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Abstract

The success of deep neural nets heavily relies on their abil-
ity to encode complex relations between their input and their
output. While this property serves to fit the training data well,
it also obscures the mechanism that drives prediction. This
study aims to reveal hidden concepts by employing an inter-
vention mechanism that shifts the predicted class based on
discrete variational autoencoders. An explanatory model then
visualizes the encoded information from any hidden layer
and its corresponding intervened representation. By the as-
sessment of differences between the original representation
and the intervened representation, one can determine the con-
cepts that can alter the class, hence providing interpretability.
We demonstrate the effectiveness of our approach on CelebA,
where we show various visualizations for bias in the data and
suggest different interventions to reveal and change bias.

Introduction
Machine learning is ubiquitous these days, and its impact
on everyday life is substantial. Supervised learning algo-
rithms are instrumental to autonomous driving (Lavin and
Gray 2016; Bojarski et al. 2016; Luss et al. 2019), they serve
people with disabilities (Tadmor et al. 2016), they are ap-
plied to improve hearing aids (Schröter et al. 2020; Fedorov
et al. 2020), and they are being extensively used in medical
diagnosis (Deo 2015; Qayyum et al. 2020; Seo et al. 2020;
Richens, Lee, and Johri 2020). These advancements are
achieved with complex models, and their decisions are usu-
ally not well-understood by their operators. Consequently,
model interpretability is becoming an important challenge
for contemporary deep nets.

To this end, a magnitude of interpretability methods has
been proposed. Current model interpretability methods are
geared towards local feature relevance. In other words, given
a sample, they quantify how much each feature contributes
to the prediction. For example, gradient-based approaches
are widely used to interpret the model predictions since they
bring forth an insight into the internal mechanism of the
model (Simonyan, Vedaldi, and Zisserman 2014; Gu et al.
2018; Sundararajan, Taly, and Yan 2017; Shrikumar, Green-
side, and Kundaje 2017; Springenberg et al. 2014). These
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Figure 1: Our method explains a layer of a given discrimi-
native learner. We learn a discrete variational autoencoder of
the last layer representation over the data. Then, we produce
a visual explanation of it. Using the discrete latent space,
we can intervene in the conceptual world of the data, which
allows us to ‘see’ the world from the viewpoint of the classi-
fier. This figure illustrates the explanation for the last layer in
two classification tasks on the CelebA dataset: attractive and
big nose. We find out that the classifier attributes attractive-
ness to young women and older man features to the opposite
label. This could imply a bias in the annotation process of
CelebA and/or reflects an inherent bias in the data.

gradient-based methods produce different explanation maps
using the gradient of a class-related output with respect to
its input data. While relevance scores in the input sample
are human-interpretable, they are sparsely scattered across
many pixels and do not accurately indicate concepts. Re-
cently, counterfactual examples were used to measure the
causal effect of known data concepts (Goyal et al. 2019; Atz-
mon et al. 2020; Feder et al. 2021; Rosenberg et al. 2021).
However, these methods require costly predefined concepts
annotation, which is rarely apparent when learning from
data.

In this work, we focus on finding the high-level concepts
that explain the classifier’s decision. The bias within these
concepts is often the result of overlooked priors that are
woven into the dataset. In order to reveal bias in the data,
we propose a Variational Auto-Encoder (VAE) mechanism
that discretizes the input representation. This discrete latent
space is able to capture the concepts that are embedded in
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the representation and allows us to avoid costly annotation
of predefined concepts that impede the utilization of modern
causal effect techniques. Using an intervention mechanism
that flips the boolean latent space representation bits, we can
infer the concepts that were responsible for the prediction
and detect bias in the data.

We take advantage of recent developments in the field of
generative learning in order to reconstruct human-friendly
explanation images for a discrete latent space concept.
Based on this reconstruction, the guiding concepts can be
identified. For instance, in Fig. 1, concepts are illustrated
abstractly. Following the intervention, examining the shifted
concepts, we identify the relevant factors. For instance, age
and gender appear to influence attractiveness, while skin
color seems to influence a big nose’s attractiveness. In ad-
dition, we optimize shared information between the visual
explanation and classifier in order to ensure that the abstract
concepts rely on the same information as the discriminative
classifier. This regularization strategy increases the corre-
sponding information and ensures that the realized concepts
correspond to the classifier’s guiding concepts.

The remainder of the work is organized as follows: In the
method section, we present our approach for learning dis-
crete concepts of a hidden layer representation. It allows us
to intervene and change the data concepts. We then propose
to generate visualizations of the discovered concepts by an
explanatory approach. We conclude the method section by
providing a theoretic framework for our method via the func-
tional Fisher information and use it as a regularization term.
In the results section, we study our method qualitatively and
quantitatively on different tasks on CelebA dataset. We first
illustrate our intervention mechanism for concept discovery
and manipulation. Then, we use our method to detect biases
in the discriminative model. We then verify our approach
with quantitative and subjective studies.

In summary, our contributions in this work are:

• Our method identifies discrete global concepts in a
trained layer. Furthermore, it enables to intervene on
those global concepts.

• We propose a novel explanatory approach for explain-
ing a given layer of a trained classifier in a human inter-
pretable manner.

• We integrate discriminative and explanatory functional
information into a single information-theoretic frame-
work. We then introduce a regularization term that en-
courages high shared information between discriminative
and explanatory learners.

We study the effectiveness of our approach in generating ex-
planations, detecting bias, and controlling concepts for dif-
ferent tasks on high-dimensional images.

Related Work
Explainability in Computer Vision Explainability takes
many forms and has not been formally defined in the lit-
erature. In general, the methods can be divided into two
branches: global explanations (such as a decision tree’s
structure) and local explanations (such as important fea-

tures of samples). Among deep learning explanations, lo-
cal explanations predominate. The reason for this is that
the backpropagated gradients naturally provide a sample
with a heatmap that shows a sample’s features’ relevance.
Early attempts created saliency maps based on the gradi-
ents (Simonyan, Vedaldi, and Zisserman 2014; Dabkowski
and Gal 2017; Mahendran and Vedaldi 2016). Following
that, a variety of a mixture of gradient and input meth-
ods emerged (Gu et al. 2018; Shrikumar, Greenside, and
Kundaje 2017; Smilkov et al. 2017; Srinivas and Fleuret
2019). Attribution propagation approach calculate relevance
scores based on a set of axioms (Bach et al. 2015; Mon-
tavon et al. 2017; Nam et al. 2020; Shrikumar, Greenside,
and Kundaje 2017). Attention models also provide explain-
ability (Schwartz et al. 2019; Schwartz, Schwing, and Hazan
2017, 2019; Braude et al. 2021). Another approach, decon-
volution networks, are capable of providing insights into
intermediate layers by calculating the transposed convolu-
tional network (Zeiler and Fergus 2014). However, further
research suggests that deconvolution is similar to gradient
backpropagation (Springenberg et al. 2014). These methods
are similar to ours in that they use reconstruction to find rele-
vance. By contrast, our approach reconstructs a concept im-
age to reveal a high-level concept rather than pixel relevance.
Li et al. (2018) study the ability of retrained networks to pre-
dict relevance maps. Among other popular methods, LIME
approximates a model’s prediction with a local linear func-
tion (Ribeiro, Singh, and Guestrin 2016). Lundberg and Lee
(2017) propose SHAP, a unified game-theoretic framework
for attribution methods based on Shapley values (Nowak and
Radzik 1994). The computational complexity of such meth-
ods is considerable, and their efficiency is often not as high
as that of other methods. Frosst and Hinton (2017); Wan
et al. (2020) examine networks that are explained by the
architecture design. Notably, all of the above methods in-
vestigate the pixel relevance of individual data points. How-
ever, our work seeks to reveal the underlying high-level con-
cepts, and so is also infused with global explanations. A
global explanation is favored in assessing the robustness of
a model. E.g., it can uncover a global biased concept (e.g.,
smiling classification is affected by gender) (Doshi-Velez
and Kim 2017). Our reconstruction is applied to the deep
layers, which typically contain information related mainly to
labels, suggesting a global nature (Shwartz-Ziv and Tishby
2017). Hence, it is concise in its representation of the task
and does not include all the concepts that pertain to the sam-
ple.

Intervention for Causal Discovery In recent years, a
mainline of research has focused on quantifying the causal
effect of data concepts on prediction. The simplest form
of intervention are perturbations, i.e., removing and adding
pixels to generate counterfactual local explanations for im-
ages (Fong, Patrick, and Vedaldi 2019; Fong and Vedaldi
2017; Goyal et al. 2019). These approaches can also be used
to explain models without looking at their mechanics, i.e., a
black-box approach. Despite their appealing black-box na-
ture, there are many pixels in a picture, and each pixel can
have any value. Therefore, manipulating the combination of
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Figure 2: An overview of our approach: Our method pro-
vides visual explanations of a given layer of a trained classi-
fier. By using a discrete variational autoencoder, we learn a
boolean representation z of ϕ(x) that encodes the concepts
that drive the classifier prediction. Then, to visualize these
concepts a generator is trained to reconstruct the original
image given ϕ′(x). By intervening in z and getting a modi-
fied version of ϕ′(x) ψ(x), one can evaluate the qualitative
differences using g(ψ(x)) and the quantitative differences
using f

K
(ψ(x)). This intervention mechanism provides the

ability to interpret the classifier prediction.

pixels can be computationally complex. Our work is differ-
ent in that it seeks to find high-level concepts by transform-
ing latent space into discrete boolean space using a Varia-
tional Auto-Encoder (VAE). As a result, the space of possi-
ble interventions is significantly smaller. To be more pre-
cise, we study a single flip that shifts the predicted class
as the binary values change. Also relevant to our work are
causality frameworks, such as TCAV (Kim et al. 2018) and
CaCE (Goyal et al. 2019). These methods intervene in la-
beled concepts to measure the causal effects. However, they
require data with labeled concepts. This kind of annotation
process must acquire the expertise to identify the underly-
ing structure of the problem, and even then, there is still
the human bias that contaminates the process. Using our
method, we uncover the task’s decisive concepts without la-
beling them. A concepts image is reconstructed using deep
layer representations. Note that deep layers typically contain
label-related information (Shwartz-Ziv and Tishby 2017).
The consequent advantage is that it is easy to pick up general
concepts related to labels. Once we intervene in the concepts
images, decisive concepts emerge (see Fig. 1).

Bias in Datasets Also relevant to our work is bias in
datasets. The ImageNet challenge (Deng et al. 2009) and the
development of AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012) sparked the deep learning revolution. However, as
datasets grow, biases emerge, which may go undetected for a
long time. In ImageNet, for instance, the background can in-
dicate information about the class of objects (Szegedy et al.
2015). Multi-modal models only use one modality due to
dataset priors (Gat, Schwartz, and Schwing 2021; Gat et al.

2022). In addition to this, a number of datasets are being an-
notated in uncontrolled environments, as crowdsourcing ser-
vices such as Amazon Mechanical Turk become more and
more popular (Geva, Goldberg, and Berant 2019). For in-
stance, well-known benchmark ‘Faces in the wild’ (Huang
et al. 2008) contains 70% male and 80% white-skinned
faces. In our study, we examine a manipulated dataset where
we altered the class gender majority to demonstrate that our
method identifies hidden factors that affect predictions (see
Fig. 4).

Method

Learning a discriminative model amounts to fit function
f : X → Y from the space of data x ∈ X to the
space of labels y ∈ Y using parameters. The parameters
of the function f(x) are learned by fitting to a training data
{(x1, y1), ..., (xm, ym)} using a loss function ℓ(f(xi), yi).

Whenever f(x) is a linear function, e.g., in the case of
logistic regression and support vector machine, one can ex-
plain the importance of features x by the magnitude of the
learned coefficient parameters. Unfortunately, this is not the
case when f(x) is learned by a deep net.

Deep nets are able to learn complex relations from x
to y to their recursive structure. For instance, consider a
fully connected deep net, where the input vector of the k-
th layer is a function of the parameters of all previous lay-
ers, i.e., ϕk(x). The entries of ϕk(x) are computed from
the response of its preceding layer, i.e., by the linear rela-
tion Wk−1ϕk−1(x), followed by a non-linear transfer func-
tion ϕk(x) = σ(Wk−1ϕk−1(x)). While this recursive struc-
ture allows to easily encode complex functions f(x), it also
renders the model decisions hard to explain. Specifically,
we are interested in the last hidden representation since
it primarily encapsulates label-related information (Tishby
and Zaslavsky 2015). For notation clarity, we denote it as
ϕ(x) = f0:K−1(x), where K is the last hidden representa-
tion. We also denote fK as the remaining last layer of the
classifier. In the following, we propose a two-stage expla-
nation of recursive representations of a deep network. In the
first stage, concepts are detected using a clustering over ϕ(x)
(see Sec. Discrete concepts in a hidden layer of a discrim-
inative model). In the second stage, we produce visual ex-
planations using an intervention mechanism (see Sec. Visual
explanation of a latent space). The generated images can be
compared to the original data point x under different inter-
ventions. The entire flow of our approach is illustrated in
Fig. 2. The final section introduces a regularization term,
which encourages the generator to use the same informa-
tion as the classifier to illustrate the concepts used by the
classifier accurately (see Sec. Maximizing explanatory and
discriminative shared information). In the experimental val-
idations, we demonstrate how such interventions can reveal
bias in the data. In the following, we begin by introducing
our intervention mechanism.
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Discrete Concepts in a Hidden Layer of a
Discriminative Model
Our goal is to reveal and visualize the underlying concepts
that drive the model’s prediction. Broadly, a classifier en-
codes information in a hidden layer in order to discriminate
between the different classes of the label space. Thus its hid-
den layer representations correlate with the relevant target
classes. For example, hidden layers may encode body parts
when learning to recognize a person.

Unfortunately, the continuous nature of a hidden layer of
the discriminative model does not allow us to reveal these
concepts easily. For this purpose, we employ a discrete vari-
ational autoencoder (DVAE) with boolean latent variables
z ∈ {0, 1}n (Rolfe 2016; Lorberbom et al. 2019). In our
case, the DVAE learns discrete concepts z of its input vector
ϕ(x). This input vector is a hidden layer of the discrimina-
tive model whose discrete concepts we want to reveal. The
DVAE learns these concepts by maximizing the likelihood
p(ϕ(x)) using the negative evidence lower bound (ELBO):
− log p(ϕ(x)) ≤

−Ez∼q(·|ϕ(x))

[
log p(ϕ(x)|z)

]
−KL

(
q(z|ϕ(x))||p(z)

)
, (1)

where q(z|ϕ(x)) is a probability distribution of the n dimen-
sional boolean variable z ∈ {0, 1}n. We use the Gumbel-
softmax reparametrization for estimating the encoder’s gra-
dients through the non-differentiable boolean layer (Maddi-
son, Mnih, and Teh 2016; Jang, Gu, and Poole 2016).

We denote by ϕ′(x) the reconstructed embedding vector
(see Fig. 2). The boolean latent space z = (z1, ..., zn) en-
ables to reveal discrete concepts of ϕ(x). The generative
nature of the DVAE allows us to turn turn-off or turn-on
some concepts from z = (z1, ..., zn) using an intervention
ẑ = (ẑ1, ..., ẑn). This interventions mechanism allows us to
modify the generated representation of ϕ′(x) to the coun-
terfactual representation ψ(x). Although the DVAE allows
us to identify the concepts that the discriminative classifier
relies on, it is unclear what these concepts are. To visual-
ize these concepts, we produce human interpretable explana-
tions by generating visual explanations derived from a given
latent representation ϕ′(x).

Visual Explanation of a Latent Space
A trained DVAE allows us to learn latent concepts z ∈
{0, 1}n that govern the hidden layer representation ϕ(x).
Our goal is to intervene and change latent concepts, from z
to ẑ, and consequently to change the DVAE decoding from
ϕ′(x) to ψ(x) in order to detect bias of the discriminative
learner. To visualize this bias, we suggest to learn the ex-
planatory function g : Rd → Rdc×dh×dw , where d is the
ϕ(x)’s embedding dimension and dc × dh × dw is the gen-
erated image’s embedding dimension. Thus, g produces a
visualization of the discrete concepts in the latent space us-
ing the x′ from the hidden representation ϕ′(x). Intuitively,
the role of g is to output a visual explanation. We learn g to
minimize a reconstruction loss of the original image,

ℓ(g(ϕ′(x)), x). (2)

Visualizing the counterfactual representation g(ψ(x)) al-
lows us to ‘see’ through the eyes of the layer we investigate

(see Fig. 1). Note, training the DVAE and the explanatory
network together might interfere with the DVAE’s discrete
structure learning processes with features related to the im-
age. This is undesirable since the DVAE’s role is to learn
the representation ϕ(x) and not input-related features. Thus,
we first train the DVAE and then train g while the DVAE is
fixed.

By explaining a latent representation of a classifier f
through a learning process, it is not guaranteed that g re-
lies on the same information as the classifier. To encourage
this, we propose to measure their shared functional informa-
tion and maximize it during the learning process of g. In the
next section, we connect the notion of functional informa-
tion to our settings and then present a regularization term
that maximizes the shared information between the explana-
tory network and the discriminative learner.

Maximizing Explanatory and Discriminative
Shared Information
Our next goal is to ensure that our generated concepts follow
the same concepts the discriminator employ. We achieve this
by maximizing the amount of information that the explana-
tory learner (i.e., g) extracts from the latent representation
with respect to the discriminative learner’s (i.e., fK) infor-
mation.

To measure information we follow Gat et al. (2020) and
consider the functional information that is encapsulated in
a non-negative function h(z) over a Gaussian space ν =
N (µ, 1),

Iν(h) ≜ Ez∼ν

[h′(z)2
h(z)

]
. (3)

The functional Fisher information is computationally ap-
pealing as it can be easily evaluated using sampling over a
Gaussian space.

Based on this measure, we compute the information of
our explanatory function g(z) with respect to the discrimina-
tive layer ϕ(x) over the explanatory distribution N (ϕ(x), I).
Since N (ϕ(x), I) is a multivariate Gaussian, we estimate
the information with respect to each of its coordinates inde-
pendently. We denote by νi the univariate Gaussian measure
νi = N (ϕi(x), 1), where ϕi is ϕ’s i-th element. We thus
define the information in each neuron i in any given layer by

Ii
ν(g) = Ez∼νi

[g′(zϕi )2
g(zϕi )

]
, (4)

where zϕi = (ϕ1(x), ..., ϕi−1(x), z, ϕi+1(x), ..., ϕd). Then,
a layer information defined as

Iν(g) ≜ (I1
ν (g), ..., Id

ν (g)). (5)

Next, we integrate the functional information into the ex-
planatory learning process. We repeat the same procedure
for the discriminative function fK(·) over the same interme-
diate layer ϕ(x). We augment the discriminative layer ϕ(x)
with a Gaussian space and define Iν(fK) as in Eq. (5).

Finally, we encourage the generator to rely on the same
information as the discriminative learner. To this end, we
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Figure 3: Explanation by intervention: we present results from our method on three different binary tasks (attractive, big lips,
and smiling). For each task, we present our method’s explanation on the representation of the original input (g(ϕ′(x))) and
the flipped discrete representation (g(ψ(x)). In addition, we present the probability that the classifier predicted for the two
opposite representations. We note that our methods capture biases in the dataset effectively. Moreover, we forward the flipped
representations to the classifier and find that the classifier predicts the opposite class for all input samples.

add a regularization term to the generator training process.
The regularization incorporates a differentiable similarity
between the information of the generator. Iν(g) and Iν(fK)
where the input of g is ϕ′(x) and the input of fK is ϕ(x).
We employ dot product for similarity and take the inverse in
order to account for both reconstruction loss minimization
and similarity maximization (Tang et al. 2020). This leads
to our learning objective,

ℓ(g(ϕ′(x), x) + λ(Iν(g) · Iν(fK)⊤)−1, (6)

where λ is a hyperparameter that calibrates the training loss
and the inverse similarity.

Results
We propose an explanatory approach for latent space ex-
planations using an intervention mechanism. This section
studies our explainability method over different classifi-
cation tasks. We show qualitatively that our intervention
mechanism reveals different concepts for different tasks
(see Counterfactual representation). We then show that our
approach reveals deliberately integrated gender bias (see
Dataset statistics control). To further verify that the classi-
fier is utilizing the detected concept, we verify the prediction
of counterfactual samples. To this end, we employ a state-of-
the-art generative model and examine the prediction of ma-
nipulated images according to the revealed bias (see Coun-
terfactual verification). In addition, we provide two quanti-
tative measures: 1) We assess the quality of our intervention
by measuring the number of times the intervention affected

the classifier predictions (see Tab. 1). 2) We investigate the
performance of our proposed regularization term by study-
ing the generator, and the classifier shared information (see
Tab. 2).

Experimental Setup We performed our experiments on
the CelebA dataset (Liu et al. 2015), which is annotated
with 40 binary attributes. We used its binary attributes as la-
bels for different classification tasks (e.g., attractive, big lips,
smiling). For each task, we trained a different discriminative
learner (i.e., f ). Note that the data splits are not necessarily
balanced. For example, the big lips attribute is a minority
class (i.e., 48,785 vs. 113,985). The discriminative learner is
composed of six convolutional layers followed by two fully
connected layers. ϕ(x) is the output obtained after the first
fully connected layer. For the DVAE, the encoder is com-
posed of four linear layers. The decoder is composed of the
transposed layers of the encoder. For the reconstruction loss
of the DVAE, we used mean squared error loss, and for the
reconstruction of the explanatory network, we used binary
cross-entropy. In all networks, we used the ReLU activation
function and Dropout. We used the same architectures for all
the tasks.

Counterfactual Representation
In the following, we study the ability of our mechanism to
identify discrete concepts used by the classifier. In Fig. 3,
we present our method on various binary classification tasks
such as attractiveness, big lips, and smiling (more studies
presented in the supplementary material). We show that the
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Figure 4: An illustration of our method applied to two
smiling/non-smiling classifiers trained on different splits.
Each split with a different gender majority. A majority of
the females are smiling in the first split, while most males
are smiling in the second. The results show how male and
female concepts are encoded: on the left, when the original
images are smiling, the explanations of the female-majority
classifier appear feminine, while the male majority appear
masculine. On the right, when the original images are not
smiling, the explanations are the opposite, i.e., the female-
majority classifier appears masculine, while the male major-
ity appears feminine. These findings demonstrate that exist-
ing biases in the data, and consequently in the model, emerge
in the explanations obtained in our method.

Task Change ϕ(x) ϕ′(x) Agreement
Smiling 98.86 92.10 91.80 98.08
Attractive 97.08 79.08 78.66 95.98
Big lips 92.13 85.20 80.33 89.70

Table 1: To evaluate the quality of the DVAE for our pur-
poses, we suggest two metrics. The first considers the ability
of our method to perform a boolean flip in the prediction.
The measure quantifies the percentage of cases in which
the prediction changes when the discrete representation is
flipped. We observe that, for all tasks, discrete flip changes
the prediction to the opposite label. The second evaluates the
reconstruction quality. For this, we compute the accuracy for
ϕ(x) and ϕ′(x). We also report the percentage of times the
predictions agree on the same label.

concepts images (i.e., g(ϕ′(x))) depict similar abstract rep-
resentations regardless of the data input. The reason for
this is that deep layers only contain information specific to
downstream work. As a result of the narrowing of informa-
tion, the generator must compensate for the lost information
to reconstruct the original image. Thus, the shown concepts
are mostly associated with the downstream task label. For
instance, the first three images of the second column all por-
tray a young woman with feminine features, despite the fact
that the three individuals are of different ages, skin colors,
and sex. Next, we will achieve counterfactual representation
through intervention. Note, this intervention is possible due
to the use of binary representation. Our study illustrates in-
teresting concepts that affect the prediction: 1) In the sec-
ond and third columns, we examine attractiveness and dis-
cover that counterfactual samples of attractive persons dis-
play an older figure. 2) In the fourth and fifth columns, we
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Figure 5: We edited input images to create their counterfac-
tual biased versions in order to test whether the bias concepts
detected by our method affect the classifier predictions. Ev-
ery row represents a different classification task. The first
and third columns show the original images with the ab-
sence and presence of the label attribute, respectively. In the
second and fourth columns, we show the edited image. In
addition, we show the prediction score for both the original
and edited images. For instance, in the second row, the skin
color affects the predicted scores for the big lips task (the
prediction score is 0.26 vs. 0.68).

examine the big lips classification and conclude that inter-
vention produces different skin colors. 3) In the sixth and
seventh columns, we examine the smiling classification and
find that the gender characteristics flip once the intervention
is conducted. Note, each user has the option of determining
whether or not these concepts constitute biases. Our goal
is to expose which concepts the classifier might pick, not
to determine whether or not they are biased. For instance,
whether age can be used to classify attractiveness is at the
discretion of the user. We next propose metrics to ensure our
DVAE works properly.

In Tab. 1, we measured the accuracy when we inject the
reconstructed representation ϕ′(x) to fK (i.e., fK(ϕ′(x))).
We tested similarities between the reconstructed representa-
tion (f(ϕ′(x))) and the original representation (ϕ(x)). We
found that the reconstructed representation keep most of the
original accuracy performance. For instance, for the smil-
ing task, the accuracy of the reconstruction representation is
91.80%, while the original accuracy is 92.10%. We further
suggest to quantify the quality of the intervened representa-
tion by the percentage of input data points that change their
prediction. We show that our method flips the prediction
when we employ the flipped discrete representation (i.e.,
ψ(x)). We found 98.86%, 97.08%, 92.13% percent of the
samples flipped prediction for the smiling, attractive, and big
lips classification respectively.

Dataset Bias
Bias in facial analysis has gained increasing attention over
time (Wang et al. 2020; Xu et al. 2020). Those biases are
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Task Without regularization With regularization
Smiling 0.43 0.84
Attractive 0.37 0.80
Big lips 0.51 0.85

Table 2: We perform an ablation study for our regulariza-
tion term. For this, we report the cosine similarity between
the explanatory and discriminative information through the
DVAE, i.e., cos (Iν(g), Iν(f)) where the input of g is ϕ′(x)
and the input of f is ϕ(x). We observe that with our regular-
ization, the shared explanatory and discriminative informa-
tion is significantly higher.

attributed to spurious correlations in the data. For example,
in CelebA, most of the women are smiling while men are
not. As a result, classifiers learn to exploit these correlations
resulting in biased models. Traditionally, practitioners had to
guess the bias of a particular concept and test the classifier
accordingly. We reveal those concepts in an unsupervised
manner using our method. In the following, we intentionally
introduce gender bias into a dataset. We then demonstrate
how our method reveals these biases.

Dataset Statistics Control Following Wang et al. (2020),
we investigated the smiling recognition task. We showed
that our method depicts feminine features in cases where the
classification network predicts ‘smiling’ and muscular fea-
tures when it predicts ‘not smiling.’

To further study this bias, we trained two classifiers with
different data splits 1) The female majority split, 70% of
smiling women and 30% of non-smiling men. 2) The male
majority split, 70% of smiling men and 30% of non-smiling
women. Fig. 4 illustrates that our method recognizes the in-
tegrated sex concept. In the first split, smiling faces are illus-
trated as female (i.e., the second column) and non-smiling
faces as male (i.e., the fifth column). On the other hand, the
opposite occurs with the second split (i.e., the third and sixth
columns)

Counterfactual Verification Generative adversarial net-
works have recently enhanced our ability to manipulate im-
ages to change their properties and generate realistic images.
One example is StyleCLIP (Patashnik et al. 2021), which
enables text-guided manipulations. We employed this tech-
nique and created counterfactual samples. We then measured
the effect and assessed the classifier predictions. Fig. 3 illus-
trates that age, color, and gender affect the attractive, big-
lips, and smiling classifiers respectively. Thus, we manip-
ulated images according to these concepts. We altered the
concepts as follows: 1) Age by the prompts “old face” and
“young face”, 2) Skin color by the prompts “black person”
and “white person”, and 3) Sex by the prompts “male face”
and “female face”. We provide more details in the supple-
mentary.

Classifier-Generator Shared Information
The main objective of the generator loss is to reconstruct the
original image, given a distilled representation of the im-

Figure 6: An illustration of the regularization effect on gen-
erated images. A non-smiling person is shown for the smil-
ing task. Our findings indicate that regularization helps to
change relevant concepts of prediction through interven-
tion. In the example above, a non-smiling generated im-
age became smiling upon regularization, but it remains non-
smiling without regularization.

age. However, the reconstruction loss term alone does not
consider to what extent the classifier utilizes each feature of
ϕ(x). Features in ϕ(x) may be relevant for the prediction but
not for the reconstruction and vice-versa. In the following,
we examined the essential role of our proposed regulariza-
tion term for generating a reliable explanation.

Quantitative Analysis In this experiment, we measure the
cosine similarity between the explanatory and discrimina-
tive information of g and f respectively. A cosine similarity
metric aims to quantify the similarity between two vectors
in the inner product space. This metric is bounded in the
range of [−1, 1]. Two information vectors that are oriented
the same way yield the maximum value of 1. One can notice
that our regularization term is proportional to the cosine sim-
ilarity. Tab. 2 shows that our regularization term significantly
improves the cosine similarity between the explanatory and
discriminative information vectors across tasks.

Qualitative Analysis Fig. 6 demonstrates the effects of
regularization on generated images. Generated images serve
to reveal concepts that the classifier employs in making pre-
dictions. Thus, interventions should change the concept in
a way that also changes prediction. In the smiling task, a
non-smiling person is expected, upon intervention, to have a
smiling concept image. As we can see on the right, without
regularization, the intervention does not result in a smiling
figure with teeth. However, on the left, with regularization,
an intervention leads to a smiling figure with exposed teeth.

Conclusion
Model interpretability plays an essential role in deep neu-
ral network debugging. Explanations provide insights about
the model’s performance rather than just looking at its test-
set metrics. It allows a data expert without neural network
knowledge to understand why a model made a prediction.
By doing so, confidence in such models improves. In this
work, we propose an explanatory approach to latent layer
explanation. Our proposed method permits the discovery of
the underlying concepts a model is using. Furthermore, it
allows interventions on those revealed concepts. With our
method, we hope to assist researchers in better understand-
ing the operation of their models.
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