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Abstract

The rapid development of facial manipulation techniques has
aroused public concerns in recent years. Existing deepfake
video detection approaches attempt to capture the discrim-
inative features between real and fake faces based on tem-
poral modelling. However, these works impose supervisions
on sparsely sampled video frames but overlook the local mo-
tions among adjacent frames, which instead encode rich in-
consistency information that can serve as an efficient indica-
tor for DeepFake video detection. To mitigate this issue, we
delves into the local motion and propose a novel sampling
unit named snippet which contains a few successive videos
frames for local temporal inconsistency learning. Moreover,
we elaborately design an Intra-Snippet Inconsistency Module
(Intra-SIM) and an Inter-Snippet Interaction Module (Inter-
SIM) to establish a dynamic inconsistency modelling frame-
work. Specifically, the Intra-SIM applies bi-directional tem-
poral difference operations and a learnable convolution ker-
nel to mine the short-term motions within each snippet. The
Inter-SIM is then devised to promote the cross-snippet infor-
mation interaction to form global representations. The Intra-
SIM and Inter-SIM work in an alternate manner and can be
plugged into existing 2D CNNs. Our method outperforms
the state of the art competitors on four popular benchmark
dataset, i.e., FaceForensics++, Celeb-DF, DFDC and Wild-
Deepfake. Besides, extensive experiments and visualizations
are also presented to further illustrate its effectiveness.

Introduction
With the rapid development of deep learning-based meth-
ods, especially generative models, various DeepFake tech-
niques (Koujan et al. 2020; Nirkin, Keller, and Hassner
2019) have been proposed. Since these techniques can syn-
thesize more and more realistic DeepFakes that are hardly
distinguishable by humans, abuse of them can easily trig-
ger severe societal problems or political threats over the
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Figure 1: Illustration of local inconsistency in snippets.
Since the snippet contains densely sampled frames, differ-
ent type of inconsistency caused by subtle motions can be
captured better, which can serve as a strong indicator for
identifying DeepFakes.

world. Therefore, it is of great importance to develop effec-
tive methods for face forgery detection.

Recently, significant progress has been achieved in Deep-
Fake detection. As the release of large-scale face forgery
video datasets (Rossler et al. 2019; Li et al. 2020b; Dol-
hansky et al. 2019; Zi et al. 2020), it enables the training
of deep convolutional neural networks (DCNNs) to iden-
tify DeepFakes with various manipulations, e.g., DeepFakes
and FaceSwap. Image-based methods focus on mining vari-
ous frame-level cues including frequency information (Qian
et al. 2020), auxiliary masks (Chen et al. 2021; Wang et al.
2020) and textural information (Zhao et al. 2021) to improve
performance. However, when encountering extremely real-
istic images, image-based methods may fail to mine them
and thus have limited performance. Besides, they do not
consider the inconsistent facial movements between real and
fake videos, which derives from the frame-by-frame manip-
ulation.

Therefore, many researchers recently develop video-
based methods to capture such inconsistency as a discrim-
inative clue for DeepFake detection. Earlier methods treat
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this task as a general temporal modelling problem and clas-
sic approaches like LSTM (Sohrawardi et al. 2019) and
3DCNN (Zi et al. 2020) are applied to solve this problem.
However, they are not specifically designed for DeepFake
detection and accordingly achieve inferior performance, not
to mention their high computational cost. More recent works
start to study the inconsistency to locate the forgery trace
in DeepFake videos, e.g., S-MIL (Li et al. 2020a) and
STIL (Gu et al. 2021), and show promising results. The
state-of-the-art STIL observes that the motion between ad-
jacent frames in real videos is more smooth than fake ones.
They term this clue as a form of inconsistency and exploit
the temporal difference over adjacent frames to model it.
However, they apply a sparse sampling strategy for each
video and the interval of sampled frames might be too big
to capture this inconsistency resulting from subtle motion.

In our perspective, the inconsistency caused by frame-
by-frame manipulation can be observed best within densely
sampled frames, i.e., the temporal locality plays a key role
for inconsistency mining, as depicted in Fig 1. Therefore,
we propose to extract inconsistency information based on
video snippets, each of which is composed of N successive
video frames. All snippets span uniformly over the entire
video to form a local-to-global view. To deal with these snip-
pets, an Intra-Snippet Inconsistency Module (Intra-SIM) and
an Inter-Snippet Interaction Module (Inter-SIM) are devised
and they are performed in an alternate manner. Specifically,
the Intra-SIM first adopts bi-directional temporal difference
operation to model the intra-snippet inconsistency. Then, a
novel coordinate attention over H × T and T × W dimen-
sions are respectively exploited to extract fine-grained while
more comprehensive representations. Finally, learnable ker-
nels are introduced to adaptively aggregate the intra-snippet
inconsistency information. The Inter-SIM employs a new
two-branch structure to establish a cross-snippet view for
interaction promotion. Both of the Intra-SIM and Inter-SIM
serve as plug-and-play modules and could be integrated into
the off-the-shelf 2D CNNs.

The proposed method surpasses the state-of-the-art com-
petitors on both intra-dataset evaluation, i.e., FF++ (Rossler
et al. 2019), DFDC (Dolhansky et al. 2019), Celeb-DF (Li
et al. 2020b) and WildDeepfake (Zi et al. 2020) datasets,
and inter-dataset generalization settings. The visualiza-
tion experiment further demonstrates the effectiveness of
each component. Interestingly, when encountering partially
forged videos, the inter-snippet motion activation map in
Inter-SIM can correctly localize the forged faces in both
short and long-term video sequences. In summary, our main
contributions are three-folds:

• We propose a novel DeepFake video detection scheme by
focusing on mining local inconsistency encoded in video
snippets, which contain a few successive video frames.

• A novel Intra-SIM is devised to learn snippet-specific
short-term inconsistency and a new Inter-SIM is de-
signed to help snippets better interact with each other.
Both of them work as plug-and-play modules and can be
easily integrated with the existing 2D backbones.

• We set a new state-of-the-art result on four popular

benchmarks, i.e., FaceForensics++, Celeb-DF, DFDC
and WildDeepfake datasets. Cross-dataset generalization
and visualizations further validate the effectiveness of the
proposed method.

Related Work
DeepFake Detection. The existing deep learning-based
forgery detectors can be classified into image and video-
based methods. The image-based methods aim to mine dis-
criminative frame-level representations for identification.
(Rossler et al. 2019) evaluates five well-known network
architectures to solve the task. (Dang et al. 2020) pro-
poses a weakly supervised methods to highlight the informa-
tive regions for processing and improving the feature maps
for classification. (Li et al. 2021) introduces a frequency-
aware feature learning framework, which compresses intra-
class variations of real faces and enlarges inter-class differ-
ences. All these methods achieve impressive performance in
image-level detection. However, as the develop of manipu-
lation techniques, the frame-level forgery trace can hardly
be captured. Recent works treat this task as a video-level
representation learning problem and most of efforts are de-
voted to modeling the inconsistency presented in real and
fake videos for classification. (Sabir et al. 2019) achieves
state-of-the-art performance through combining recurrent
convolutional strategies along with face pre-processing tech-
niques. (Qi et al. 2020) reveals forgery by predicting the
heartbeat rhythms from videos since the rhythms will be
broken by manipulations. (Masi et al. 2020) presents a two-
branch architecture to amplify artifacts and suppress high-
level facial contents for isolating Deepfakes. (Li et al. 2020a)
introduces the multiple instance learning framework for the
partial face attack in videos. (Haliassos et al. 2021) targets
the semantic irregularities in mouth movement presented in
fake videos for better cross-dataset generalization. (Agarwal
and Farid 2021) describes a forensic technique that exploits
the abnormal shape of the ear and ear canal caused by move-
ment of lower jaw. Actually, these methods model the long-
term inconsistency and the short-term inconsistency is com-
pletely ignored, which, in this paper, we consider extremely
crucial to the task.
Video Analysis. The core of video-related tasks is tem-
poral modeling and many efforts are devoted to model-
ing the temporal dependency. Early works such C3D (Tran
et al. 2014) and I3D (Carreira and Zisserman 2017) ex-
ploits the 3D CNNs for temporal modeling. These models
either are computationally expensive than the 2D counter-
parts or learn spatial-temporal features from snippets with-
out considering the video-level evolution. To mitigate the
efficiency issue, several efficient modules are proposed to
equip the 2D CNNs with the capacity of temporal modeling.
(Lin, Gan, and Han 2019) proposes temporal shift module
to shift part of channels along temporal dimension for effi-
cient temporal modeling. (Wang et al. 2021) establishes an
two-level temporal modeling paradigm to capture both short
and long-term information over the entire video. To capture
the temporal evolution, (Zhang et al. 2020) presents a novel
video-level 4D convolution (V4D) with residual connections
to simultaneously capture the long-term relation between
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Figure 2: The overall architecture of the proposed method. We sample several snippets uniformly from each video and each
snippet contains a few successive frames. In ResNet backbones, the proposed Intra-SIM and Inter-SIM modules are inserted
to res-blocks in an alternate manner and turn them into the Intra-SI and Inter-SI blocks. HT-Conv and TW-Conv represent
convolutions over T × W and T × W dimensions separately. ⊕, ⊖, ⊗ and ⊙ denote element-wise addition, subtraction,
multiplication and depth-wise convolution, respectively.

snippets while maintaining 3D features before interaction.
(Wu et al. 2021) generates dynamic convolutional kernels to
adaptively aggregate long-range temporal information from
adjacent snippets. These methods focus on modeling long-
range dependency and applying them without task-specific
knowledge of fake videos may limit their performance.

Different from all the methods mentioned above, we focus
on short-term motion modeling and argue that, for DeepFake
video detection, the key lies in modeling the intra-snippet
inconsistency. Besides, promoting the interaction between
snippets can help learn better video-level representations.

Approach
In this section, we first present the technical details of the
proposed Intra-Snippet Inconsistency Module (Intra-SIM)
and the Inter-Snippet Interaction Module (Inter-SIM). Then
we describe how to instantiate them with the off-the-shelf
2D CNNs.

Intra-Snippet Inconsistency Module
As already mentioned, learning from short-term motion
plays a vital role in mining temporal inconsistency. To this
end, we sample the video sequence uniformly into U snip-
pets, each of which contains T successive frames rather than
a single frame like the previous works do. Our designed

Intra-Snippet Inconsistency Module (Intra-SIM) then takes
frames within each snippet to model the local inconsistency
encoded in subtle motions. As illustrated in Fig. 2, our Intra-
SIM works in a two-branch manner. The short branch is a
residual connection so that the original representations is
directly accessible. The long branch consists of an Intra-
Snippet Motion Attention (Intra-SMA) module and a path-
way with learnable convolutional kernels to adaptively ag-
gregate intra-snippet inconsistency information.

In consideration of computation efficiency, let tensor I ∈
RC×T×H×W denotes the input feature within each snippet,
where C is the number of channels and T,H,W are the tem-
poral and spatial dimensions. We first split I into two equal
parts along the channel dimension to get I1 and I2, and then
feed them into subsequent branches. To model temporal re-
lation, Intra-SMA applies bi-directional temporal difference
guided coordinate attention to make the network attend to
local motions. Take the forward flow in Fig. 2 for example,
the input I2 = [F1, · · · , FT ] ∈ R

C
2 ×T×H×W is first com-

pressed by a ratio r and then used to calculate the temporal
difference among adjacent frames:

Dt,t+1 = Ft − Conv3×3(Ft+1), (1)
where Dt,t+1 represents the forward temporal difference for
Ft and Conv3×3 is channel-wise convolution. After that,
Dt,t+1 is reshaped into two coordinate-wise representations,
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Methods FaceForensics++ HQ FaceForensics++ LQ
DF F2F FS NT DF F2F FS NT

ResNet-50 0.9893 0.9857 0.9964 0.9500 0.9536 0.8893 0.9464 0.8750
Xception 0.9893 0.9893 0.9964 0.9500 0.9678 0.9107 0.9464 0.8714
LSTM 0.9964 0.9929 0.9821 0.9393 0.9643 0.8821 0.9429 0.8821
C3D 0.9286 0.8857 0.9179 0.8964 0.8929 0.8286 0.8786 0.8714
I3D 0.9286 0.9286 0.9643 0.9036 0.9107 0.8643 0.9143 0.7857
TEI† 0.9786 0.9714 0.9750 0.9429 0.9500 0.9107 0.9464 0.9036

DSANet† 0.9929 0.9929 0.9964 0.9571 0.9679 0.9321 0.9536 0.9178
V4D† 0.9964 0.9929 0.9964 0.9607 0.9786 0.9357 0.9536 0.9250

FaceNetLSTM 0.8900 0.8700 0.9000 - - - - -
Co-motion-70 0.9910 0.9325 0.9830 0.9045 - - - -
DeepRhythm 0.9870 0.9890 0.9780 - - - - -
ADDNet-3d† 0.9214 0.8393 0.9250 0.7821 0.9036 0.7821 0.8000 0.6929

S-MIL 0.9857 0.9929 0.9929 0.9571 0.9679 0.9143 0.9464 0.8857
S-MIL-T 0.9964 0.9964 1.0 0.9429 0.9714 0.9107 0.9607 0.8679

STIL 0.9964 0.9929 1.0 0.9536 0.9821 0.9214 0.9714 0.9178
Ours 1.0 0.9929 1.0 0.9643 0.9928 0.9571 0.9786 0.9428

Table 1: Comparison with the state-of-the-art DeepFake detectors on FF++ dataset. ‘LQ’ means low image quality while ‘HQ’
stands for high quality. † implies re-implementation. Best results are bold in font and ’-’ indicates results are unavailable.

i.e., Dh
t,t+1 ∈ RW×C

2 ×H×T and Dw
t,t+1 ∈ RH×C

2 ×T×W ,
which further undergo through a multi-scale structure to
capture fine-grained short-term motion information:

DH
t,t+1 =Conv1×1(Conv3×3(D

h
t,t+1) +Dh

t,t+1), (2)

DW
t,t+1 =Conv1×1(Conv3×3(D

w
t,t+1) +Dw

t,t+1), (3)

where DH
t,t+1, DW

t,t+1 and Conv1×1 are forward vertical
inconsistency, forward horizontal inconsistency and 1 × 1
convolution for dimension recovery, respectively. Backward
vertical difference DH

t+1,t and backward horizontal differ-
ence DW

t+1,t can be obtained in a similar way. Averaging
these features and applying a sigmoid function, the hori-
zontal and vertical attention AttenH and AttenW can be
obtained. As shown in Fig. 2, to adaptively aggregate the
intra-snippet inconsistency information, we design to auto-
matically learn a 1D convolution kernel which is appied to
AttenH and AttenW . In this learning process, we first ex-
ploit a global average pooling (GAP) operation to squeeze
the spatial dimension for global view, and then two fully
connected layers, i.e., ϕ1 : RT → RγT and ϕ2 : RγT → Rk

are performed, finally a softmax operation comes up. This
process can be modelled by the following formulation:

K(X2) = softmax(ϕ2 ◦ δ ◦ ϕ1(GAP(X2))) (4)
where ◦ is for function composition and δ denotes ReLU
activation function.

Once obtaining the intra-SMA and the kerneks, the intra-
snippet inconsistency can be formulated:

O2 = K(X2)⊗ (Attenh ⊙Attenw ⊙X2 +X2), (5)
where ⊗ represents depth-wise convolution and ⊙ stands for
element-wise multiplication. Finally, we get the output:

OIntra = Concat[I1, O2]. (6)
where Concat represents the concatenation operation along
the channel dimension.

Inter-Snippet Interaction Module
The Intra-SIM adaptively captures intra-snippet inconsis-
tency. However, such representation only contains the tem-
porally local information and the relation between snippets
is ignored, which is also important. Therefore, our Inter-
Snippet Interaction Module (Inter-SIM) focuses on promot-
ing the interaction across snippets from a global view to en-
hance the representation via a novel structure with different
kind of interaction modeling, as shown in Fig. 2.

Formally, let tensor F ∈ RT×C×U×H×W be the module
input. It is first processed by GAP to obtain a global repre-
sentation F̄ ∈ RC×U×T and then passed through a two-
branch structure for different interaction modeling. These
two branches are complementary to each other in terms of
intra-snippet information. Among them, one branch directly
captures the inter-snippet interaction without introducing
intra-snippet information:

F̄1 = σ(Conv1×1(BN(Conv3×1(F̄)))) (7)
where Conv3×1 is spatial convolution with kernel size 3× 1
for snippet-wise feature extraction and dimension reduc-
tion, and Conv1×1 stands for convolution with size 1 × 1
for dimension recovery. The other branch inter-snippet mo-
tion attention, which is designed to be computationally effi-
cient while containing a larger intra-snippet fields-of-view.
Given the feature F̂ ∈ R

C
r ×U×T processed by the squeeze

operation Conv1×1 from F̄ , the intra-snippet interaction is
first captured by Conv1×3 and then the bi-directional facial
movements are modeled in a similar way to Eq. (1):

D̂u,u+1 =F̂u − Conv1×3(F̂u+1), (8)

D̂u+1,u =F̂u+1 − Conv1×3(F̂u). (9)
Therefore, we define the inter-snippet information with
intra-snippet interaction as:

F̄2 = σ(Conv1×1(D̂u,u+1 + D̂u+1,u), (10)
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Methods Celeb-DF DFDC WildDeepFake
Xception 0.9944 0.8458 0.8325

I3D† 0.9923 0.8082 0.6269
D-FWA 0.9858 0.8511 -
DIANet - 0.8583 -

TEI† 0.9912 0.8697 0.8164
V4D 0.9942 0.8739 0.8375

DSANet† 0.9942 0.8867 0.8474
ADDNet-3D† 0.9516 0.7966 0.6550

S-MIL 0.9923 0.8378 -
S-IML-T 0.9884 0.8511 -

STIL† 0.9961 0.8980 0.8462
Ours 0.9961 0.9279 0.8511

Table 2: Comparison on Celeb-DF, DFDC, and Wild-
Deepfake datasets. † implies our implementation.

Methods FF++ DF Celeb-DF DFDC
Xception 0.9550 0.6550 0.5939

I3D† 0.9541 0.7411 0.6687
VA-LogReg 0.7800 0.5510 -

TEI† 0.9654 0.7466 0.6742
D-FWA 0.8100 0.5690 -
Capsule 0.9660 0.5750 -
V4D† 0.9674 0.7008 0.6734

DIANet 0.9040 0.7040 -
DSANet† 0.9688 0.7371 0.6808

DoubleRNN 0.9318 0.7341 -
ADDNet-3D† 0.9622 0.6085 0.6589

STIL† 0.9712 0.7558 0.6788
Ours 0.9819 0.7765 0.6843

Table 3: Comparison on cross-dataset generalization in
terms of AUC. † implies re-implementation.

Finally, the representation power of temporal convolution
ConvU, with size 3× 1, is enhanced as follows:

Ointer = ConvU(F̄1 ⊙ F̄2 ⊙ F + F ). (11)

where each position of F is aware of various information.

Instantiation
The proposed method is instantiated with the well-known
ResNet-50 (He et al. 2016) in light of its trade-off between
accuracy and speed. We insert Intra-SIM and Inter-SIM right
before the spatial convolution in each resnet block to form
the Intra-snippet Inconsistency Block (Intra-SI Block) and
Inter-Snippet Interaction Block (Inter-SI Block), as demon-
strated in Figure 2. Unless specified, they are placed in an
alternate manner.

Experiments

Experimental Settings
Datasets. We evaluate our method on four widely
used benchmarks: FaceForensics++ (Rossler et al. 2019),
DFDC (Dolhansky et al. 2019), Celeb-DF (Li et al. 2020b)
and WildDeepfake (Zi et al. 2020).

• FaceForensics++ contains multiple video quality, e.g.,
high quality (HQ) with nearly no visual loss and low
quality (LQ), which is visually blurry. Each of them con-
sists of 1,000 real and 4,000 fake videos generated from
four forgery techniques, i.e., DeepFakes (DF), Face2Face
(F2F), FaceSwap (FS), and NeuralTextures (NT).

• DFDC makes up around 5,000 videos with several un-
known manipulation methods. Since faces in the video
may be partially forged, state-of-the-art detectors per-
form not very well on this challenging dataset.

• Celeb-DF is comprised of 590 real videos and 5,639
forged videos totally from publicly available YouTube
video clips. An improved synthesis process is used to im-
prove various visual artifacts presented in these videos.

• WildDeepfake is a real-world face forgery dataset and
consists of 7,314 face sequences purely collected from
the Internet. These videos are crafted by forgery methods
of different type and thus present diverse. The duration of
each video varies a lot and thus is more challenging.

Baseline Methods. To demonstrate the effectiveness of
the proposed method, we compare it with several repre-
sentative works in face forgery detection and video anal-
ysis. For image-based methods, ResNet (He et al. 2016),
Xception (Rossler et al. 2019) and VA-LogReg (Matern,
Riess, and Stamminger 2019) are chosen and video-
level results are averaged from frame-level predictions.
For video-based DeepFake detectors, state-of-the-art D-
FWA (Li and Lyu 2019), FaceNetLSTM (Sohrawardi et al.
2019), Capsule (Nguyen, Yamagishi, and Echizen 2019),
Co-motion (Wang, Zhou, and Wu 2020), S-MIL (Li et al.
2020a), DeepRhythm (Qi et al. 2020), ADDNet-3d (Zi et al.
2020), STIL (Gu et al. 2021) and DIANet (Hu et al. 2021)
are selected. What’s more, action recognition models includ-
ing LSTM (Hochreiter and Schmidhuber 1997), C3D (Tran
et al. 2014), I3D (Carreira and Zisserman 2017), TEI (Liu
et al. 2020), V4D (Zhang et al. 2020) and DSANet (Wu et al.
2021) are adopted to illustrate the superiority of ours.
Implementation Details Following the common prac-
tice (Li et al. 2020a), we use dlib to detect face for FF++
dataset as data pre-processing, while MTCNN (Zhang et al.
2016) is exploited for other datasets. The ImageNet (Deng
et al. 2009) pre-trained 2D ResNet-50 (He et al. 2016) is
used as our backbone and both Intra-SIM and Inter-SIM
are randomly initialized. All snippets are sampled uniformly
from each video sequence and we sample U = 4 snippets
each with T = 4 frames. The image is resized to 224× 224
during training. We adopt the Adam (Kingma and Ba 2014)
as optimizer to optimize the binary cross-entropy loss. The
batch size is 10 and the initial learning rate is 10−4. The
total epoch is 30 for all datasets and 45 for cross-dataset
generalization. We divide the learning rate by 10 when the
performance on validation set saturates. Only horizontal flip
is employed for augmentation. During inference, we sample
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Intra Inter DF F2F FS NT
0.9536 0.8893 0.9464 0.8750√
0.9750 0.9250 0.9643 0.9214√
0.9714 0.9214 0.9607 0.9036√ √
0.9928 0.9571 0.9786 0.9428

Table 4: Study on effects of Intra-SIM and Inter-SIM. We
insert the corresponding modules into all stages.

BP CA LK DF F2F FS NT
0.9750 0.9107 0.9571 0.9143√
0.9821 0.9286 0.9643 0.9214√ √
0.9928 0.9393 0.9678 0.9286√ √ √
0.9928 0.9571 0.9786 0.9428

Table 5: Study on impacts of bi-direction path (BP), coor-
dinate attention (CA) and learnable kernels (LK).

Stages DF F2F FS NT
Sateg1−2 0.9857 0.9500 0.9607 0.9357
Sateg2−3 0.9821 0.9286 0.9607 0.9214
Sateg3−4 0.9786 0.9286 0.9607 0.9071
Sateg2−4 0.9893 0.9393 0.9464 0.9107
Sateg1−3 0.9893 0.9464 0.9678 0.9357
Ours 0.9928 0.9571 0.9786 0.9428

Table 6: Study on locations of Intra-SIM and Inter-SIM.
We place them at different stages of ResNet-50 and they
are put in a alternate manner in each stage.

U = 8 snippets with T = 4 frames and resize them into the
same size as in training.

Intra-dataset Comparisons
In this section, we perform comparisons on four widely used
benchmarks, i.e., FF++, Celeb-DF, DFDC and WildDeep-
fake, to evaluation model effectiveness in terms of accuracy.
Results on FF++. We conduct comprehensive experiments
on FF++ dataset under both low quality (LQ) and high qual-
ity (HQ) image qualities and report comparisons against
state-of-the-art works in Table 1. It is clear that: (1) Ad-
vanced video-based action recognition models have better
results than image-based methods. This is reasonable as the
temporal motion information is helpful in DeepFake video
detection. Besides, the performance of V4D is still com-
petitive with the state-of-the-art STIL which is video-based
and specifically designed to extract temporal inconsistency
in DeepFake videos. The reason behind is that methods inl-
cuding ADDNet-3d, S-MIL and STIL all employ the sparse
sampling strategy and do not delve into the intra-snippet in-
formation, which leads to limited capacity of mining incon-
sistency. (2) Our method utilizes the Intra-SIM to grasp the
local inconsistencies caused by subtle motion, and further
promotes the cross-snippet interaction by Inter-SIM to form
a global view. Therefore, our method outperforms nearly
all compared opponents on all settings except for F2F HQ,
which is slightly worse than S-MIL-T. Moreover, on the
most challenging NT LQ setting, we achieve 94.28% ac-
curacy, exceeding 1.78% than the best action recognition

DeepFake Face2Face

NeuralTexturesFacwSwap

Figure 3: CAM of model outputs against four manipulations
in FF++ dataset. For simplicity, we only visualize the CAM
on frames within snippets.

model V4D and 2.5% than the state-of-the-art DeepFake de-
tection method STIL. In addition, when transferred to C40
setting with lower image quality, all methods encounter se-
vere performance drop except for our method. This demon-
strates the necessity of modelling local inconsistency and the
effectiveness of our method.
Results on Celeb-DF, DFDC and WildDeepfake. We also
evaluate our method on other three popular datasets, i.e.,
Celeb-DF, DFDC and WildDeepfake datasets, as listed in
Table 2. It shows that our method outperforms all the com-
petitors, especially on DFDC by a large margin of 4.19%
than STIL. This is because DFDC dataset contains many
partially forged videos, where sparsely sampled frames
might not be able to cover the forged motions and the incon-
sistency within. However, our method is built on snippets
and the learnable kernels enrich each feature with dynami-
cally short-term motion information. The Inter-SIM further
promotes the interaction between snippets for long-term rep-
resentations.

Inter-dataset Comparisons
Results on cross-dataset generalization. Following (Masi
et al. 2020), we train the model on FF++ LQ datasets against
four manipulations and perform cross-dataset tests on FF++
DF, Celeb-DF and DFDC datasets in verification of model
generalization. Comparisons under AUC metrics are shown
in Table 3. It shows that our method still suppresses all the
compared competitors and achieves 2.07% and 0.35% per-
formance gains than state-of-the-art results. It’s also notice-
able that the frame-based Xception has severe performance
drop on unseen datasets. Since the frame-based methods
mainly focus on image-level forgery patterns but neglect the
temporal inconsistencies, they are more prone to overfitting.
Compared to all the image- and video-based counterparts,
our method delves into the inconsistency encoded in local
motions and develops novel intra- and inter-inconsistencies
mining scheme, which can better grasp the forgery nature in
DeepFake videos. Therefore, our method has superior gen-
eralization ability.

Ablation Study
In this section, we conduct comprehensive ablation studies
on FF++ LQ part to explore the effectiveness of each com-
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Figure 4: Snippet CAM of Intra-SMA against four manipu-
lations. Samples are from FF++ dataset.

ponent in the proposed modules from Tab. 4 to Tab. 6.
Study on effects of Inter-SIM and Intra-SIM. As shown
in Table 4, we study the impacts of Intra-SIM and Inter-
SIM. Without introducing temporal information, the vanilla
ResNet-50 has poor performance. Inserting only Inter-SIM
or Intra-SIM already improves the performance a lot (at least
1.5% on each category). Obviously, both inter and inter-
snippet information are vital and the combination of them
boosts the performance. Note that the intra-snippet informa-
tion contributes to the improvement more, which again illus-
trates the importance of intra-snippet dynamics.
Study on elements in Inter-SIM. The Inter-SIM contains
three key parts, i.e., bi-directional path (BP), coordinate at-
tention (CA) and learnable convolution kernels (LK) and the
results are listed in Table 5. The first row in the table demon-
strates that without the guidance from fine-grained motion
information, its overall performance is worse especially on
NT (91.43%). Based on it, three key elements are gradu-
ally added. Among them, using learnable kernels gives the
largest increment than other elements (about 4% on NT, 1%
on FS and 2% on F2F). There is no doubt that best results
benefits from exploiting all of them.
Study on different locations. We study the locations where
to insert the Intra-SIM and Inter-SIM modules and the corre-
sponding result are listed in Table 6. As can be observed that
early stage (i.e., stage 1-2) performs consistently better than
middle (i.e., stage 2-3) and late stages (i.e., stage 3-4). More
importantly, intra and inter-snippet information in low-level
representations, i.e., stage 1, seem to be more important than
others (see the 4th and 5th rows). Of course, inserting them
into all stages performs best.

Visualization Analysis
We adopt the Grad-CAM (Selvaraju et al. 2017) to visual-
ize the class activation maps, Intra-SMA and U-T attention
maps in Inter-SIM from Figure 3-5.
Class activation maps. The activation maps against four
manipulation techniques in FF++ dataset are visualized in
Figure 3. Both learnt maps for DeepFakes and FaceSwap
focus on a large center regions whereas on Face2Face and
NeuralTextures they shrink to the forged areas. For example,
the NeuralTextures mainly focuses on forging the mouth ar-
eas. This is interesting as the proposed method is still able

Sequence with long-term movement

U-T attention mapU-T attention map

Sequence with short-term movement

𝑇

𝑈

Figure 5: Visualization of U-T attention map in Inter-SIM on
both short and long-term movement sequences. Red boxes
correspond to fake faces and numbers in U-T map represent
the fake probability.

to learn the essential features under only video-level super-
visions.
Short-term motion activation maps. In order to demon-
strate what the model learns from the short-term motions
in each snippet, we visualize the activation maps of intra-
SMA in Figure 4. Since DeepFakes and FaceSwap manipu-
late with the whole facial area, the activated maps indeed
land on the face contours. Activations for Face2Face fo-
cus on facial expressions while activations for NeuralTex-
tures are responsible to mouth movements. Moreover, the
attended locations vary along with time, possibly seeking
the most salient forgery traces in the short-term motions.
U-T attention map in Inter-SIM. As aforementioned, our
method is still effective on DFDC dataset which contains
many partially forged videos. In verification, we illustrates
the U-T attention map, calculated by F̄1⊙F̄2 in inter-SIM, to
find out whether our model is able to locate the forge frames.
As illustrated in Figure 5, our model successfully locates
the fake faces on partially forged videos with short and long
term movements. Besides, thanks to our snippet-based learn-
ing strategy and the elaborately designed Intra- and Inter-
SIM modules, even the fake frame in partially forged snip-
pet can also be spotted. This demonstrates the effectiveness
of our method.

Conclusion
In this paper, we present a novel DeepFake video detection
framework by focusing on the local inconsistency in snip-
pets, which contain a few successive video frames. Built on
these snippets, our framework consists of an Intra-Snippet
Inconsistency Module (Intra-SIM) for local inconsistency
modelling and an Inter-Snippet Interaction Module (Inter-
SIM) for cross-snippet interaction promotion. The proposed
method outperforms state-of-the-art on four popular bench-
marks. In-depth ablation studies and visualizations further
demonstrate its effectiveness.
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