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Abstract

In recent years, self-supervised representation learning for
skeleton-based action recognition has been developed with
the advance of contrastive learning methods. The existing
contrastive learning methods use normal augmentations to
construct similar positive samples, which limits the abili-
ty to explore novel movement patterns. In this paper, to
make better use of the movement patterns introduced by ex-
treme augmentations, a Contrastive Learning framework uti-
lizing Abundant Information Mining for self-supervised ac-
tion Representation (AimCLR) is proposed. First, the ex-
treme augmentations and the Energy-based Attention-guided
Drop Module (EADM) are proposed to obtain diverse pos-
itive samples, which bring novel movement patterns to im-
prove the universality of the learned representations. Second,
since directly using extreme augmentations may not be able
to boost the performance due to the drastic changes in origi-
nal identity, the Dual Distributional Divergence Minimization
Loss (D3M Loss) is proposed to minimize the distribution
divergence in a more gentle way. Third, the Nearest Neigh-
bors Mining (NNM) is proposed to further expand positive
samples to make the abundant information mining process
more reasonable. Exhaustive experiments on NTU RGB+D
60, PKU-MMD, NTU RGB+D 120 datasets have verified
that our AimCLR can significantly perform favorably against
state-of-the-art methods under a variety of evaluation proto-
cols with observed higher quality action representations. Our
code is available at https://github.com/Levigty/AimCLR.

Introduction
On account that action recognition has very broad appli-
cation in many fields such as human-computer interaction,
video content analysis, and smart surveillance, it has always
been a popular research topic in the field of computer vision.
Due to the development of depth sensors (Zhang 2012) and
the human pose estimation algorithms (Cao et al. 2019; Fang
et al. 2017), skeleton-based action recognition has gradually
become a significant branch of action recognition.

In the past few years, most of the existing skeleton-based
action recognition methods are based on the supervised
learning framework. Whether it is a CNN-based method
(Du, Fu, and Wang 2015; Ke et al. 2017; Liu, Liu, and Chen
∗Corresponding Author: hongliu@pku.edu.cn
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2017), RNN-based method (Du, Wang, and Wang 2015;
Song et al. 2018; Zhang et al. 2019), or GCN-based method
(Yan, Xiong, and Lin 2018; Shi et al. 2019; Si et al. 2019;
Chen et al. 2021), numerous labeled data is used to learn
the action representation. Fully supervised action recogni-
tion methods are inevitably data-driven, but the cost of label-
ing large-scale datasets is particularly high. Therefore, more
and more researchers intend to use unlabeled skeleton data
for learning human action representation.

Recently, several works (Zheng et al. 2018; Su, Liu, and
Shlizerman 2020; Lin et al. 2020) focus on designing pre-
text tasks for self-supervised methods to learn action repre-
sentations from unlabeled skeleton data. With the develop-
ment of contrastive self-supervised learning and its ability to
make feature representations have better discrimination, sev-
eral works (Rao et al. 2021; Li et al. 2021) directly rely on
the contrastive learning framework, using normal augmenta-
tions to construct similar positive samples. However, those
carefully designed augmentations limit the model to further
explore the novel movement patterns exposed by other aug-
mentations and there are still several significant motivations
that need to be carefully considered:

1) Stronger data augmentations could benefit repre-
sentation learning. In SkeletonCLR (Li et al. 2021), it just
uses two data augmentations Shear and Crop. Nevertheless,
studies (Tian et al. 2020; Wang and Qi 2021) have shown
that data augmentation design is crucial, and the abundan-
t semantic information introduced by stronger data aug-
mentations can significantly improve the generalizability of
learned representations and eventually bridge the gap with
the fully supervised methods.

2) Directly using stronger augmentations could deteri-
orate the performance. Stronger data augmentations bring
novel movement patterns while the augmented skeleton se-
quence may not keep the identity of the original sequence.
Therefore, directly using extreme augmentations may not
necessarily be able to boost the performance due to the dras-
tic changes in original identity. Thus, additional efforts are
needed to explore the role of stronger augmentations.

3) How to force the model to learn more features.
Simply relying on the contrastive learning framework can
not force the model to study more features well. Studies
(Pan et al. 2021; Cheng et al. 2020) have shown that the
drop mechanism can be used for contrastive learning and
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can effectively solve the problem of over-fitting. Currently,
the drop mechanism is not well exploited in self-supervised
skeleton-based action recognition.

4) How to better expand the positive set to make the
learning process more reasonable. In contrastive learning,
two different augmented samples from the same sample are
considered as positive samples, while samples in the mem-
ory bank are all treated as negative samples. However, the
samples in the memory bank are not necessarily all negative
samples which makes the learning process unreasonable to
a certain extent.

To this end, a contrastive learning framework utilizing
abundant information mining for self-supervised action rep-
resentation (AimCLR) is proposed. Specifically, the frame-
work of AimCLR is shown in Figure 1. Different from tra-
ditional contrastive learning methods (Rao et al. 2021; Li
et al. 2021) which directly use normally augmented view, a
novel framework proposed in our work is based on the ex-
treme augmentations and the drop mechanism which obtain
diverse positive samples and bring abundant spatio-temporal
information. Then the Dual Distributional Divergence Mini-
mization Loss (D3M Loss) is proposed to minimize the dis-
tribution divergence between the normally augmented view
and the extremely augmented views. Furthermore, the Near-
est Neighbors Mining (NNM) is used to expand the positive
set to make the learning process more reasonable.

In summary, we have made the following contributions:

• Compared with the traditional contrastive learning
method using similar augmented pairs, AimCLR is pro-
posed to use more extreme augmentations and more rea-
sonable abundant information mining which greatly im-
prove the effect of contrastive learning.
• Specifically, the extreme augmentations and the Energy-

based Attention-guided Drop Module (EADM) are pro-
posed to introduce novel movement patterns to force the
model to learn more general representations. Then the
D3M Loss is proposed to gently learn from the intro-
duced movement patterns. In order to alleviate the irra-
tionality of the positive set, we further propose the Near-
est Neighbors Mining (NNM) strategy.
• With the multi-stream fusion scheme, our 3s-AimCLR

achieves state-of-the-art performances under a variety of
evaluation protocols such as KNN evaluation, linear e-
valuation, semi-supervised evaluation, and finetune eval-
uation protocol on three benchmark datasets.

Related Work
Supervised Skeleton-based Action Recognition. Early
skeleton-based action recognition methods are usually based
on hand-crafted features (Wang et al. 2012; Vemulapalli, Ar-
rate, and Chellappa 2014; Vemulapalli and Chellapa 2016).
With the rapid development of deep learning in recent years,
some methods (Du, Wang, and Wang 2015; Song et al. 2018;
Zhang et al. 2019) use RNN to process skeleton data. Mean-
while, several methods convert the 3D skeleton sequence in-
to an image representation and have achieved good results
based on CNN (Du, Fu, and Wang 2015; Ke et al. 2017; Liu,
Liu, and Chen 2017). In recent years, with the introduction

of graph convolutional networks, a variety of GCN-based
methods (Shi et al. 2019; Si et al. 2019; Chen et al. 2021)
have emerged on the basis of ST-GCN (Yan, Xiong, and Lin
2018) to better model the spatio-temporal structure relation-
ship. In this paper, we adopt the widely-used ST-GCN as the
encoder to extract the skeleton features.

Contrastive Self-Supervised Representation Learning.
Some contrastive learning methods (Zhang, Isola, and Efros
2016; Pathak et al. 2016; Gidaris, Singh, and Komodakis
2018) focus on designing various novel pretext tasks to find
the pattern information hidden in the unlabeled data. MoCo
and MoCov2 (He et al. 2020; Chen et al. 2020b) promotes
contrastive self-supervised learning through a queue-based
memory bank and momentum update mechanism. SimCLR
(Chen et al. 2020a) uses a much larger batch size to com-
pute the embeddings in real-time, and uses a multi-layer
perceptron (MLP) to further improve the performance of
self-supervised representation learning. Current work CLSA
(Wang and Qi 2021) shows that strong augmentations are
beneficial to the performance of downstream tasks and it ex-
pects to learn from strongly augmented samples. The devel-
opment of contrastive self-supervised representation learn-
ing also laid the foundation for our AimCLR.

Self-supervised Skeleton-based Action Recognition.
LongT GAN (Zheng et al. 2018) proposes to use the
encoder-decoder to regenerate the input sequence to obtain
useful feature representation. P&C (Su, Liu, and Shlizerman
2020) proposes a training strategy to weaken the decoder,
forcing the encoder to learn more discriminative features.
Yang et al. (2021b) design a novel skeleton cloud coloriza-
tion technique to learn skeleton representations. AS-CAL
(Rao et al. 2021) and SkeletonCLR (Li et al. 2021) use mo-
mentum encoder for contrastive learning with single-stream
skeleton sequence while CrosSCLR (Li et al. 2021) proposes
cross-stream knowledge mining strategy to improve the per-
formance and ISC (Thoker, Doughty, and Snoek 2021) pro-
poses inter-skeleton contrastive learning to learn from multi-
ple different input skeleton representations. In order to learn
more general features, MS2L (Lin et al. 2020) introduces
multiple self-supervised tasks to learn more general repre-
sentations. However, the currently existing methods rarely
explore the gains that abundant spatio-temporal information
brings to the task of action recognition. Therefore, a more
concise and general framework needs to be proposed.

AimCLR

SkeletonCLR Overview

SkeletonCLR (Li et al. 2021) is based on the recent ad-
vanced practice MoCov2 (Chen et al. 2020b) to learn single-
stream 3D action representations. The pipeline of the Skele-
tonCLR is shown in the bottom blue part of Figure 1. Giv-
en an encoded query ẑ and encoded key z, the batch em-
beddings of z are stored in first-in-first-out memory bank
M = {mi}Mi=1 to get rid of redundant computation. It serves
as negative samples for the next training steps. Then the In-
foNCE loss (Oord, Li, and Vinyals 2018) can be written as:
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Figure 1: The pipeline of the proposed AimCLR. Through the extreme augmentations T ′ and normal augmentations T , x, x̂
and x̃ are obtained from the input sequence s. The query encoder and an MLP extract ẑ and z̃ while the query encoder with
EADM and an MLP is used to obtain the z̃drop. The momentum updated key encoder and an MLP is used to obtain z, z are
stored in the memory bank in each training step, serving as negative samples for the next training steps. While using InfoNCE
loss, we also propose D3M Loss to minimize the distribution divergence of ẑ, z̃, and z̃drop. Furthermore, we propose NNM to
expand the positive set to make the learning process more reasonable.

LInfo = − log
exp(ẑ · z/τ)

exp(ẑ · z/τ) +
∑M
i=1 exp(ẑ ·mi/τ)

, (1)

where τ is the temperature hyper-parameter, and dot product
ẑ ·z is to compute their similarity where z, ẑ are normalized.

After computing the InfoNCE loss in Eq. (1), the query
encoder is updated via gradients while the key encoder is
updated as a moving-average of the query encoder. We de-
note the parameters of the query encoder as θq and those of
the key encoder as θk. Then the key encoder is updated as:

θk ← mθk + (1−m)θq, (2)

where m ∈ [0, 1) is a momentum coefficient. The momen-
tum encoder is updated slowly based on the encoder change,
which ensures stable key representations.

Data Augmentations
In contrastive learning, augmentations for positive samples
bring semantic information for the encoder to learn. Howev-
er, those carefully designed augmentations limit the encoder
to further explore the novel patterns exposed by other aug-
mentations. Therefore, we aim to introduce novel movement
patterns through stronger data augmentation, thereby bene-
fiting contrastive learning.

1) Normal Augmentations T . One spatial augmentation
Shear and one temporal augmentation Crop are used as the
normal augmentations like SkeletonCLR.

2) Extreme Augmentations T ′. We introduce four spatial
augmentations: Shear, Spatial Flip, Rotate, Axis Mask and
two temporal augmentations: Crop, Temporal Flip and two
spatio-temporal augmentations: Gaussian Noise and Gaus-
sian Blur. We use the combination of all the 8 augmentations
(2 normal and 6 other augmentations) as “Extreme Augmen-
tations” to finally get one extremely augmented sequence.

On account that the combination of extreme augmentations
is complicated, we hope to explore a more general frame-
work in which extreme augmentations can introduce more
novel movement patterns than normal augmentations.

Energy-based Attention-guided Drop Module
For a feature learned by the encoder, we hope that even if
some important features are discarded, different actions can
be distinguished. Studies (Pan et al. 2021; Cheng et al. 2020)
have shown that the drop mechanism can be used for con-
trastive learning, and can effectively solve the problem of
over-fitting. It inspires us to calculate the spatio-temporal at-
tention map to drop several important features, which could
force the model to learn more features and obtain more gen-
eral and robust feature representations.

Actually, there are lots of modules (Hu, Shen, and Sun
2018; Woo et al. 2018; Lee, Kim, and Nam 2019) proposed
to calculate the attention maps. In order not to introduce ad-
ditional parameters, we adopt the parameter-free attention
module Simam (Yang et al. 2021a) to calculate the attention
map. Formally, t and xi are the target neuron and other neu-
rons in a single channel of the input feature X ∈ RC×T×V
whereC denotes the number of channels, T denotes the tem-
poral dimension and V denotes the spatial dimension. The
minimal energy et of target neuron t can be computed with
the following:

et =
4(σ̂2 + λ)

(t− µ̂)
2

+ 2σ̂2 + 2λ
, (3)

where µ̂= 1
N

∑N
i=1 xi, σ̂

2= 1
N

∑N
i=1 (xi − µ̂)

2, λ is a hyper-
parameter, and N = T × V is the number of neurons on the
channel. Eq. (3) indicates that the lower energy et, the neu-
ron t is more distinctive from surround neurons, and more
important for visual processing. Therefore, the importance
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Algorithm 1: Energy-based attention-guided drop module.

Require: a GCN feature X: the dimension is RC×T×V ;
keep margin: control the importance margin to drop.

Ensure: Features after processing.
1: Compute the attention map α̃;
2: Generate the spatial attention map Ms and the temporal

attention map Mt using α̃ and keep margin;
3: Apply the spatial mask: X=X ×Ms;
4: Normalize the feature:

X=X × count(Ms)/count ones(Ms);
5: Apply the temporal mask: X=X ×Mt;
6: Normalize the feature:

X=X × count(Mt)/count ones(Mt);
7: return X;

of each neuron can be obtained by 1/et. Then we can ob-
tain the attention map α̃ by that α̃= sigmoid(1/E), where E
groups all et. After that, we use the attention map α̃ to drop
some important features using Algorithm 1.

Dual Distributional Divergence Minimization
As shown in Figure 1, for the input sequence s, we apply
normal augmentations T and extreme augmentations T ′ to
obtain x, x̂ and x̃. The query encoder fθq is applied to extract
features: ĥ = fθq (x̂) and h̃ = fθq (x̃). h̃drop is the dropped
features after EADM. An MLP head gθq is applied to project
the feature to a lower dimension space: ẑ = gθq (ĥ), z̃ =

gθq (h̃), z̃drop = gθq (h̃drop). The key encoder fθk and gθk
are the momentum updated version of fθq and gθq .

The memory bank M = {mi}Mi=1 of M negative sam-
ples is a first-in-first-out queue updated per iteration by z.
After each inference step, z will enqueue while the earliest
embedding in M will dequeue. M provides numerous neg-
ative embeddings while the new calculated z is the positive
embedding. Thus, we can obtain a conditional distribution:

p(mi |ẑ ) =
exp(ẑ ·mi/τ)

exp(ẑ · z/τ) +
∑M
i=1 exp(ẑ ·mi/τ)

, (4)

which encodes the likelihood of the query ẑ being assigned
to the embedding mi in the memory bank M. Similarly, we
can also have the likelihood of positive pairs for the query ẑ
being assigned to its positive counterpart z:

p(z |ẑ ) =
exp(ẑ · z/τ)

exp(ẑ · z/τ) +
∑M
i=1 exp(ẑ ·mi/τ)

. (5)

The InfoNCE loss in Eq. (1) can be rewritten in another for-
m:

LInfo =− q(z |ẑ ) log p(z |ẑ )

−
M∑
i=1

q(mi |ẑ ) log p(mi |ẑ ),
(6)

where q(z |ẑ ) is the ideal distribution of the likelihood,
p(z |ẑ ) is the distribution learned by the network. To avoid

the unknown ideal distribution exploration, InfoNCE loss re-
gards ẑ as a one-hot distribution, where positive pairs have
q(z |ẑ ) = 1 and negative pairs satisfy q(mi |ẑ ) = 0(i ∈
[1,M ]). It means that InfoNCE loss maximizes the agree-
ment of two different augmented sequences’ representation-
s from the same sequence while minimizing the agreement
with other negative sequences. To explore the novel move-
ment patterns from the extreme augmentations, a straight-
forward approach is directly using the extremely augment-
ed sequence as query and the normally augmented sequence
as key in InfoNCE loss. However, compared to the normal-
ly augmented sequence, the extremely augmented sequence
may not keep the identity of the original sequence due to the
dramatic changes in movement patterns, leading to perfor-
mance degradation.

In addition, it’s almost impossible to obtain the ideal like-
lihood distribution. Fortunately, CLSA (Wang and Qi 2021)
found that the normally augmented query and the extremely
augmented query share similar distribution for a randomly
initialized network. It inspires us that the distribution of nor-
mally augmented query over memory bank can be used to
supervise that of the extremely augmented query. It avoids
directly using one-hot distribution for extremely augmented
views and is able to explore the novel patterns exposed by
the extreme augmentations.

Similar to Eq. (4) and Eq. (5), we obtain a conditional
distribution for z̃ based on its positive samples and nega-
tive samples: p(z |z̃ ) and p(mi |z̃ ). The conditional distribu-
tion p(mi |z̃drop ) and p(z |z̃drop ) for z̃drop is calculated in
the same way. Then, we propose to minimize the following
distributional divergence between the normally augmented
view and the extremely augmented view such that:

Ld1 =− p(z |ẑ ) log p(z |z̃ )

−
M∑
i=1

p(mi |ẑ ) log p(mi |z̃ ).
(7)

Similarly, the distributional divergence between the normal-
ly augmented view and the dropped extremely augmented
view is minimized such that:

Ld2 =− p(z |ẑ ) log p(z |z̃drop )

−
M∑
i=1

p(mi |ẑ ) log p(mi |z̃drop ),
(8)

Therefore, the proposed D3M loss can be formulated as
LD=1/2(Ld1+Ld2).

Nearest Neighbors Mining
Traditional contrastive learning methods regard the normally
augmented samples from the same sample as positive sam-
ples and all samples in the memory bank as negative sam-
ples. However, the samples in the memory bank are not nec-
essarily all negative samples (Dwibedi et al. 2021). There-
fore, we hope that the nearest neighbors of query ẑ, z̃, and
z̃drop over the memory bank M should be considered as pos-
itive samples to expand the positive set.
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Specifically, Nn
+ is the index set of the nearest top-k

neighbors that are most similar to the normally augment-
ed query ẑ in the memory bank M. Similarly, we could also
have theNe

+ andNd
+ to represent the index set of the nearest

top-k neighbors of the extremely augmented query z̃ and the
dropped extremely augmented query z̃drop. Thus, we can set
the nearest top-k neighbors as positive samples to make the
learning process more reasonable:

LN =− log
exp(ẑ · z/τ)

exp(ẑ · z/τ) +
∑M

i=1 exp(ẑ ·mi/τ)

−
∑

j∈N+

log
exp(ẑ ·mj/τ)

exp(ẑ · z/τ) +
∑M

i=1 exp(ẑ ·mi/τ)
.

(9)

In this equation,N+ = Nn
+∪Ne

+∪Nd
+. Compared to Eq.

(1), Eq. (9) will lead to a more regular space by pulling close
more high-confidence positive samples.

Two-stage Training Strategy. In the early training stage,
the model is not stable and strong enough to provide reliable
nearest neighbors. Thus, we perform two-stage training for
AimCLR: In the first stage, the model is trained with the loss
function: L1=αLInfo+βLD. Then in the second training
stage, the loss function is L2=αLN+βLD to start mining
the nearest neighbors. Here, α and β are the coefficient to
balance the loss. Though other values may achieve better
results, we use α = β = 1 to make AimCLR more general.

Experiments
Dataset
PKU-MMD Dataset (Liu et al. 2020): It contains almost
20,000 action sequences covering 51 action classes. It con-
sists of two subsets. Part I is an easier version for action
recognition, while part II is more challenging with more
noise caused by view variation. We conduct experiments un-
der the cross-subject protocol on the two subsets.

NTU RGB+D 60 Dataset (Shahroudy et al. 2016): The
dataset contains 56,578 action sequences and 60 action
classes. There are two evaluation protocols: cross-subject (x-
sub) and cross-view (xview). In xsub, half of the subjects
are used as training sets, and the rest are used as test sets. In
xview, the samples of camera 2 and 3 are used for training
while the samples of camera 1 are used for testing.

NTU RGB+D 120 Dataset (Liu et al. 2019): It is NTU
RGB+D 60 based extension, whose scale is up to 120 ac-
tion classes and 113,945 sequences. There are two evalua-
tion protocols: cross-subject (xsub) and cross-setup (xset).
In xsub, actions performed by 53 subjects are for training
and the others are for testing. In xset, all 32 setups are sepa-
rated as half for training and the other half for testing.

Experimental Settings
All the experiments are conducted on the PyTorch (Paszke
et al. 2019) framework. For data pre-processing, we follow
SkeletonCLR and CrosSCLR (Li et al. 2021) for a fair com-
parison. The mini-batch size is set to 128.

Self-supervised Pretext training. ST-GCN is adopted as
the encoder. For contrastive settings, we follow that in Skele-
tonCLR. Specifically, the feature dimension is 128, the size

w/ NA w/ EA w/ EADM w/ NNM NTU-60(%)
xsub xview

X 75.0 79.8
X 71.3 77.8

X X 77.4 82.5
X X X 78.2 82.8
X X X X 78.9 83.8

Table 1: Ablation study results on NTU-60 dataset.

(a) SkeletonCLR (b) 3s-SkeletonCLR (c) 3s-CrosSCLR§

(d) AimCLR (e) 3s-AimCLR (f) 3s-AimCLR§

Figure 2: The t-SNE visualization of embeddings on NTU-
60 xsub. “§” means using cross-stream knowledge mining
strategy proposed in 3s-CrosSCLR (Li et al. 2021).

of the memory bank is 32768, the momentum coefficien-
t m is set to 0.999, and the temperature hyper-parameter τ
is set to 0.07. For optimization, we use SGD with momen-
tum (0.9) and weight decay (0.0001). The model is trained
for 300 epochs with a learning rate of 0.1 (decreases to 0.01
at epoch 250). In CrosSCLR’s cross-training strategy, it al-
ready explored that if the value of k is too large, it may cause
mining errors then cause performance degradation. Thus, we
set k = 1 in the nearest neighbors mining for fair compar-
isons. For the two-stage training strategy mentioned in Sec-
tion , the encoder is trained with L1 in the first 150 epochs
while trained with L2 in the remaining epochs. We also gen-
erate three streams of skeleton sequences, i.e., joint, bone,
and motion like SkeletonCLR. For all the reported result-
s of three streams, we use the weights of [0.6, 0.6, 0.4] for
weighted fusion like other multi-stream GCN methods.

KNN Evaluation Protocol. A K-Nearest Neighbor (KN-
N) classifier is used on the features of the trained encoder.
It can also reflect the quality of the features learned by the
encoder.

Linear Evaluation Protocol. The models are verified by
linear evaluation for the action recognition task. Specifically,
we train a linear classifier (a fully-connected layer followed
by a softmax layer) supervised with encoder fixed.

Semi-supervised Evaluation Protocol. We pre-train the
encoder with all data and then finetuning the whole model
with only 1% or 10% randomly selected labeled data.

Finetune Protocol. We append a linear classifier to the
trained encoder and then train the whole model to compare
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Method Stream
NTU-60(%) PKU(%) NTU-120(%)

xsub xview part I xsub xset
acc. ∆ acc. ∆ acc. ∆ acc. ∆ acc. ∆

SkeletonCLR (CVPR 21) joint 68.3 76.4 80.9 56.8 55.9
AimCLR (Ours) joint 74.3 ↑ 6.0 79.7 ↑ 3.3 83.4 ↑ 2.5 63.4 ↑ 6.6 63.4 ↑ 7.5

SkeletonCLR (CVPR 21) motion 53.3 50.8 63.4 39.6 40.2
AimCLR (Ours) motion 66.8 ↑ 13.5 70.6 ↑ 19.8 72.0 ↑ 8.6 57.3 ↑ 17.7 54.4 ↑ 14.2

SkeletonCLR (CVPR 21) bone 69.4 67.4 72.6 48.4 52.0
AimCLR (Ours) bone 73.2 ↑ 3.8 77.0 ↑ 9.6 82.0 ↑ 9.4 62.9 ↑ 14.5 63.4 ↑ 11.4

3s-SkeletonCLR (CVPR 21) joint+motion+bone 75.0 79.8 85.3 60.7 62.6
3s-AimCLR (Ours) joint+motion+bone 78.9 ↑ 3.9 83.8 ↑ 4.0 87.8 ↑ 2.5 68.2 ↑ 7.5 68.8 ↑ 6.2

Table 2: Linear evaluation results compared with SkeletonCLR on NTU-60, PKU-MMD, and NTU-120 dataset. “∆” represents
the gain compared to SkeletonCLR using the same stream data. “3s” means three stream fusion.

Method 100ep 150ep 200ep 300ep

3s-SkeletonCLR(repro.) 71.3 73.8 74.1 74.1
3s-CrosSCLR(repro.)§ 70.0 72.8 76.0 77.2
3s-AimCLR (Ours)§ 75.4 76.0 78.2 78.6
3s-AimCLR (Ours) 76.5 77.4 78.3 78.9

Table 3: Linear evaluation results on NTU-60 xsub for dif-
ferent epochs.

Figure 3: Comparison of KNN accuracy of SkeletonCLR (Li
et al. 2021) and our AimCLR.

it with fully supervised methods.

Ablation Study
We conduct ablation studies on different datasets to verify
the effectiveness of different components of our method.

The effectiveness of the data augmentation. As shown
in Table 1, 3s-SkeletonCLR (Li et al. 2021) uses the normal
augmentations (w/ NA) and achieves the accuracy of 75.0%
and 79.8% on xsub and xview respectively. While simply
replacing the normal augmentations with extreme augmen-
tations (w/ EA), the accuracies drop on both xsub and xview.
It also illustrates that directly using extreme augmentations

Method NTU-60(%)
xsub xview

Single-stream:
LongT GAN (AAAI 18) 39.1 48.1
MS2L (ACM MM 20) 52.6 -
AS-CAL (Information Sciences 21) 58.5 64.8
P&C (CVPR 20) 50.7 76.3
SeBiReNet (ECCV 20) - 79.7
SkeletonCLR (CVPR 21) 68.3 76.4
AimCLR (Ours) 74.3 79.7

Three-stream:
3s-SkeletonCLR (CVPR 21) 75.0 79.8
3s-Colorization (ICCV 21) 75.2 83.1
3s-CrosSCLR (CVPR 21)§ 77.8 83.4
3s-AimCLR (Ours)§ 78.6 82.6
3s-AimCLR (Ours) 78.9 83.8

Table 4: Linear evaluation results on NTU-60 dataset.

may not necessarily be able to boost the performance due to
the drastic changes in original identity. While both EA and
NA are used, i.e., when Ld1 loss in Eq. (7) comes into play,
the accuracy is improved by 2.4% and 2.7%.

The effectiveness of the EADM and NNM. From Table
1, it is worth noting that when EADM is introduced, the ac-
curacy on xsub and xview are improved by 0.8% and 0.3%,
respectively. Notably, our 3s-AimCLR achieves the highest
accuracy when NNM is further introduced. It also shows that
the proposed EADM and NNM can make the encoder fur-
ther learn more robust and suitable features for downstream
tasks.

The effectiveness of the AimCLR. We conduct exper-
iments on three datasets to verify the performance of our
AimCLR and the SkeletonCLR. As can be seen from Table
2, for the three different streams of the three datasets, Aim-
CLR performs much better than SkeletonCLR. The gains in
motion and bone stream are significant. For the fusion re-
sults, our 3s-AimCLR far exceeds 3s-SkeletonCLR on the
three datasets. In addition, it can be seen from Table 3 that
our 3s-AimCLR is always better than 3s-CrosSCLR and 3s-
SkeletonCLR under the same training epochs no matter us-
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Method part I(%) part II(%)

Supervised:
ST-GCN (AAAI 18) 84.1 48.2
VA-LSTM (TPAMI 19) 84.1 50.0

Self-supervised:
LongT GAN (AAAI 18) 67.7 26.0
MS2L (ACM MM 20) 64.9 27.6
3s-CrosSCLR (CVPR 21)§ 84.9 21.2
ISC (ACM MM 21) 80.9 36.0
3s-AimCLR (Ours)§ 87.4 39.5
3s-AimCLR (Ours) 87.8 38.5

Table 5: Linear evaluation results on PKU-MMD dataset.

Method xsub(%) xset(%)

P&C (CVPR 20) 42.7 41.7
AS-CAL (Information Sciences 21) 48.6 49.2
3s-CrosSCLR (CVPR 21)§ 67.9 66.7
ISC (ACM MM 21) 67.9 67.1
3s-AimCLR (Ours)§ 68.0 68.7
3s-AimCLR (Ours) 68.2 68.8

Table 6: Linear evaluation results on NTU-120 dataset.

ing cross-stream knowledge mining strategy or not. The re-
sult of 3s-AimCLR at 100 epochs is even better than the
result of 3s-SkeletonCLR at 300 epochs.

Qualitative Results. We apply t-SNE (Van der Maaten
and Hinton 2008) with fix settings to show the embedding
distribution in Figure 2. The reported t-SNE results are fair
comparisons under the same training epoch with the same
randomly selected 10 class samples. From the visual results,
we can draw a conclusion that 3s-AimCLR could cluster the
embeddings of the same class closer than 3s-SkeletonCLR.
While using the cross-stream knowledge mining strategy,
our 3s-AimCLR§ can also make the action classes that over-
lapped seriously more distinguishable compared with 3s-
CrosSCLR§. We also calculated the NMI (Normalized Mu-
tual Information) to support our claims: (c)3s-CrosSCLR§:
0.6668, (f)3s-AimCLR§: 0.6793. The huge gains under mul-
tiple evaluation protocols in Section also corroborate the
authenticity of the t-SNE results.

Comparison with State-of-the-art
We compare the proposed method with prior related meth-
ods under a variety of evaluation protocols.

KNN Evaluation Results. Notably, the KNN classifier
does not require learning extra weights compared with the
linear classifier. From Figure 3, we can see that our Aim-
CLR is better than SkeletonCLR on the two datasets under
the KNN classifier. The obvious gains also show that the
features learned by our AimCLR are more discriminative.

Linear Evaluation Results on NTU-60. As shown in Ta-
ble 4, for a single stream (i.e., joint stream), our AimCLR
outperforms all other methods (Zheng et al. 2018; Lin et al.
2020; Rao et al. 2021; Su, Liu, and Shlizerman 2020; Nie,
Liu, and Liu 2020; Li et al. 2021). For the performance of the

Method PKU-MMD(%) NTU-60(%)
part I part II xsub xview

1% labeled data:
LongT GAN (AAAI 18) 35.8 12.4 35.2 -
MS2L (ACM MM 20) 36.4 13.0 33.1 -
ISC (ACM MM 21) 37.7 - 35.7 38.1
3s-CrosSCLR (CVPR 21) 49.7 10.2 51.1 50.0
3s-Colorization (ICCV 21) - - 48.3 52.5
3s-AimCLR (Ours) 57.5 15.1 54.8 54.3

10% labeled data:
LongT GAN (AAAI 18) 69.5 25.7 62.0 -
MS2L (ACM MM 20) 70.3 26.1 65.2 -
ISC (ACM MM 21) 72.1 - 65.9 72.5
3s-CrosSCLR (CVPR 21) 82.9 28.6 74.4 77.8
3s-Colorization (ICCV 21) - - 71.7 78.9
3s-AimCLR (Ours) 86.1 33.4 78.2 81.6

Table 7: Semi-supervised evaluation results on PKU-MMD
dataset and NTU-60 dataset.

Method NTU-60(%) NTU-120(%)
xsub xview xsub xset

SkeletonCLR (CVPR 21)† 82.2 88.9 73.6 75.3
AimCLR (Ours)† 83.0 89.2 76.4 76.7

3s-ST-GCN (AAAI 18) 85.2 91.4 77.2 77.1
3s-CrosSCLR (CVPR 21) 86.2 92.5 80.5 80.4
3s-AimCLR (Ours) 86.9 92.8 80.1 80.9

Table 8: Finetuned results on NTU-60 and NTU-120 dataset.
“†” means using the bone stream data.

3-streams, our 3s-AimCLR leads 3s-SkeletonCLR 3.9% and
4.0% under the xsub and xview protocols, respectively. It
is worth mentioning that regardless of whether 3s-AimCLR
uses a cross-stream knowledge mining strategy, the results
are better than the 3s-CrossSCLR and 3s-Colorization (Yang
et al. 2021b). It also indicates that even without the knowl-
edge mining between streams, 3s-AimCLR has the ability to
learn better feature representations.

Linear Evaluation Results on PKU-MMD. As shown
in Table 5, our 3s-AimCLR is ahead of the existing self-
supervised methods in both part I and part II of this dataset.
Part II is more challenging with more skeleton noise caused
by the view variation. Notably, 3s-CrosSCLR suffers on part
II while our 3s-AimCLR performs well. It also proves that
our 3s-AimCLR has a strong ability to cope with movement
patterns caused by skeleton noise.

Linear Evaluation Results on NTU-120. As shown in
Table 6, our 3s-AimCLR defeats the other self-supervised
methods on NTU-120. Our fusion results outperforms the
advanced ISC (68.2% vs 67.9% on xsub and 68.8% vs
67.1% on xset). This shows that our 3s-AimCLR is also
competitive on multi-class large-scale datasets.

Semi-supervised Evaluation Results. From Table 7,
even only with a small labeled subset, our 3s-AimCLR per-
forms better than the state-of-the-art consistently for all con-
figurations. The results of using 1% and 10% labeled data
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far exceed ISC, 3s-CrosSCLR, and 3s-Colorization. It also
proves that the novel movement patterns brought by extreme
augmentations have a huge impact when there is only a s-
mall amount of labeled data.

Finetuned Evaluation Results. For fair comparisons, the
ST-GCN used in the methods of Table 8 all have the same
structure and parameters. For a single bone stream, the fine-
tuned results of our AimCLR are better than that of Skele-
tonCLR. What’s more, the finetuned 3s-AimCLR also out-
performs the 3s-CrosSCLR and the supervised 3s-ST-GCN,
indicating the effectiveness of our method.

Conclusion
In this paper, AimCLR is proposed to explore the nov-
el movement patterns brought by extreme augmentation-
s. Specifically, the extreme augmentations and the energy-
based attention-guided drop module are proposed to bring
novel movement patterns to improve the universality of the
learned representations. The D3M Loss is proposed to mini-
mize the distribution divergence in a more gentle way. In or-
der to alleviate the irrationality of the positive set, the nearest
neighbors mining strategy is further proposed to make the
learning process more reasonable. Experiments show that
3s-AimCLR significantly performs favorably against state-
of-the-art methods under a variety of evaluation protocols
with observed higher quality action representations. In the
future, we hope to explore more effective combinations of
extreme augmentations and more effective ways to interact
information between different streams.
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