

Experiments
In this section, we perform extensive experiments to exam-
ine the LTH in the context of vision and language.

VLP Can Play Lottery Tickets Too
First, we evaluate whether winning tickets exist in UNITER.
In particular, we answer the following questions.

Q1: Are there winning tickets in UNITER? To answer
this, we first run IMP on a downstream task T to ob-
tain a sparsity pattern mTIMP. This produces a subnetwork
f(x;mTIMP � θ0, ·). We then train this subnetwork again on
task T to evaluate whether this is a winning ticket.

Results across all the sparsity levels (10% to 90%) on
all the downstream tasks are shown in Figure 2 (ma-

genta curves). For tasks of image-text retrieval and NLVR2,
matching subnetworks with sparsity 40% can be identified.
However, it is generally challenging to find subnetworks that
“strictly” match the performance of the full accuracy on the
other tasks. Therefore, we define “relaxed” winning tickets
as the ones that can match 99% of the full accuracy. It will
still be encouraging if such subnetworks can be found.

Results are summarized in Table 1. Row #1 reports the
full UNITERB performance reported in the UNITER pa-
per (Chen et al. 2020d). Row #2 reports the results of
our re-implementation, where different random seeds are
used to account for fluctuations. We use the default hyper-
parameters provided in the UNITER code base without any
tuning. Row #3 calculates 99% of the full accuracy on each
task for reference. As can be seen from Row #4, on all VL
tasks, “relaxed” winning tickets can be found. The high-
est sparsities range from 50% (e.g., VCR) to 70% (e.g.,
VQA). For VCR, it is challenging to find high-sparsity sub-
networks. We hypothesize that commonsense knowledge
is harder to learn, and smaller weights also play essential
roles in improving model’s commonsense reasoning abili-
ties, making the subnetwork for VCR harder to prune.

Q2: Are winning tickets sparser than randomly pruned
or initialized subnetworks? Previous work has shown that
both the specific learned sparse mask and the specific ini-
tialization are necessary for finding winning tickets (Frankle
and Carbin 2019). To assess the importance of the learned
mask in the context of UNITER, we compare with a random
pruning baseline, and report results in Row #5 of Table 1.
That is, we finetune a randomly pruned UNITER model on
each downstream task. Interestingly, for some tasks (e.g.,
GQA and RefCOCO+), random pruning achieves pretty
strong performance. However, by comparing performance
across the board, it is also clear that random pruning per-
forms far worse than the identified winning tickets. In Fig-
ure 2, we further compare IMP and random pruning across
all sparsities. Again, random pruning achieves far lower per-
formance, confirming that the sparse structure found by IMP
is crucial for the good performance of subnetworks.

To assess the importance of the initialization, we con-
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Figure 2: Comparison among (i) IMP performed on task-specific finetuning, (ii) IMP performed on task-agnostic pre-training,
and (iii) random pruning on task-specific finetuning across sparsities for all the tasks. We also report rewinding in the VQA
task in sub-figure (i).

sider two different initializations with the learned mask un-
changed: (i) using pre-trained BERT weights θ′0 as initial-
ization, and (ii) shuffling the UNITER pre-trained weights
within each layer to obtain a new initialization θ′′0 . Results
of these two baselines are summarized in Row #6 and #7
of Table 1, respectively. Clearly, training from θ′′0 achieves
far lower performance than training from θ0. However, it
is also interesting to observe that training from θ′0 achieves
much more reasonable performance, though still lagging be-
hind training from θ0, indicating the importance of the spe-
cific initialization. We hypothesize the good performance of
θ′0 is partially due to that θ′0 is used as the initialization to
pre-train UNITER; therefore, the structure of the UNITER
weights may be partially inherited from BERT.

Q3: Does rewinding improve performance? For large net-
works, rewinding is found to be necessary to identify win-
ning tickets (Renda, Frankle, and Carbin 2020). After ob-
taining the masks, instead of resetting the weights to θ0, one
should rewind the weights to θi, the weights after i steps
of training. To examine whether rewinding is helpful in the
context of UNITER, we run experiments at different rewind-

ing ratios using VQA as the representative task. Results are
shown in Figure 2(i). Rewinding does not have a notable ef-
fect on the VQA performance, with only minor performance
improvement observed at high-sparsity ratio (90%). Similar
observations are also found on other downstream tasks.

One Ticket to Win Them All
Finding winning tickets on each downstream task separately
is time-consuming, as each time when IMP is performed, it
has to go through the full train-prune-retrain cycle multiple
times. In this section, we aim to identify subnetworks that
transfer well across all the VL tasks. In particular, we answer
the following questions.

Q4: Do winning tickets found on pre-training tasks trans-
fer? Pre-training is believed to learn universal VL repre-
sentations. As shown in Cao et al. (2020), the pre-trained
weights indeed have captured rich visual coreference and
visual relation knowledge. This naturally leads to our hy-
pothesis: can the subnetwork identified by the pre-training
tasks on the pre-training data also transfer universally?

To study this, we first identify a subnetwork f(x;mPIMP ·
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Figure 3: Transferring winning tickets across tasks. Winning ticket performance on target tasks: (a) VQA, (b) VCR, (c) Ref-
COCO+, (d) NLVR2, (e) Flickr30k IR, (f) Flickr30k TR. Within each plot, each line represents a different source task for the
winning ticket. Better zoomed in and viewed in color. Additional curves are in the Appendix.

Sparisty VQA GQA VCR NLVR2 SNLI-VE RefCOCO+ Flickr30k IR Flickr30k TR Ave. Perf. Drop (%)
mini-dev test-dev Q→AR val dev val vald R@1 R@1 All w/o VCR

0% 70.64 59.64 54.37 76.75 78.47 74.73 71.25 84.63 − −
50% 70.52 59.41 52.01 76.71 78.08 74.12 70.62 83.90 1.00 0.52
60% 70.41 59.44 50.37 75.52 77.79 74.41 70.18 82.40 1.88 1.10
70% 69.45 59.02 47.52 74.29 77.34 73.45 68.36 80.00 3.90 2.66
80% 68.38 58.01 42.99 69.98 76.32 72.58 65.82 80.00 6.80 4.78

Table 2: Performance of the universal transferable subnetwork found on pre-training at specified sparsities.

θ0, ·) on the pre-training tasks T , and then train it on all
the downstream tasks to evaluate its performance. Results
are summarized in Figure 2 (green curves). Interestingly,
though pre-training never obtains the supervision signal in
the downstream tasks, the found subnetwork transfers pretty
universally; only when the sparsity is high (e.g., 80%, 90%),
the found subnetwork performs worse than the ones found
by task-specific IMP, indicating that the pre-training tasks
are strong signals for learning how to prune.

Q5: Do winning tickets found on downstream tasks trans-
fer? One would also wonder whether such transfer learn-
ing behavior also exists among the downstream tasks them-
selves, i.e., whether the found subnetwork on a source task
S transfers to a target task T . We perform a systematic
study in Figure 3, where within each plot, 8 ticket sources
are considered. There are several key observations. (i) The
subnetworks found by task-specific signals typically per-
form the best, especially on the high-sparsity regime. (ii)
Surprisingly, all the individual subnetworks found by down-
stream tasks transfer well, indicating that models on all the
tasks have learned some shared essential knowledge. (iii)
The subnetwork from pre-training generally performs better

than those from other tasks (e.g., 0.71%-2.69% better than
other source tickets at 70% sparsity on the VCR task), in-
dicating its universal transferability. By taking a closer look
at Figure 3(a), excluding VQA itself, the best source ticket
is from pre-training and GQA, as the task nature of VQA
and GQA is similar. From Figure 3(e) and (f), we can see
the best source ticket for image-text retrieval is from pre-
training. This is because the image-text matching task used
in pre-training is similar to the downstream task itself. In
Appendix, we also compare the similarity of sparsity pat-
terns found on each downstream task.

Since subnetworks found on pre-training performs the
best, we further compare their performance with the full
model in more detail, and summarize results in Table 2.
The universal subnetwork at 60%/70% sparsity matches
98%/96%2 of the full accuracy over all the tasks considered,
effectively serving as a task-agnositic compressed model.

Additional Study
Q6: Do different VLP models behave differently? So far,
we have focused on UNITER. Below, we experiment with

2This number changes to 99%/97% if VCR is not counted in.
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Figure 4: The lottery ticket results of LXMERT on VQA, GQA, and NLVR2.
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Figure 5: Performance of subnetworks that are found by adversarial training on the tasks of VQA, VCR and RefCOCO+.

Dataset VQA GQA NLVR2

mini-dev† test-dev dev
Sparsity 70% 70% 70%

LXMERT (paper) 69.90 59.80 74.95
LXMERT (reimp.) 69.95±0.03 59.91±0.07 74.90±0.26

×99% 69.25 59.31 74.15
Lottery Tickets 69.29±0.10 59.40±0.17 74.03±0.71

Random Pruning 65.22±0.05 47.88±0.55 51.38±0.45

Table 3: The LTH results of LXMERT on VQA, GQA, and
NLVR2. (†) The same mini-dev set as used in LXMERT.

LXMERT and ViLT to provide a more complete picture of
VL lottery tickets. Results are summarized in Table 3, 4, and
Figure 4. For LXMERT, similar observations can be found.
Since both UNITER and LXMERT use the same visual fea-
tures from object detection, but only differ in the use of one-
/two-stream architecture, we conclude that the LTH observa-
tions are not sensitive to this one-/two-stream design. On the
other hand, ViLT can only achieve a low sparsity ratio (30%)
if we want to keep impaired performance. This is partially
due to that ViLT directly takes image patches as input, all
the modeling power needs to be absorbed in a single unified
transformer, therefore less can be pruned, while for UNITER
and LXMERT, the extracted image features are kept intact.

Q7: Can VLP models play lottery tickets adversarially?
Lottery tickets are typically found via standard cross-
entropy training. Here, we study whether adversarial train-
ing can be used to find winning tickets as well. Results are
shown in Figure 5. Interestingly, on the 3 tasks considered,

Dataset VQA (mini-dev†) NLVR2 (dev)
Sparsity 30% 30%

ViLT (reimp.) 70.88±0.05 75.82±0.20

×99% 70.17 75.06
Lottery Tickets 70.51±0.11 75.22±0.41

Random Pruning 65.16±0.05 56.14±0.40

Table 4: The lottery ticket results of ViLT on VQA and
NLVR2. (†) The same mini-dev set as used in ViLT.

the ticket performance via adversarial training at 80% and
70% sparsity matches (or almost matches) the performance
via standard finetuning at 70% and 60% sparsity, respec-
tively. This suggests that adversarial training has the effect
of making the sparse winning tickets 10% sparser in order
to match the performance of a standard trained one.

Conclusion and Discussion
In this paper, we have presented a comprehensive study of
the lottery ticket hypothesis (LTH) for vision and language.
Below, we discuss some limitations of the current study.
(i) Efficiency: We mainly focused on the scientific study
of LTH. For future work, we plan to investigate the real
speedup results on a hardware platform that is friendly to un-
structured pruning, such as XNNPACK (Elsen et al. 2020).
(ii) Object Detection: For UNITER/LXMERT, we studied
the LTH for multimodal fusion, while keeping the object de-
tection module untouched. In terms of end-to-end VLP, we
focused on ViLT. For future work, we plan to study the LTH
of object detection and other end-to-end VLP models.
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