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Abstract

We present Laneformer, a conceptually simple yet power-
ful transformer-based architecture tailored for lane detection
that is a long-standing research topic for visual perception in
autonomous driving. The dominant paradigms rely on purely
CNN-based architectures which often fail in incorporating re-
lations of long-range lane points and global contexts induced
by surrounding objects (e.g., pedestrians, vehicles). Inspired
by recent advances of the transformer encoder-decoder archi-
tecture in various vision tasks, we move forwards to design
a new end-to-end Laneformer architecture that revolutionizes
the conventional transformers into better capturing the shape
and semantic characteristics of lanes, with minimal overhead
in latency. First, coupling with deformable pixel-wise self-
attention in the encoder, Laneformer presents two new row
and column self-attention operations to efficiently mine point
context along with the lane shapes. Second, motivated by the
appearing objects would affect the decision of predicting lane
segments, Laneformer further includes the detected object in-
stances as extra inputs of multi-head attention blocks in the
encoder and decoder to facilitate the lane point detection by
sensing semantic contexts. Specifically, the bounding box lo-
cations of objects are added into Key module to provide inter-
action with each pixel and query while the ROI-aligned fea-
tures are inserted into Value module. Extensive experiments
demonstrate our Laneformer achieves state-of-the-art perfor-
mances on CULane benchmark, in terms of 77.1% F1 score.
We hope our simple and effective Laneformer will serve as
a strong baseline for future research in self-attention models
for lane detection.

Introduction
Lane detection has been a long-standing task for visual per-
ception in autonomous driving scenarios, targeting at pre-
cisely distinguishing lane segments from complicated road
scenes(Hou et al. 2019; Wang, Shen, and Teoh 2000; Narote
et al. 2018). It plays a crucial role towards a safe and reliable
auto-driving system widely used in intelligent cars to assist
drivers with modern technologies such as adaptive cruise
control, lane departure warning, and traffic understanding.

The most state-of-the-art lane detection methods (Lee
et al. 2021; Xu et al. 2020; Chen, Liu, and Lian 2019)

*Corresponding authors
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Column attentionRow attention

Detection attention

Direct lane detection without NMS

Figure 1: Sketch map of proposed detection attention and
row-column attention in Laneformer. Given the detected per-
son and vehicle instances, detection attention is performed
to capture the implicit relationship between them and lanes,
e.g., lanes are more likely to appear next to cars. Row at-
tention is proposed to catch the information from the nearby
rows since pixels in the same lane will not be far from each
other between adjacent rows. On the other hand, noticed that
different columns may across different lanes, the knowledge
sharing of these columns may capture different lane features
to construct better representations.

take advantage of CNN architectures and exceed the tradi-
tional methods(Niu et al. 2016; Narote et al. 2018; Wang,
Shen, and Teoh 2000) by a large margin. However, the ex-
isting CNN-based methods usually need complicated post-
processing procedures like non-maximal suppression or
clustering. In addition, the fixed receptive field of CNN ar-
chitecture limits the ability to incorporate relations for long-
range lane points, making them hard to capture well the
characteristics of lanes since the shapes are conceptually
long and thin. Several attention-based lane detection mod-
els (Lee et al. 2021; Tabelini et al. 2020b; Liu et al. 2021)
have been also proposed to capture the long-range informa-
tion. Nevertheless, the fixed attention routines can not adap-
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tively fit the shape characteristic of lanes. Besides, compli-
cated road scenes including different light, weather condi-
tions and occlusions of surrounding objects further require
the model with a stronger perception of global contexts. In
addition to the point-wise context information, it is reason-
able to assume that objects on the road (e.g., pedestrians, ve-
hicles) have some implicit relations with surrounding lanes.
As the key sub-module (e.g., person-vehicle detection) of
autonomous driving systems usually co-exist with lane de-
tection, the sub-module outputs may promote the perfor-
mance of lane detection and improves the system safety.
However, none of the existing methods has considered in-
corporating semantics induced by detection results from a
single and unified network view.

On the other hand, Transformer(Vaswani et al. 2017),
a kind of encoder-decoder architecture, has shown sur-
prisingly promising ability in dealing with tasks that re-
quire to capture global relations in nature language pro-
cessing(Devlin et al. 2018; Radford et al. 2018; Young
et al. 2018) and vision tasks such as image classifica-
tion(Dosovitskiy et al. 2020), object detection(Carion et al.
2020; Zhu et al. 2020) and image segmentation(Zheng et al.
2020; Wang et al. 2020). Particularly, (Liu et al. 2021) pro-
posed an LSTR model to predict lanes as polynomial func-
tions using a transformer. Despite its benefit in providing
rich global contexts in predicting lanes, the definition that
regards lanes as polynomial functions has many drawbacks:
1) LSTR needs to formulate camera intrinsic and extrinsic
parameters, which hinders the model from transferring to
other datasets or train with combined datasets; 2) LSTR still
lacks of explicitly modeling global semantic contexts into
facilitating lane detection.

To tackle the above-mentioned issues, we move forwards
to design a new Laneformer architecture to better capture
the shape characteristics and global semantic contexts of
lanes using transformers (shown in Figure 1). Our Lane-
former defines lanes as a series of points. Then, the lane-
specific row-column attentions are proposed to efficiently
mine point context along with the lane shapes. Concretely,
we take each feature row as a token and perform row-to-row
self-attention and do the same for each feature column to
perform column-to-column self-attention. Moreover, moti-
vated by the appearing objects that would affect lanes’ pre-
dictions, Laneformer further includes the detected object in-
stances as auxiliary inputs of multi-head attention blocks in
encoder and decoder to facilitate the lane point detection
by sensing semantic contexts. To be specific, the bounding
box locations of objects are added into the Key module to
provide interaction with each pixel and query. At the same
time, the ROI-aligned features are inserted into the Value
module to provide detection information. Considering that
bounding box locations and ROI-aligned features contain
limited information about object instances, we use confident
scores and predicted categories of the detected outputs to
further improve the model’s performance. Bipartite match-
ing is adopted to ensure one-to-one alignment between pre-
dictions and ground truths, which makes the Laneformer ar-
chitecture eliminate additional post-processing procedures.

Extensive experiments conducted on CULane(Pan et al.

2018) and TuSimple(TuSimple 2017) benchmarks show that
our Laneformer as an early transformer attempt on lane de-
tection, achieves state-of-the-art performance on CULane
with 77.1% F1 score and superior 96.8% accuracy on Tusim-
ple, with about 50 FPS(frames-per-second) inference speed
on V100. Besides, visualization of the learned attention map
in transformer demonstrates that our Laneformer can incor-
porate relations of long-range lane points and global con-
texts induced by surrounding objects.

To summarize, the main contributions can be listed:
• We design a new Laneformer architecture specified for

lane detection, which accommodates the conventional
transformers into capturing well the shape characteristics
and semantic contexts of lanes.

• The lane-specific row-column self-attentions is proposed
to mine point context along with the lane shapes with the
prior that lanes are long and thin.

• The object instances by detection that usually co-exist in
autonomous driving system are used as auxiliary inputs
to sense object-wise semantic contexts.

• Experiments show that Laneformer achieves new state-
of-the-art performance, in terms of 77.1% F1 score on
CULane and superior 96.8% accuracy on Tusimple.

Related Work
Attention-free methods. Before the advent of deep learn-
ing, traditional lane detection methods are usually based on
hand-crafted low-level features (Chiu and Lin 2005; Lee
and Cho 2009; Gonzalez and Ozguner 2000). CNN archi-
tecture has then been adopted to extract advanced features
in an end-to-end manner. Most lane detection methods fol-
low pixel-level segmentation-based approach (Pizzati et al.
2019; Hou 2019; Mamidala et al. 2019; Zou et al. 2019).
These approaches typically generate segmentation results
with an encoder-decoder structure and then post-processing
them via curve fitting and clustering. However, pixel-wise
lane prediction methods usually require more computation
and are also limited to the pre-defined number of lanes. On
the other hand, several works (Chen, Liu, and Lian 2019; Li
et al. 2019; Xu et al. 2020) follow traditional proposal-based
diagrams by generating multiple point anchors and then pre-
dicting the relative distance between each lane point and the
anchor point. However, these existing CNN-based methods
usually need complicated post-processing procedures like
non-maximal suppression or clustering. Besides, the fixed
receptive field of CNN architecture limits the ability to in-
corporate relations for long-range lane points. Therefore, our
Laneformer utilizes a transformer to capture context infor-
mation and bipartite matching to eliminate additional post-
processing procedures.
Attention-based methods. Several attention-based lane de-
tection models(Lee et al. 2021; Tabelini et al. 2020b; Liu
et al. 2021) have been proposed to capture the long-range
information. (Lee et al. 2021) propose a self-attention mech-
anism to predict the lanes’ confidence along with the vertical
and horizontal directions in an image. (Tabelini et al. 2020b)
proposes a novel anchor-based attention mechanism that ag-
gregates global information named LaneATT. However, the
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Figure 2: Overall Architecture. In Laneformer, backbone extracts backbone features Hf , row features Hr and column features
Hc. Detection Processing module generates bounding box embeddings Zb and ROI embeddings Zr with detected bounding
boxes and Hf . In the encoder, row attention and column attention are performed on Hr and Hc, added up with the pixel-
to-Bbox attention performed on Hf , Zb and Zr as memory input for decoder. In the decoder, traditional cross-attention and
query-to-Bbox attention are performed and outputs are added up for the feed-forward layers to predict lanes.

fixed attention routines can not adaptively fit the shape char-
acteristic of lanes. Without special design for lane detection,
(Xu et al. 2021) adopts Transformers with a multi-scale en-
coder/decoder strategy to perform line segment detection.
Based on PolyLaneNet(Tabelini et al. 2020a), LSTR(Liu
et al. 2021) is proposed to output polynomial parameters of
a lane shape function by using a network built with a trans-
former to learn richer structures and context. Unlike LSTR,
which assumes all lanes are parallel on the road and for-
mulates it as a polynomial shape prediction problem, our
Laneformer directly outputs each lane’s points to adapt to
more complex lane detection scenarios. Besides, detected
object instances are further included as auxiliary inputs of
multi-head attention blocks in Laneformer to facilitate the
lane point detection by sensing semantic contexts.

Laneformer
Lane Representation
Similar to (Chen, Liu, and Lian 2019), we define lanes as a
series of 2D-points that can adapt to all kinds of lanes. Spe-
cially, we formulate a lane as l = (X, s, e), where X stands
for corresponding x-coordinate set for 72 equally-spaced y-
coordinates and s, e denote for the start y-coordinate and end
y-coordinate of the lane.

Architecture
The overall architecture of Laneformer is demonstrated in
Figure 2. It mainly consists of four modules: a CNN back-
bone to extract basic features, a detection processing module
to handle outputs from person-vehicle detection module, a
specially designed encoder and a decoder for lane detection.

Given an RGB image as input, our model first extracts
backbone features with a ResNet (He et al. 2016) back-
bone. We further get row features and column features by
collapsing the column dimension and row dimension of

backbone features, respectively. At the same time, detected
bounding boxes and their predicted scores and categories
from the input image are acquired through a trained person-
vehicle detection module. We use the bounding box lo-
cations to crop ROI-aligned features from backbone fea-
tures mentioned above, followed by a 1-layer perceptron
with ReLU activation to transform the ROI-aligned features
to one-dimensional embeddings. Similarly, another 1-layer
perceptron is applied on the detected bounding boxes to get
one-dimensional bounding box embeddings. In the encoder,
row attention and column attention are performed on row
features and column features respectively. Meanwhile, back-
bone features will perform self-attention and pixel-to-Bbox
attention with bounding box embeddings and ROI embed-
dings. The outputs of row-column attention and pixel-to-
Bbox attention are added up as the memory input for the
following decoder. In the decoder, learnable queries first per-
form self-attention to get query features. Then the query fea-
tures together with the input memory will perform cross at-
tention. Meanwhile, with the bounding box embeddings and
ROI embeddings, query-to-Bbox attention can be applied.
Finally, outputs of the cross attention and query-to-Bbox at-
tention are added up, and several feed-forward layers are uti-
lized to predict lane points.

Detection Processing

After the acquisition of detected bounding boxes, predicted
scores and predicted categories from a trained detector based
on common Faster-RCNN(Ren et al. 2015) architecture, we
propose a simple detection processing module to process
them in order to better utilize the detection information.
First, we crop ROI-aligned features from backbone features
Hf ∈ Rh×w×d for the bounding boxes of the detected ob-
jects, where h,w and d are the spatial sizes and the corre-
sponding dimension of backbone features. Since the features
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Figure 3: Detailed operations of the row-column attention
and detection attention.

⊕
stands for the addition andH ′f/Q

denotes that the input can be either backbone feature H ′f in
the encoder or query feature Q in the decoder.

we used are down-sampled, we need to rescale the bound-
ing box locations by a specific ratio to crop out correct fea-
ture areas. Considering that objects with higher confidence
scores may supply more robust information while objects
with lower scores may be noisy, we also use predicted scores
as weight coefficients to multiply the ROI-aligned features
and get weighted ROI-aligned features for each object. Af-
ter that, we pass through weighted ROI-aligned features into
a 1-layer perceptron with output channel d′ followed by
ReLu activation to get final ROI embeddings Zr ∈ RM×d

′
.

M denotes the number of used detected bounding boxes.
If the number of detected bounding boxes is less than M ,
bounding boxes with random locations, categories and zero
scores will be padded. On the other hand, bounding boxes
with lower scores will be excluded if the number of detected
bounding boxes is more than M .

In the meantime, with the prior that category information
can help distinguish different objects, we further concatenate
the predicted categories after bounding boxes. Specifically,
we use a four-dimensional vector to represent a bounding
box and a one-hot vector with length 7 (1 for padded box and
6 for categories) to represent the corresponding category,
which will result in an 11-dimensional vector after concate-
nation. Similar to ROI features, a one-layer perceptron with
ReLu activation is applied to get bounding box embeddings
Zb ∈ RM×d

′
. Finally, Zr and Zb are sent to preform Pixel-

to-Bbox attention in encoder and Query-to-Bbox attention
in decoder.

Row-Column Attention
In the encoder of Laneformer, besides the traditional atten-
tion, we further propose the new row-column attention to
efficiently mine point context along with the lane shapes.
The row-column attention consists of row attention that cap-
tures the relations between rows and column attention that
mine the relations between columns. As we all know, the
traffic lane is a kind of object with unique shape character-
istics. From the vertical view, lanes are long and thin, which

means pixels in the same lane will not be far from each other
between adjacent rows. From the horizontal view, since dif-
ferent columns may across different lanes, the knowledge
sharing of these columns may capture different lane features
to construct better representations.

Given row features Hr ∈ Rh×1×wd, where h,w and d
are the spatial sizes and the the corresponding dimension of
backbone features, we pass it through a linear transforma-
tion to reduce the last dimension to d′, which we denoted
as H′r ∈ Rh×1×d

′
. Sinusoidal embeddings Ep is calculated

according to the absolute positions to supply location infor-
mation. Self-attention operations are applied with the inputs
of H′r and Ep. Similarly, with the dimension-reduced col-
umn features H′c ∈ R1×w×d′ and its position embeddings,
self-attention are performed between columns. Finally, the
outputs of row and column attention are added up as the
memory input for decoder. Details are shown in Figure 3(a).

Detection Attention
Apart from row-column attention, in both the encoder and
decoder of Laneformer, we propose detection attention to
mine the valuable information from detected surrounding
objects. It is straight-forward that lanes and objects on the
road (e.g., pedestrians, vehicles) have some implicit rela-
tions with each other. For example, lanes are more likely to
appear next to vehicles, while pedestrians are not supposed
to walk between lanes. Besides, object detection module
such as person-vehicle detection is always co-existed with
lane detection in an auto-driving system, thus detected re-
sults can be acquired easily. The detection attention module
consists of two parts: 1) a Pixel-to-Bbox attention module
in encoder to excavate the relevance between each pixel to-
ken of feature map and each detected objects; 2) a Query-to-
Bbox attention module in decoder to find out which object
should be paid more attention in order to help predict corre-
sponding lanes. Details are illustrated in Figure 3(b).

Pixel-to-Bbox Attention In Laneformer encoder, we pro-
pose pixel-to-Bbox attention. Pixel-to-Bbox attention is de-
signed for digging out relations between feature pixels and
detected objects. In pixel-to-Bbox attention, each pixel in
dimension-reduced backbone features H′f is considered as a
query token. Detection information including bounding box
embeddings Zb and ROI embeddings Zr make up the Key
module and Value module, respectively. The pixel-to-Bbox
attention is defined as follows:

Op2b = softmax(
H′fZb

T

√
d′

) · Zr (1)

Pixel-to-Bbox attention forces the model to learn which
detected object a pixel should pay attention to so that the
model can catch helpful context features. The output of
pixel-to-Bbox attention Op2b are added up with the above
row-column attention output and act as the memory input
for the decoder.

Query-to-Bbox Attention In Laneformer decoder, we
propose query-to-Bbox attention. Query-to-Bbox attention
on the other hand designed to mine relations between queries
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and detected objects. Query-to-Bbox attention is similar
to Pixel-to-Bbox attention, while in here, queries are the
learned embeddings Q with the size of N × d′, where N is
the number of learned embeddings. Bounding box embed-
dings Zb and ROI embeddings Zr still act as Key module
and Value module here. Similarly, the query-to-Bbox atten-
tion is defined as follows:

Oq2b = softmax(
QZT

b√
d′

) · Zr (2)

This attention enables each query to focus on the instances
near the lane it needs to predict. The output of query-to-
Bbox attention Oq2b will be added up with the traditional
cross-attention output, followed by several feed-forward fea-
tures to get predicted lanes.

Loss Construction
Bipartite matching. After obtaining features from above-
mentioned modules, Laneformer predicts a number of N
lane set according to its number of queries, where N is
set to be significantly larger than the maxinum number of
lanes in the dataset. Therefore we need to pad the ground
truth with non-lane to be a set of N objects first, denoted as
G = {gn|gn = (cn, ln)}Nn=1, where cn ∈ {0, 1}, 0 repre-
sents non-lane and 1 represents lane. Given predicted out-
puts as P = {pn|pn = (p̂n, l̂n)}

N

n=1, where p̂n(cn) stands
for the probability score that l̂n belongs to the specific cate-
gory cn. We search for a permutation of N elements match-
ing index δ to minimize the pair-wise distance function D
between ground-truth lane gn and predicted lane pδ(n):

δ̂ = argmin
δ

N∑
n=1

D(gn, pδ(n)). (3)

The difference function D is defined as following:

D(gn, pδ(n))=−ω1p̂δ(n)(cn)+1(cn=1)Lloc(ln, l̂δ(n)) (4)

Where 1(∗) denotes an indicator function and ω1 stands
for the coefficient of classification term. Lloc is defined as
follows:

Lloc(ln, l̂δ(n))=ω2L1(Xn, X̂δ(n)) + ω3L1(sn, ŝδ(n))

+ ω4L1(en, êδ(n))
(5)

where L1 denotes the mean absolute error and ω2, ω3, ω4 in-
dicate for the coefficients for point, start position and end po-
sition term respectively. Bipartite matching is adopted to en-
sure one-to-one alignment between predictions and ground
truths, making the Laneformer an end-to-end architecture by
eliminating additional post-processing procedures.
Total Loss The total loss of our model is calculated with
matching index δ gained from bipartite matching, consisting
of negative log-likelihood loss for classification prediction
and L1-based location loss:

Ltotal=
N∑
n=1

−ω1logp̂δ(n)(cn)+1(cn=1)Lloc(ln, l̂δ(n)) (6)

Where Lloc is calculated the same with Eq.(5) and (n, δ(n))
is the optimal pair indexes that minimize Eq.(3). ω1, ω2, ω3,
ω4 also adjust the effect of the loss terms and are set as same
values with Eq.(4) and Eq.(5).

Experiment
Datasets and Evaluation Metrics
We conduct experiments on the two most popular lane detec-
tion benchmarks. CULane (Pan et al. 2018) is a large-scale
traffic lane detection dataset that is collected by in-vehicle
cameras in Beijing, China. It consists of 88,880 training im-
ages, 9675 validation images, and 34,680 test images. The
test split is further divided into normal and 8 challenging
categories. TuSimple (TuSimple 2017) is an autonomous
driving dataset which specifically focuses on real highway
scenarios, including 3626 images for training set and 2782
images for the test set.

Evaluation Metrics We use F1 score(abbreviated as F1
in the following section) to measure the model performance
on CULane: F1 = 2×Precision×Recall

Precision+Recall , where Precision =
TP

TP+FP and Recall = TP
TP+FN . As for Tusimple, standard

evaluation metrics including Accuracy, false positives(FP)
and false negatives(FN) are adopted.

Implementation Details
The input resolution is set to 820 × 295 for CULane and
640× 360 for TuSimple. Data augmentations are applied on
the raw image, consisting of horizontal flipping, a random
choice from color-shifting operations(e.g., gaussian blur,
linear contrast) and position-shifting operations(e.g., crop-
ping, rotate). Most of our experiments use ResNet50 as the
backbone. We follow the setting of (Zhu et al. 2020) and uti-
lize a deformable transformer as the plain transformer. The
bipartite matching and loss term coefficients ω1, ω2, ω3 and
ω4 are set as 2, 10, 10, 10, respectively. Both the number of
encoder and decoder layers is set to 1. Moreover, we adopt
25 as the number of queries N and 10 as the number of used
detected bounding boxes M . Eight V100s are used to train
the model and the batch size is set to be 64. The learning rate
is set to 1e-4 for the backbone and 1e-5 for the transformer.
We train 100 epochs on CULane and drop the learning rate
by ten at 80 epoch. On Tusimple, the total number of training
iterations is set to 28k and the learning rate drops at 22k iter-
ation. During inference, the single scale test is adopted with
the score threshold set to 0.8. The trained detector used to
obtain person-vehicle bounding boxes is based on common
Faster-RCNN(Ren et al. 2015) architecture with ResNet-50
backbone and trained 12 epochs on BDD100K dataset(Yu
et al. 2018) with 70k images.

Main Results
CULane. Table 1 shows the Laneformer’s performance on
CULane test set. Our Laneformer achieves state-of-the-art
results on F1 of the total test split. In addition, our Lanformer
with only ResNet-50 backbone even surpasses the results
of LaneATT (Tabelini et al. 2020b) with a larger ResNet-
122 backbone. Additionally, Laneformer outperforms all
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Methods Normal Crowded Dazzle Shadow No line Arrow Curve Night Cross Total MACs (G)
SCNN(Pan et al. 2018) 90.60 69.70 58.50 66.90 43.40 84.10 64.40 66.10 1990 71.60 /

ENet-SAD(Hou et al. 2019) 90.10 68.80 60.20 65.90 41.60 84.00 65.70 66.00 1998 70.80 /
PointLane(Chen, Liu, and Lian 2019) 88.00 68.10 61.50 63.30 44.00 80.90 65.20 63.20 1640 70.20 /

ERFNet-HESA(Lee et al. 2021) 92.00 73.10 63.80 75.00 45.00 88.20 67.90 69.20 2028 74.20 /
CurveLane-S(Xu et al. 2020) 88.30 68.60 63.20 68.00 47.90 82.50 66.00 66.20 2817 71.40 9.0
CurveLane-M(Xu et al. 2020) 90.20 70.50 65.90 69.30 48.80 85.70 67.50 68.20 2359 73.50 33.7
CurveLane-L(Xu et al. 2020) 90.70 72.30 67.70 70.10 49.40 85.80 68.40 68.90 1746 74.80 86.5

LaneATT(RN-18)(Tabelini et al. 2020b) 91.17 72.71 65.82 68.03 49.13 87.82 63.75 68.58 1020 75.13 9.3
LaneATT(RN-34)(Tabelini et al. 2020b) 92.14 75.03 66.47 78.15 49.39 88.38 67.72 70.72 1330 76.68 18.0

LaneATT(RN-122)(Tabelini et al. 2020b) 91.74 76.16 69.47 76.31 50.46 86.29 64.05 70.81 1264 77.02 70.5
Laneformer(RN-50)* 91.55 74.76 69.27 69.59 48.13 86.99 68.15 70.06 1104 76.04 26.2
Laneformer(RN-18) 88.60 69.02 64.07 65.02 45.00 81.55 60.46 64.76 25 71.71 13.8
Laneformer(RN-34) 90.74 72.31 69.12 71.57 47.37 85.07 65.90 67.77 26 74.70 23.0
Laneformer(RN-50) 91.77 75.41 70.17 75.75 48.73 87.65 66.33 71.04 19 77.06 26.2

Table 1: Comparison of F1-measure(%) and MACs(multiply–accumulate operations) on CULane testing set, where Lane-
former* denotes for Laneformer without detection attention module. Our Laneformer achieves state-of-the-art performance.

other lane detection models on some challenging splits such
as “Night”, “Dazzle light” and “Cross”. Among the above
three splits, Laneformer significantly improves the per-
formance of “Cross” category, which achieves an ex-
tremely low FP(False Positive) number 19. We observe
that our model gets a result of 1104 FP on “Cross” cate-
gory without detection attention, while with the detection
attention, the performance makes a dramatic improvement
as in Table 1. The promotion may come from the percep-
tion of vehicle-person global context on the particular cross-
road scenario benefiting from the proposed detection atten-
tion layer.
TuSimple. Experimental results on TuSimple benchmark
are summarized in Table 2. We achieve 96.8% accuracy,
5.6% FP and 1.99% FN with ResNet-50 backbone. It
is shown that Laneformer achieves comparable accuracy
with the state-of-the-art Line-CNN and 0.6% higher than
another transformer-based method LSTR. Even with the
smaller backbones (ResNet-18, ResNet-34), Laneformer
can achieve a competitive accuracy compared with the state-
of-the-art methods. Note that adding detection attention on
Tusimple doesn’t improve much due to the relatively simple
highway driving scenes (e.g., few cars and straight lines).
Latency Comparison. In inference, Laneformer with
ResNet-50 backbone achieves 53 and 48 FPS on one V100
for CULane and Tusimple benchmark. For latency compari-
son of different components in Laneformer, we conduct ex-
periments on CULane testing split and illustrate the result
in Table 3. After adding row-column attention and detection
attention, there is only a 4.9%, 8.1% increment on inference
FPS due to the efficient matrix multiplication.
Visualization. We visualize several attention maps in the
transformer to find out the area that detection attentions and
row-column attentions focus on, where brighter color de-
notes for more significant attention value. Shown in Figure
4(a), either the point or query pays more attention to the de-
tected instances besides lanes it responsible for, especially
when those instances are in occlusion with part of the lane.
Moreover, observation can be made in Figure 4(b) that row

Method Acc(%) FP(%) FN(%)
SCNN (Pan et al. 2018) 96.53 6.17 1.80
LSTR (Liu et al. 2021) 96.18 2.91 3.38

Enet-SAD (Hou et al. 2019) 96.64 6.02 2.05
Line-CNN (Li et al. 2019) 96.87 4.41 3.36

PolyLaneNet (Tabelini et al. 2020a) 93.36 9.42 9.33
PointLaneNet (Chen, Liu, and Lian 2019) 96.34 4.67 5.18
LaneATT (RN-18) (Tabelini et al. 2020b) 95.57 3.56 3.01
LaneATT (RN-34) (Tabelini et al. 2020b) 95.63 3.53 2.92

LaneATT (RN-122) (Tabelini et al. 2020b) 96.10 5.64 2.17
Laneformer(RN-50)* 96.72 3.46 2.52
Laneformer(RN-18) 96.54 4.35 2.36
Laneformer(RN-34) 96.56 5.39 3.37
Laneformer(RN-50) 96.80 5.60 1.99

Table 2: Comparison of different algorithms on the Tusimple
testing benchmark, where Laneformer* denotes for Lane-
former without detection attention module.

attention mainly considers nearby rows, while the column
attention focuses on the nearby representative column of
each lane. These results demonstrate our assumption that the
implicit relationship of traffic scenes can be obtained from
proposed detection attention and row-column attention.

Ablation Study
Different components. As we can see in Table 3, without
detection attention and row-column attention, our baseline
(plain transformer) obtains 75.45% on F1. The adding of
row-column attention improves the performance to 76.04%.
What’s more, simply introducing detected objects informa-
tion can improve the performance of our model, but a lit-
tle more extra information such as scores or categories will
make it better. We can observe that making full use of de-
tected objects with their scores and categories raises the F1
to 77.06%, which is the state-of-the-art results on CULane.
Score threshold of the bounding box. To find out the in-
fluences of detected objects with different confidence, we
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point: (252,348) point: (754,488)

query id: 19 query id: 12

(a) Visualization of detection attention.

col: x=140 col: x=420

col: x=840 row: y=580

(b) Visualization of row and column attention.

Figure 4: Visualization of proposed attentions on Tusimple dataset, where brighter color denotes more significant attention
value. (a) shows the detection attention map for different points and queries in the transformer. We can observe either the
pixel or the query focus on the detection bounding boxes near the corresponding lane. (b) shows that the row attention mainly
considers the nearby rows, while the column attention focuses on the nearby representative column of each lane.

Model F1(%) Precision(%) Recall(%)
Baseline(ResNet-50) 75.45 81.65 70.11
+ row-column attention 76.04 82.92 70.22
+ bounding box 76.08 85.30 68.66
+ score 76.25 83.56 70.12
+ category 77.06 84.05 71.14

Table 3: Ablation study results of different components of
Laneformer on CULane.

conduct a series of experiments with different score thresh-
olds on filtering detected bounding boxes. Table 4 shows that
using detection outputs from different score thresholds has
a slight impact on our results. Especially, results between
threshold 0.6 to 0.8 are robust and the differences can be
nearly neglect. When the threshold is lower than 0.6, there
may be some noise in detected bounding boxes and therefore
our performance gets slighted hurt. On the other hand, if the
threshold is too high such as 0.9, only a few bounding boxes
will be chosen so that a large number of padded boxes will
interfere with the model’s learning, which leads to a lower
F1. Besides, we experiment on random bounding boxes to
prove that Laneformer indeed makes use of the information
of detected objects.
Number of bounding box. Apart from thresholds, we fur-
ther explore the impact of using a different number of de-
tected objects in Laneformer. The results in Table 4 show
that too many detected objects lead to a performance drop,
and our model reaches the best result under the setting of
10 bounding boxes. We speculate that the best setting of 10
bounding boxes is due to the average number of detected
objects in each image under the bounding box threshold of
0.6, which is 9.84. So if we set a number much larger than
9.84, for example, 20 in our experiment, then too many use-
less padded boxes will be used, which may hurt the model’s
performance. On the other hand, if we use too few bound-
ing boxes, the information of detected objects is not entirely
utilized to reach the best performance.
Different categories. Vehicles and persons have different
relations with lanes. To be specific, vehicles are on the road,
beside the lanes, while persons usually far from lanes. So
we also explore the impact of extra information with differ-

F1(%) Pr(%) Re(%)

Score threshold

0.4 76.34 85.41 69.01
0.5 76.14 84.52 69.27
0.6 77.06 84.05 71.14
0.7 76.71 84.53 70.21
0.8 76.85 84.51 70.46
0.9 76.37 85.54 68.98
random 75.99 84.50 69.03

Number of Bbox
5 76.90 84.30 70.69
10 77.06 84.05 71.14
20 76.51 84.34 70.01

Different categories

none 76.04 82.92 70.22
person 76.40 85.17 69.27
vehicle 76.79 84.44 70.41
all 77.06 84.05 71.14

Table 4: Quantitative evaluation of different detection
bounding box input settings on CULane testing split. ‘Pr’
and ‘Re’ denote for the Precision and Recall respectively.

ent categories of bounding boxes. Results in Table 4 show
that both the adding of vehicles and persons can improve
the model performance, and the result with vehicles is better
than the one with persons. We suppose that vehicles share
a more close relation with lanes in the perspective of loca-
tions. Experiments show that the model with all of the two
categories reaches the best results.

Conclusions

In this work, we propose Laneformer, a conceptually sim-
ple yet powerful transformer-based architecture tailored for
lane detection. Equipped with row and column self-attention
module and semantic contexts provided by additional de-
tected object instances, Laneformer achieves the state-of-
the-art performance, in terms of 77.1% F1 score on CULane
and superior 96.8% Accuracy on TuSimple benchmark. Be-
sides, visualization of the learned attention map in trans-
former demonstrates that our Laneformer can incorporate
relations of long-range lane points and global contexts in-
duced by surrounding objects.
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