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Abstract

Previous deep learning-based line segment detection (LSD)
suffers from the immense model size and high computational
cost for line prediction. This constrains them from real-time
inference on computationally restricted environments. In this
paper, we propose a real-time and light-weight line segment
detector for resource-constrained environments named Mo-
bile LSD (M-LSD). We design an extremely efficient LSD
architecture by minimizing the backbone network and re-
moving the typical multi-module process for line prediction
found in previous methods. To maintain competitive perfor-
mance with a light-weight network, we present novel train-
ing schemes: Segments of Line segment (SoL) augmentation,
matching and geometric loss. SoL augmentation splits a line
segment into multiple subparts, which are used to provide
auxiliary line data during the training process. Moreover, the
matching and geometric loss allow a model to capture addi-
tional geometric cues. Compared with TP-LSD-Lite, previ-
ously the best real-time LSD method, our model (M-LSD-
tiny) achieves competitive performance with 2.5% of model
size and an increase of 130.5% in inference speed on GPU.
Furthermore, our model runs at 56.8 FPS and 48.6 FPS on
the latest Android and iPhone mobile devices, respectively.
To the best of our knowledge, this is the first real-time deep
LSD available on mobile devices.

1 Introduction
Line segments and junctions are crucial visual features in
low-level vision, which provide fundamental information to
the higher level vision tasks, such as pose estimation (Přibyl,
Zemčı́k, and Čadı́k 2017; Xu et al. 2016), structure from
motion (Bartoli and Sturm 2005; Micusik and Wildenauer
2017), 3D reconstruction (Denis, Elder, and Estrada 2008;
Faugeras et al. 1992), image matching (Xue et al. 2017),
wireframe to image translation (Xue, Zhou, and Huang
2019) and image rectification (Xue et al. 2019b). More-
over, the growing demand for performing such vision tasks
on resource constraint platforms, like mobile or embedded
devices, has made real-time line segment detection (LSD)
an essential but challenging task. The difficulty arises from
the limited computational power and model size when find-
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Figure 1: Comparison of M-LSD and existing LSD methods
on Wireframe dataset. Inference speed (FPS) is computed
on Tesla V100 GPU. Size and value of circles indicate the
number of model parameters (Millions). M-LSD achieves
competitive performance with the lightest model size and
the fastest inference speed. Details are in Table 2.

ing the best accuracy and resource-efficiency trade-offs to
achieve real-time inference.

With the advent of deep neural networks, deep learning-
based LSD architectures have adopted models to learn var-
ious geometric cues of line segments and have proved to
show improvements in performance. As described in Fig-
ure 2, we have summarized multiple strategies that use deep
learning models for LSD. The top-down strategy (Xue et al.
2019a) first detects regions of line segment with attraction
field maps and then squeezes these regions into line seg-
ments to make predictions. In contrast, the bottom-up strat-
egy first detects junctions, then arranges them into line seg-
ments, and lastly verifies the line segments by using an extra
classifier (Zhou, Qi, and Ma 2019; Xue et al. 2020; Zhang
et al. 2019) or a merging algorithm (Huang and Gao 2019;
Huang et al. 2018). Recently, (Huang et al. 2020) proposes
Tri-Points (TP) representation for a simpler process of line
prediction without the time-consuming steps of line pro-
posal and verification.

Although previous efforts of using deep networks have
made remarkable achievements, real-time inference for LSD
on resource-constraint platforms still remains limited. There
have been attempts to present real-time LSD (Huang et al.
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Figure 2: (a) Previous LSD methods exploit multi-module processing for line segment prediction. In contrast, our method di-
rectly predicts line segments from feature maps with a single module. (b) Our method shows superior speed on backbone (Net.)
and line prediction (Pred.) over strategies (S.) by employing a light-weight network with a single module of line prediction.

2020; Meng et al. 2020; Xue et al. 2020), but they still de-
pend on server-class GPUs. This is mainly because the mod-
els that are used exploit heavy backbone networks, such as
dilated ResNet50-based FPN (Zhang et al. 2019), stacked
hourglass network (Meng et al. 2020; Huang et al. 2020),
and atrous residual U-net (Xue et al. 2019a), which require
large memory and high computational power. In addition,
as shown in Figure 2, the line prediction process consists of
multiple modules, which include line proposal (Xue et al.
2019a; Zhang et al. 2019; Zhou, Qi, and Ma 2019; Xue et al.
2020), line verification networks (Zhang et al. 2019; Zhou,
Qi, and Ma 2019; Xue et al. 2020) and mixture of convo-
lution module (Huang et al. 2020, 2018). As the size of
the model and the number of modules for line prediction
increase, the overall inference speed of LSD can become
slower, as shown in Figure 2b, while demanding higher com-
putation. Thus, increases in computational cost make it dif-
ficult to deploy LSD on resource-constraint platforms.

In this paper, we propose a real-time and light-weight
LSD for resource-constrained environments, named Mobile
LSD (M-LSD). For the network, we design a significantly
efficient architecture with a single module to predict line
segments. By minimizing the network size and removing the
multi-module process from previous methods, M-LSD is ex-
tremely light and fast. To maintain competitive performance
even with a light-weight network, we present novel train-
ing schemes: SoL augmentation, matching and geometric
loss. SoL augmentation divides a line segment into subparts,
which are further used to provide augmented line data dur-
ing the training phase. Matching and geometric loss train a
model with additional geometric information, including re-
lation between line segments, junction and line segmenta-
tion, length and degree regression. As a result, our model is
able to capture extra geometric information during training
to make more accurate line predictions. Moreover, the pro-

posed training schemes can be used with existing methods
to further improve performance in a plug-and-play manner.

As shown in Figure 1, our methods achieve competitive
performance and faster inference speed with a much smaller
model size. M-LSD outperforms previously the real-time
method, TP-LSD-Lite (Huang et al. 2020), with only 6.3%
of the model size but gaining an increase of 32.5% in infer-
ence speed. Moreover, M-LSD-tiny runs in real-time at 56.8
FPS and 48.6 FPS on the latest Android and iPhone mobile
devices, respectively. To the best of our knowledge, this is
the first real-time LSD method available on mobile devices.
Our code is available publicly 1.

2 Related Works
Deep Line Segment Detection. There have been ac-
tive studies on deep learning-based LSD. In junction-based
methods, DWP (Huang et al. 2018) includes two parallel
branches to predict line and junction heatmaps, followed
by a merging process. PPGNet (Zhang et al. 2019) and
L-CNN (Zhou, Qi, and Ma 2019) utilize junction-based
line segment representations with an extra classifier to ver-
ify whether a pair of points belongs to the same line seg-
ment. Another approach uses dense prediction. AFM (Xue
et al. 2019a) predicts attraction field maps that contain 2-
D projection vectors representing associated line segments,
followed by a squeeze module to recover line segments.
HAWP (Xue et al. 2020) is presented as a hybrid model of
AFM and L-CNN. Recently, (Huang et al. 2020) devises the
TP line representation to remove the use of extra classifiers
or heuristic post-processing found in previous methods and
proposes TP-LSD network with two branches: TP extraction
and line segmentation branches. Other approaches include
the use of transformers (Xu et al. 2021) or Hough transform

1https://github.com/navervision/mlsd

727



Figure 3: The overall architecture of M-LSD. In the feature extractor, block 1 ∼ 14 are parts of MobileNetV2, and block 15 ∼
23 are designed as a top-down architecture. The predicted line segments are generated with center and displacement maps.

with deep networks (Lin et al. 2020). However, it is com-
monly observed that the aforementioned multi-module pro-
cesses restrict existing LSD to run on resource-constrained
environments.

Real-time Object Detectors. Real-time object detection
has been an important task for deep learning-based object
detection. Object detectors proposed in earlier days, such
as RCNN-series (Girshick et al. 2014; Girshick 2015; Ren
et al. 2015), consist of two-stage architecture: generating
proposals in the first stage, then classifying the proposals in
the second stage. These two-stage detectors typically suf-
fer from slow inference speed and difficulty in optimiza-
tion. To handle this problem, one-stage detectors, such as
YOLO-series (Redmon et al. 2016; Redmon and Farhadi
2017, 2018) and SSD (Liu et al. 2016), are proposed to
achieve GPU real-time inference by reducing backbone size
and simplifying the two-stage process into one. This one-
stage architecture has been further studied and improved to
run in real-time on mobile devices (Howard et al. 2017; San-
dler et al. 2018; Wang, Li, and Ling 2018; Li et al. 2018).
Motivated by the transition from two-stage to one-stage ar-
chitecture in object detection, we argue that the compli-
cated multi-module processing in previous LSD can be dis-
regarded. We simplify the line prediction process with a sin-
gle module for faster inference speed and enhance the per-
formance by the efficient training strategies; SoL augmenta-
tion, matching and geometric loss.

3 M-LSD for Line Segment Detection
3.1 Network Architecture
We design light (M-LSD) and lighter (M-LSD-tiny) models
as popular encoder-decoder architectures. In efforts to build
a light-weight LSD model, our encoder networks are based
on MobileNetV2 (Sandler et al. 2018) which is well-known
to run in real-time on mobile environments. The encoder net-
work uses parts of MobileNetV2 to make it even lighter. As
illustrated in Figure 3, the encoder of M-LSD includes an

input to 96-channel of bottleneck blocks. The number of pa-
rameters in the encoder network is 0.56M (16.5% of Mo-
bileNetV2), while the total parameters of MobileNetV2 are
3.4M. For M-LSD-tiny, a slightly smaller yet faster model,
the encoder network also uses parts of MobileNetV2, in-
cluding an input to 64-channel of bottleneck blocks which
results in a number of 0.25M (7.4% of MobileNetV2). The
decoder network is designed using a combination of block
types A, B, and C. The expansive path consists of concate-
nation of feature maps from the skip connection and upscale
from block type A, followed by two 3× 3 convolutions with
a residual connection in-between from block type B. Simi-
larly, block type C performs two 3 × 3 convolutions, the
first being a dilated convolution, followed by a 1× 1 convo-
lution. Please refer to the supplementary material for further
details on the network architectures.

As shown in Figure 2b, we observe that one of the most
critical bottlenecks in inference speed has been the predic-
tion process, which contains multi-module processing from
previous methods. In this paper, we argue that the com-
plicated multi-module can be disregarded. As illustrated in
Figure 3, we generate line segments directly from the final
feature maps in a single module process. In the final fea-
ture maps, each feature map channel serves its own purpose:
1) TP maps have seven feature maps, including one length
map, one degree map, one center map, and four displace-
ment maps. 2) SoL maps have seven feature maps with the
same configuration as TP maps. 3) Segmentation maps have
two feature maps, including junction and line maps.

3.2 Line Segment Representation
Line segment representation determines how line segment
predictions are generated and ultimately affects the ef-
ficiency of LSD. Hence, we employ the TP representa-
tion (Huang et al. 2020) which has been introduced to have
a simple line generation process and shown to perform real-
time LSD using GPUs. TP representation uses three key-
points to depict a line segment: start, center, and end points.
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(a) TP representation (b) SoL augmentation

Figure 4: Tri-Points (TP) representation and Segments of
Line segment (SoL) augmentation. ls, lc, and le denote start,
center, and end points, respectively. ds and de are displace-
ment vectors to start and end points. l0 ∼ l2 indicates inter-
nally dividing points of the line segment lsle.

As illustrated in Figure 4a, the start ls and end le points are
represented by using two displacement vectors (ds, de) with
respect to the center lc point. The line generation process,
which is to convert center point and displacement vectors to
a vectorized line segment, is performed as:

(xls , yls) = (xlc , ylc) + ds(xlc , ylc),

(xle , yle) = (xlc , ylc) + de(xlc , ylc), (1)

where (xα, yα) denotes coordinates of an arbitrary α point.
ds(xlc , ylc) and de(xlc , ylc) indicate 2D displacements from
the center point lc to the corresponding start ls and end le
points. The center point and displacement vectors are trained
with one center map and four displacement maps (one for
each x and y value of the displacement vectors ds and de).
In the line generation process, we extract the exact center
point position by applying non-maximum suppression on
the center map. Next, we generate line segments with the
extracted center points and the corresponding displacement
vectors using a simple arithmetic operation as expressed in
Equation 1; thus, making inference efficient and fast.

3.3 Matching Loss
Following (Huang et al. 2020), we use the weighted bi-
nary cross-entropy (WBCE) loss and smooth L1 loss as cen-
ter loss Lcenter and displacement loss Ldisp, which are for
training the center and displacement map, respectively. The
line segments under the TP representation are decoupled
into center points and displacement vectors, which are op-
timized separately. However, the coupled information of the
line segment is under-utilized in the objective functions.

To resolve this problem, we present a matching loss,
which leverages the coupled information w.r.t. the ground
truth. As illustrated in Figure 5a, matching loss considers re-
lation between line segments by guiding the generated line
segments to be similar to the matched GT. We first take the
endpoints of each prediction, which can be calculated via
the line generation process, and measure the Euclidean dis-
tance d(·) to the endpoints of the GT. Next, these distances
are used to match predicted line segments l̂ with GT line
segments l that are under a threshold γ:

d(ls, l̂s) < γ and d(le, l̂e) < γ, (2)

(a) Matching loss (b) Geometric loss

Figure 5: Matching and geometric loss. (a) Given a matched
pair of a predicted line l̂ and a GT line l, matching loss
(Lmatch) optimizes the predicted start, end, and center
points. (b) Given a line segment, M-LSD learns various geo-
metric cues: junction (Ljunc) and line (Lline) segmentation,
length (Llength) and degree (Ldegree) regression.

where ls and le are the start and end points of the line l, and
γ is set to 5 pixels. Then, we obtain a set M of matched line
segments (l, l̂) that satisfies this condition. Finally, the L1
loss is used for the matching loss, which aims to minimize
the geometric distance of the matched line segments w.r.t the
start, end, and center points as follows:

Lmatch =
1

|M |
∑

(l,l̂)∈M

‖ ls − l̂s ‖1 + ‖ le − l̂e ‖1

+ ‖ C̃(l̂)− (ls + le)/2 ‖1, (3)

where C̃(l̂) is the center point of line l̂ from the center map.
The total loss function for the TP map can be formulated as
LTP = Lcenter + Ldisp + Lmatch.

3.4 SoL Augmentation
We propose Segments of Line segment (SoL) augmentation
that increases the number of line segments with wider va-
rieties of length for training. Learning line segments with
center points and displacement vectors can be insufficient
in certain circumstances where a line segment may be too
long to manage within the receptive field size or the cen-
ter points of two distinct line segments may be too close to
each other. To address these issues and provide auxiliary in-
formation to the TP representation, SoL explicitly splits line
segments into multiple subparts with overlapping portions
of each other. An overlap between each split is enforced to
preserve connectivity among the subparts.

As described in Figure 4b, we compute k internally di-
viding points (l0, l1, · · · , lk) and separate the line segment
lsle into k subparts (lsl1, l0l2, · · · , lk−1le). Expressed in
TP representation, each subpart is trained as if it is a typi-
cal line segment. The number of internally dividing points
k is determined by the length of the line segment as k =
br(l)/(µ/2)e − 1, where r(l) denotes the length of line seg-
ment l, and µ is the base length of subparts. Note that when
k ≤ 1, we do not split the line segment. The resulting length
of each subpart can be similar to µ with small margins of er-
ror due to the rounding function b·e, and we empirically set
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M Schemes FH sAP 10 LAP

1 Baseline 74.3 48.9 48.1
2 + Matching loss 75.4 52.2 52.5
3 + Geometric loss 76.2 55.1 55.3
4 + SoL augmentation 77.2 58.0 57.9

Table 1: Ablation study of M-LSD-tiny on Wireframe. The
baseline is M-LSD-tiny trained with only TP representation.
M denotes model number.

µ = input size× 0.125. The loss function of LSoL follows
the same configuration as LTP , while each subpart is treated
as an individual line segment. Note that the line generation
process is only done in TP maps, not in SoL maps.

3.5 Learning with Geometric Information
To boost the quality of predictions, we incorporate various
geometric information about line segments which helps the
overall learning process. In this section, we present learning
LSD with junction and line segmentation, and length and
degree regression for additional geometric information.

Junction and Line Segmentation Center point and dis-
placement vectors are highly related to pixel-wise junctions
and line segments in the segmentation maps of Figure 3. For
example, end points, derived from the center point and dis-
placement vectors, should be the junction points. Also, cen-
ter points must be localized on the pixel-wise line segment.
Thus, learning the segmentation maps of junctions and line
segments works as a spatial attention cue for LSD. As il-
lustrated in Figure 3, M-LSD contains segmentation maps,
including a junction map and a line map. We construct the
junction GT map by scaling with Gaussian kernel as the cen-
ter map, while using a binary map for line GT map. The total
segmentation loss is defined asLseg = Ljunc+Lline, where
we use WBCE loss for both Ljunc and Lline.
Length and Degree Regression As displacement vectors
can be derived from the length and degree of line segments,
they can be additional geometric cues to support the dis-
placement maps. We compute the length and degree from
the ground truth and mark the values on the center of line
segments in each GT map. Next, these values are extrapo-
lated to a 3 × 3 window so that all neighboring pixels of a
given pixel contain the same value. As shown in Figure 3, we
maintain predicted length and degree maps for both TP and
SoL maps, where TP uses the original line segment and SoL
uses augmented subparts. As the ranges of length and de-
gree are wide, we divide each length by the diagonal length
of the input image for normalization. For degree, we divide
each degree by 2π and add 0.5. The total regression loss can
be formulated as Lreg = Llength + Ldegree, where we use
smooth L1 loss for both Llength and Ldegree.

3.6 Final Loss Functions
The geometric loss function is defined as the sum of seg-
mentation and regression loss:

LGeo = Lseg + Lreg. (4)

(a) Baseline (M1) (b) w/ matching loss (M2)

(c) w/ geometric loss (M3) (d) w/ SoL augmentation (M4)

Figure 6: Saliency maps generated from TP center map.
Model numbers (M1∼4) are from Table 1.

The loss function for SoL maps LSoL follows the same for-
mulation as LTP but with SoL augmented GT. Finally, we
obtain the final loss function to train M-LSD as follows:

Ltotal = LTP + LSoL + LGeo. (5)

Please refer to the supplementary material for further details
on the feature maps and losses.

4 Experiments
4.1 Experimental Setting
Dataset and Evaluation Metrics. We evaluate our model
with two famous LSD datasets: Wireframe (Huang et al.
2018) and YorkUrban (Denis, Elder, and Estrada 2008). The
Wireframe dataset consists of 5,000 training and 462 test
images of man-made environments, while the YorkUrban
dataset has 102 test images. Following the typical train-
ing and test protocol (Huang et al. 2020; Zhou, Qi, and
Ma 2019), we train our model with the training set from
the Wireframe dataset and test with both Wireframe and
YorkUrban datasets. We evaluate our models using preva-
lent metrics for LSD (Huang et al. 2020; Zhang et al. 2019;
Meng et al. 2020; Xue et al. 2019a; Zhou, Qi, and Ma 2019)
that include: heatmap-based metric FH , structural average
precision (sAP), and line matching average precision (LAP).

Optimization. We train our model on Tesla V100 GPU.
We use the TensorFlow (Abadi et al. 2016) framework for
model training and TFLite 2 for porting models to mobile
devices. Input images are resized to 320× 320 or 512× 512
in both training and testing, which are specified in each
experiment. The input augmentation consists of horizontal
and vertical flips, shearing, rotation, and scaling. We use
ImageNet (Deng et al. 2009) pre-trained weights on the
parts of MobileNetV2 (Sandler et al. 2018) in M-LSD and
M-LSD-tiny. Our model is trained using the Adam opti-
mizer (Kingma and Ba 2014) with a learning rate of 0.01.
We use linear learning rate warm-up for 5 epochs and cosine
learning rate decay (Loshchilov and Hutter 2016) from 70

2www.tensorflow.org/lite
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Methods Input Wireframe YorkUrban Params(M) FPS
FH sAP5 sAP10 LAP FH sAP5 sAP10 LAP

LSD (Von Gioi et al. 2008) 320 64.1 6.7 8.8 18.7 60.6 7.5 9.2 16.1 - 100.0†

DWP (Huang et al. 2018) 512 72.7 3.7 5.1 6.6 65.2 2.8 2.6 3.1 33.0 2.2
AFM (Xue et al. 2019a) 320 77.3 18.3 23.9 36.7 66.3 7.0 9.1 17.5 43.0 14.1
LGNN (Meng et al. 2020) 512 - - 62.3 - - - - - - 15.8‡

LGNN-lite (Meng et al. 2020) 512 - - 57.6 - - - - - - 34.0‡

TP-LSD-Lite (Huang et al. 2020) 320 80.4 56.4 59.7 59.7 68.1 24.8 26.8 31.2 23.9 87.1
TP-LSD-Res34 (Huang et al. 2020) 320 81.6 57.5 60.6 60.6 67.4 25.3 27.4 31.1 23.9 45.8
TP-LSD-Res34 (Huang et al. 2020) 512 80.6 57.6 57.2 61.3 67.2 27.6 27.7 34.3 23.9 20.0
TP-LSD-HG (Huang et al. 2020) 512 82.0 50.9 57.0 55.1 67.3 18.9 22.0 24.6 7.4 48.9
LETR (Xu et al. 2021) 1100∗ 82.6 59.2 65.6 65.1 66.6 24.0 27.6 32.5 121.2 5.4
L-CNN (Zhou, Qi, and Ma 2019) 512 77.5 58.9 62.8 59.8 64.6 25.9 28.2 32.0 9.8 16.6
HAWP (Xue et al. 2020) 512 80.3 62.5 66.5 62.9 64.8 26.1 28.5 30.4 10.4 32.9
HT-L-CNN (Lin et al. 2020) 512 - 60.3 64.2 - - 25.7 28.0 - 9.3 7.5‡

HT-HAWP (Lin et al. 2020) 512 - 62.9 66.6 - - 25.0 27.4 - 10.5 12.2‡

L-CNN + M-LSD-s 512 80.7 59.4 63.7 63.8 66.5 27.5 28.1 31.7 9.8 16.6
HAWP + M-LSD-s 512 82.5 63.3 67.1 64.2 66.7 27.5 28.5 32.4 10.4 32.9
M-LSD-tiny 320 76.8 43.0 51.3 50.1 61.9 17.4 21.3 23.7 0.6 200.8
M-LSD-tiny 512 77.2 52.3 58.0 57.9 62.4 22.1 25.0 28.3 0.6 164.1
M-LSD 320 78.7 48.2 55.5 55.7 63.4 20.2 23.9 27.7 1.5 138.2
M-LSD 512 80.0 56.4 62.1 61.5 64.2 24.6 27.3 30.7 1.5 115.4

Table 2: Quantitative comparisons with existing LSD methods. FPS is evaluated in Tesla V100 GPU, where † denotes CPU FPS
and ‡ denotes the values from the corresponding paper due to no published or incomplete implementation. ∗ denotes resizing
the image with the shortest side at least 1100 pixels. M-LSD-s indicates the proposed training schemes.

epoch to 150 epoch. We train the model for a total of 150
epochs with a batch size of 64.

4.2 Ablation Study and Interpretability
We conduct a series of ablation experiments to analyze our
proposed method. M-LSD-tiny is trained and tested on the
Wireframe dataset with an input size of 512 × 512. As
shown in Table 1, all the proposed schemes contribute to
a significant performance improvement. In addition, we in-
clude saliency map visualizations generated from each fea-
ture map to analyze networks learned from each training
scheme in Figure 6 using GradCam (Selvaraju et al. 2017).
The saliency map interprets important regions and impor-
tance levels on the input image by computing the gradients
from each feature map.

Matching Loss. Integrating matching loss shows per-
formance boosts on both pixel localization accuracy and
line prediction quality. We observe weak attention on center
points from the baseline saliency maps in Figure 6a, while
w/ matching loss amplifies the attention on center points in
Figure 6b. This demonstrates that training with coupled in-
formation of center points and displacement vectors allows
the model to learn with more line-awareness features.

Geometric Loss. Adding geometric loss gives perfor-
mance boosts in every metric. Moreover, the saliency map of
Figure 6c shows more distinct and stronger attention on cen-
ter points and line segments as compared to that of saliency
maps w/ matching loss in Figure 6b. It shows that geometric
information work as spatial attention cues for training.

SoL Augmentation. Integrating SoL augmentation
shows significant performance boost. In the saliency maps

of Figure 6c, w/ geometric loss shows strong but vague at-
tention on center points with disconnected line attention for
long line segments. This can be a problem because the entire
line information is essential to compute the center point. In
contrast, w/ SoL augmentation in Figure 6d shows more pre-
cise center point attention as well as clearly connected line
attention. This demonstrates that augmenting line segments
by the number and length guides the model to be more ro-
bust in pixel-based and line matching-based qualities.

4.3 Comparison with Other Methods
As shown in Table 2, we conduct experiments that combine
the proposed training schemes (SoL augmentation, match-
ing and geometric loss) with existing methods. Finally, we
compare our proposed M-LSD and M-LSD-tiny with the
previous state-of-the-art methods.

Existing methods with M-LSD Training Schemes. As
our proposed training schemes can be used with exist-
ing LSD methods, we demonstrate this using L-CNN and
HAWP following Deep Hough Transform (HT) (Lin et al.
2020), a recently proposed combinable method. L-CNN +
HT (HT-L-CNN) shows a performance boost of 1.4% while
L-CNN + M-LSD-s shows a boost of 0.9% in sAP 10.
HAWP + HT (HT-HAWP) shows 0.1% of performance
boost, while HAWP + M-LSD-s shows 0.6% of performance
boost in sAP 10, which makes the combination one of the
state-of-the-art performance. Thus, it demonstrates that the
proposed training schemes are flexible and powerful to use
with existing LSD methods.

M-LSD and M-LSD-tiny. Our proposed models achieve
competitive performance and the fastest inference speed
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Figure 7: Qualitative evaluation of M-LSD-tiny and M-LSD
on WireFrame dataset.

even with a limited model size. In comparison with the pre-
vious fastest model, TP-LSD-Lite, M-LSD with input size
of 512 shows higher performance and an increase of 32.5%
in inference speed with only 6.3% of the model size. Our
fastest model, M-LSD-tiny with 320 input size, has a slightly
lower performance than that of TP-LSD-Lite, but achieves
an increase of 130.5% in inference speed with only 2.5%
of the model size. Compared to the previous lightest model
TP-LSD-HG, M-LSD with 512 input size outperforms on
sAP 5, sAP 10 and LAP with an increase of 136.0% in in-
ference speed with 20.3% of the model size. Our lightest
model, M-LSD-tiny with 320 input size, shows an increase
of 310.6% in the inference speed with 8.1% of the model
size compared to TP-LSD-HG. Previous methods can be de-
ployed as real-time line segment detectors on server-class
GPUs, but not on resource-constrained environments either
because the model size is too large or the inference speed
is too slow. Although M-LSD does not achieve state-of-the-
art performance, it shows competitive performance and the
fastest inference speed with the smallest model size, offering
the potential to be used in real-time applications on resource-
constrained environments, such as mobile devices.

4.4 Visualization
We visualize outputs of M-LSD and M-LSD-tiny in Fig-
ure 7. Junctions and line segments are colored with cyan
blue and orange, respectively. Compared to the GT, both
models are capable of identifying junctions and line seg-
ments with high precision even in complicated low contrast
environments such as (a) and (c). Although the results of M-
LSD-tiny may have a few small line segments missing and
junctions incorrectly connected, the fundamental line seg-
ments to identify the environmental structure are accurate.

The goal of our model is to detect the structural line seg-
ments as (Huang et al. 2018) while avoiding texture and pho-
tometric line segments. However, we observe that some are
included in our results, such as texture on the floor in (b) and

M Input Device FP L (ms) FPS Mem (MB)

M
-L

SD
-t

in
y 320

iPhone 32 30.6 32.7 169
16 20.6 48.6 111

Android 32 31.0 32.3 103
16 17.6 56.8 78

512
iPhone 32 51.6 19.4 203

16 36.8 27.1 176

Android 32 55.8 17.9 195
16 25.4 39.4 129

M
-L

SD

320
iPhone 32 74.5 13.4 241

16 46.4 21.6 188

Android 32 82.4 12.1 236
16 38.4 26.0 152

512
iPhone 32 121.6 8.2 327

16 90.7 11.0 261

Android 32 177.3 5.6 508
16 79.0 12.7 289

Table 3: Latency (L) and memory usage (Mem) on iPhone
(A14 Bionic) and Android phone (Snapdragon 865). M and
FP are model and floating point, respectively.

shadow on the wall in (d). We acknowledge this to be a com-
mon problem for existing methods, and considering texture
and photometric features for training would be great future
work. We include more visualizations with a comparison of
existing methods in the supplementary material.

4.5 Deployment on Mobile Devices
We deploy M-LSD on mobile devices and evaluate the mem-
ory usage and inference speed. We use iPhone 12 Pro with
A14 bionic chipset and Galaxy S20 Ultra with Snapdragon
865 ARM chipset. As shown in Table 3, M-LSD-tiny and
M-LSD are small enough to be deployed on mobile de-
vices where memory requirements range between 78MB and
508MB. The inference speed of M-LSD-tiny is fast enough
to be real-time on mobile devices where it ranges from a
minimum of 17.9 FPS to a maximum of 56.8 FPS. M-LSD
still can be real-time with 320 input size, however, with 512
input size, FP16 may be required for a faster FPS over 10.
Overall, as all our models have small memory requirements
and fast inference speed on mobile devices, the exceptional
efficiency allows M-LSD variants to be used in real-world
applications. To the best of our knowledge, this is the first
and the fastest real-time line segment detector on mobile de-
vices ever reported.

5 Conclusion
We introduce M-LSD, a light-weight and real-time line seg-
ment detector for resource-constrained environments. Our
model is designed with a significantly efficient network ar-
chitecture and a single module process to predict line seg-
ments. To maintain competitive performance even with a
light-weight network, we present novel training schemes:
SoL augmentation, matching and geometric loss. As a result,
our proposed method achieves competitive performance and
the fastest inference speed with the lightest model size.
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