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Abstract

Convolutional Neural Networks (CNNs) perform very well
in image classification and object detection in recent years,
but even the most advanced models have limited rotation in-
variance. Known solutions include the enhancement of train-
ing data and the increase of rotation invariance by globally
merging the rotation equivariant features. These methods ei-
ther increase the workload of training or increase the num-
ber of model parameters. To address this problem, this pa-
per proposes a module that can be inserted into the existing
networks, and directly incorporates the rotation invariance
into the feature extraction layers of the CNNs. This module
does not have learnable parameters and will not increase the
complexity of the model. At the same time, only by train-
ing the upright data, it can perform well on the rotated test-
ing set. These advantages will be suitable for fields such as
biomedicine and astronomy where it is difficult to obtain up-
right samples or the target has no directionality. Evaluate our
module with LeNet-5, ResNet-18 and tiny-yolov3, we get im-
pressive results.

Introduction
Deep learning and convolutional neural networks have made
great progress in many tasks such as image classification and
object detection. The inherent properties of convolution and
pooling layer alleviate the influence of local translation and
distortion. However, due to the lack of the ability to pro-
cess large rotation of image, convolution neural networks are
limited in some visual tasks, including target boundary de-
tection (Maninis et al. 2016; Dalal and Triggs 2005), multi-
directional target detection (Cheng, Zhou, and Han 2016)
and image classification (Jaderberg et al. 2015; Laptev et al.
2016). In recent years, CNN based image classification and
object detection have been used in biomedical, industrial and
astronomical research. In these fields, objects can appear in
any direction, such as microscopic images, objects on con-
veyor belts or objects observed. So, the research on rotation
invariance of neural networks has been more and more im-
portant.

At present, most deep networks use data augmentation to
make the network recognize objects in different directions
(Ojala, Pietikäinen, and Harwood 1996; Quiroga et al. 2018;
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Tamura, Horiguchi, and Murakami 2019; Mash, Borghetti,
and Pecarina 2016), or merging the rotation equivariant fea-
tures (Gao et al. 2019; Wiersma, Eisemann, and Hildebrandt
2020). These methods either increase the workload of train-
ing or increase the number of model parameters. In this pa-
per, by making the feature maps before and after convolution
rotation equivariant, the whole neural network is rotation in-
variant. With rotation angle θ ∈ {0, 90, 180, 270}◦, the fea-
ture maps are completely the same. When the input image
is rotated with arbitrary angle, there is only small difference
between feature maps before and after rotation.

The main contributions of this paper are:
1) A Local Binary Pattern(LBP) operator based Regional

Rotation Layer (RRL) is proposed. RRL can be embedded
in CNNs, without the need for substantial changes to the
network to achieve rotation invariant.

2) Without learning new parameters, RRL makes the fea-
ture maps before and after convolution satisfy the rotation
equivariance, and thus makes the entire neural network rota-
tion invariant. With rotation angles θ ∈ {0, 90, 180, 270}◦,
the feature maps are exactly the same. With arbitrary rota-
tion angle, there is a small distinction between feature maps.

3) Evaluate RRL with LeNet-5, ResNet-18 and tiny-
yolov3, we get impressive results.

Related Work
For deep learning based methods, the most direct way is
data augmentation (Van Dyk and Meng 2001), which sim-
ply changes the size and direction of the input images to
create more training data. TI-Pooling (Laptev et al. 2016)
uses the rotated image as input, and applies a pooling layer
before outputting features to unify the network’s results for
different rotation angles. Dieleman proposed a deep neural
network model that uses translational and rotational sym-
metry to classify galaxy morphology (Dieleman, Willett,
and Dambre 2015). They create multiple rotated and flipped
galaxy image samples, and then concatenate the feature
maps to the classifier. Polar Transformer Networks (PTN)
(Esteves et al. 2018) converts the input to polar coordinates.
PTN is composed of a polar coordinate prediction module,
a polar coordinate conversion module, and a classifier to
achieve translation invariance and equal changes in expan-
sion/rotation groups. (Jiang and Mei 2019) also proposed a
Polar Coordinate Convolutional Neural Network (PCCNN)
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to convert the input image to polar coordinates to achieve
rotation invariance. The overall structure of the model is the
same as the traditional CNN, except that the central loss
function is used to learn rotation invariant features. In ad-
dition, (Cohen and Welling 2016) proposed Group Equiv-
ariant Convolutional Networks (GCNN) as a special case of
controllable CNN, which proved that the spatial transforma-
tion of the image can be corresponded in the feature map
and the filter. GCNN is composed of group convolution ker-
nels. These convolutions include filter rotation and merging
operations on the rotation. Group convolution is limited to
integer multiples of 90°rotation and flipping. Cohen et al.
also proposed steerable CNNs (Cohen and Welling 2017)
and Spherical CNNs (Cohen et al. 2018) to achieve rotation
equivariant. Steerable CNNs are limited to discrete groups,
such as discrete rotations acting on planar images or permu-
tations acting on point clouds. Spherical CNNs show good
robustness. Because FFT and IFFT are used in spherical con-
volution, some information will be lost in the conversion
process. Spherical convolution achieves rotation invariance
for ideal 3D objects, and there is no interference of back-
ground or other noise. If there are multiple 3D objects in the
natural scene, the 3D objects must be segmented first, and
then the rotation invariant features are extracted. The Rota-
tion Equivariant Vector Field Networks (RotEqNet) (Mar-
cos et al. 2017) uses multiple rotation instances of a uni-
form standard filter to perform convolution, that is, the fil-
ter is rotated at different intervals. Although the RotEqNet
model is small, the increasing in the number of convolu-
tion kernels brings more memory and longer computing
time. (Dieleman, De Fauw, and Kavukcuoglu 2016) encodes
cyclic symmetry in CNNs by parameter sharing to achieve
rotation equivariant. They introduce four operations: slice,
pool, stack and roll. The operations can be cast as layers in
a neural network, and build networks that are equivariant to
cyclic rotations and share parameters across different orien-
tations. But the operations change the size of the minibatch
(slicing, pooling), the number of feature maps (rolling), or
both (stacking). To alleviate the excessive time-consuming
and memory usage, (Li et al. 2018) proposed Deep Rota-
tion Equivariant Network. They apply rotation transforma-
tion on filters rather than feature maps, achieving a speed
up of more than 2 times with even less memory overhead.
But the methods all need to learn new parameters to achieve
rotation equivariant.

Rotation Invariance Based on LBP Operator
The standard convolutional neural networks do not have the
property of rotation invariance. Trained by the upright sam-
ples, the performance drops significantly when tested by the
rotated images. To solve this problem, we add a regional ro-
tation layer (RRL) before the convolutional layers and the
fully connected layers. The main idea is that we indirectly
achieve rotation invariance by restricting the convolutional
features to be rotation equivariant.

Local Binary Pattern
Local Binary Pattern (LBP) (Ojala, Pietikäinen, and Har-
wood 1996) is an operator that describes image texture fea-

Figure 1: Local Binary Pattern. (a) image of size 33. The
numbers are the gray values; (b) the binary values of the
surrounding pixels; (c) the index value of the surrounding
pixels; (d) the dot product result of (b) and (c); (e) rotate (b)
of 135°clockwise to get the minimum LBP; (f) the image
window after rotation.

.

tures. Suppose the window size is 3 × 3, setting the central
pixel as the threshold, we can get a binary encoding of the
local texture, and convert it to a decimal value. As shown
in Figure 1(a), the central point pixel value 6 is used as the
comparison reference, then calculate the difference values
of the surrounding eight pixels with the central point. If the
neighbouring value is less than the central value, the corre-
sponding location is marked as 0, otherwise marked as 1,
as shown in Figure 1(b). Taking the upper left corner of the
matrix as the starting point, each position is given an index
power of 2 according to the flattening and stretching direc-
tion of the matrix, as shown in Figure 1(c). The dot pro-
duction operation is performed between the weight matrix
and the binary matrix, as shown in Figure 1(d). Only the
values of 1 in the binary matrix are preserved, and the new
weight is superimposed. Finally, the surrounding elements
of the result matrix are added to form the decimal LBP iden-
tifier (in this example 169) of the local texture. A series of
LBP feature values are obtained by rotating the surrounding
points, and the minimum of these values is selected as the
LBP value of the central pixel. In this paper, the points are
rotated to the minimum state of LBP, so as to achieve the ro-
tation invariance of angle. In the case, the minimum state is
shown as Figure 1 (e). That is, the original feature is rotated
135°clockwise, as shown in Figure 1(f).

Regional Rotation Layer (LBP)
LBP is operated in a window, while RRL is operated on the
feature maps. The feature maps are sampled one by one in
the form of sliding window, and LBP is implemented in each
window. So we can rotate the feature maps to the same state
even with different input orientations.

RRL is usually added before convolutional layer. Here we
take the first convolution operation of a three-channel RGB
image as an example to illustrate the workflow of RRL.
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Algorithm 1: RRL in local windows
Input: RGB image sample batch {I1, I2, · · · , It · · · }
Output: Rotate the feature maps to the same
state

1: Load image It, It ∈ RH×W×3.
2: Perform LBP on each channel to get Vt, Vt ∈

RF×F×(OH×OW×3), where F is the kernel size,OH(W )

is the height/width of the feature map. The sequence
of feature maps in the channel has not been changed,
shown as process 1© in Figure 2.

3: Reshape Vt, then concatenate the window features be-
longing to the same channel into a matrix I ′t, I

′
t ∈

R(F×OH)×(F×OW )×3, shown as process 2© in Figure 2.
4: Perform a convolution operation with step size F on
I ′t and get the output feature Ot, Ot ∈ ROH×OW×k′

,
shown as process 3© in Figure 2.

rotate reshape

*

  

 

conv s=F

'F F k k  

It Vt
It’

Ot

Figure 2: RRL works in a local window It. Step 1©: Perform
LBP on each channel to rotate feature maps. Step 2©: Re-
shape Vt and concatenate the features into matrix I ′t. Step
3©: Perform convolution operation on I ′t to get output fea-

ture Qt.
.

Rotation Equivariance and Invariance Derivation
Equivariance refers to that, when the transformation can be
measured in the output of an operator, the operator and the
transformation are equivariant, as shown in eq. 1.

f(T (x)) = T (f(x)) (1)

where x is the input, T (•) is the transformation, f(•) is the
operator.

An operator is invariant relative to the transformation,
when the influence of the transformation cannot be detected
in the output of the operator, shown as eq. 2.

f(T (x)) = f(x) (2)

In order to achieve rotation invariance of the entire CNN,
it is expected that the input features can be rotated uniformly
after the convolution layers and before the fully connected
layers that perform the classification task.

Local convolution operation is equivariant. In the feature
windoww(F×F ), whenw is rotated of r (r means counter-
clockwise rotate 90°, and rn means counterclockwise rotate

n*90°), if the convolution kernel rotates the same angle r,
the result is unchanged: f (w) = Lr[f ](rw), where Lr[f ]
indicates that the convolution kernel rotates r counterclock-
wise. But the local convolution operation is not invariance,
when the convolution kernel is unchanged, the results before
and after w rotation are different: f (w) 6= f(rw).

Global convolution operation has neither rotation equiv-
ariance nor invariance. When the feature map is rotated, not
only the convolution kernel needs to be rotated to the same
angle, but the feature output must be rotated with the same
angle in the opposite direction, so that the result of the orig-
inal convolution operation can be kept consistent, as shown
in eq. 3.

f (x) = r−1Lr[f ](rx) (3)
From the above analysis, we know that after rotation (only

for rn rotation), the features will still maintain equivariant
after layer-by-layer convolution. Therefore, the entire CNN
will be rotation invariant if we reversely rotate the feature
maps before the fully connected layer.

First, to achieve equivariant of global convolution, the
core function R(x) of the algorithm needs to satisfy eq. 4:

fF [R (x)] = r−nfF [R (rnx)] (4)

where fF (x) is the convolution operation with step size
of F . In other words, when the filter does not change, the
convolution result of the rotated input is equal to that of
the non-rotated input through reverse rotating the output.
To satisfy eq. 4, the local convolution needs to be invariant:
f [R (w)] = f [R (rnw)]. That is :

R (w) = R (rnw) (5)

Here, we use the core function R(x), which is named
RRL module, to make the window convolution invariant, and
achieve rotation invariant of the CNN. RRLs position is be-
fore each convolutional layer and after the last convolutional
layer with the step size of F . In particular, for the last RRL,
the global feature maps x are treated as a local window w,
and satisfies R (x) = R (rnx). Because the activation func-
tion, BN layer and pooling layer are rotation equivariant and
they do not affect the final result, they are not discussed here.

Integrate RRL with CNN
Each RRL Ri is embedded before each conv layer fi. Sup-
pose that the original feature x and the rotated 90°feature rx
are fed into R1 respectively.

After R1 and f1, we have:

x→ fF1
1 [R1 (x)]

rx→ fF1
1 [R1 (rx)]

∴fF1
1 [R1 (x)] = r−1fF1

1 [R1 (rx)]

After R2 and f2, we have:

fF1
1 [R1 (x)]→ fF2

2

[
R2

[
fF1
1 [R1 (x)]

]]
fF1
1 [R1 (rx)]→ fF2

2

[
R2

[
fF1
1 [R1 (rx)]

]]
∴fF2

2

[
R2

[
fF1
1 [R1 (x)]

]]
= r−1fF2

2

[
R2

[
fF1
1 [R1 (rx)]

]]
828



(a) CIFAR10-rot

(b) CIFAR10-rot+

horse,0° bird,90° ship,180° airplane,270°

cat,40° truck,165° horse,270° automobile,3000°

Figure 3: Examples of CIFAR10-rot and CIFAR10-rot+
.

So, we have:

Rn+1

[
fFn
n

[
. . .

[
R2

[
fF1
1 [R1 (x)]

]]]]
= Rn+1

[
fFn
n

[
. . .

[
R2

[
fF1
1 [R1 (rx)]

]]]] (6)

The conclusion can be extended to other CNNs. When RRL
is added in the right position, the rotation invariance of the
model can be achieved.

Experiments
Image Classification Based on LeNet-5
Dataset and LeNet-5 CIFAR-10 is used in our experi-
ment. The dataset was proposed by krizhevsky in 2009. It
contains 60000 32 × 32 colour images, belonging to 10
categories. There are 50000 images in training set (5000
in each category) and 10000 images in test set (1000 in
each category). The images rotated in the first ways are call
CIFAR10-rot (namely θ ∈ {0, 90, 180, 270}°and in the sec-
ond way are called CIFAR10-rot+ ( θ ∈ [0, 360)°), as shown
in Figure 3. In order to ensure that the effective content area
of the image is fixed, the largest inscribed circle of the square
image is selected. Only the inner area of the circle has origi-
nal image pixels, and the outer area of the circle is filled with
black, shown as Figure 3 (b).

LeNet-5 (LeCun et al. 1998) is one of the earliest CNNs.
It has two convolutional layers and three fully connected lay-
ers, so three RRLs are plugged in. Keeping the convolutional
layers and fully connected layers unchanged as (LeCun et al.
1998), the three RRLs are inserted in front of conv1, conv2
and after conv2, respectively.

Experimental Result and Analysis Table 1 shows the test
accuracy of LeNet-5 on CIFAR-10 with and without RRL.
The second column is trained by the original training set
(without rotation images) and tested by CIFAR10-rot. The
third column is trained by original training set (without ro-
tation) and tested by CIFAR10-rot+ data set. The fourth and
fifth columns are trained and tested by CIFAR10-rot and
CIFAR10-rot + datasets respectively.

From Table 1 we can find that:
1) Keeping the original CNN structure and adding only

the RRLs can improve the recognition accuracy of rotating
images greatly;

2) Trained with the augmented data, the accuracy of im-
proved network decreases. It implies that LeNet-5 cannot

Training
Data

CIFAR-
10

CIFAR-
10

CIFA10-
10-rot

CIFAR-
10-rot+

Testing
Data

CIFAR-
10-rot

CIFAR-
10-rot+

CIFAR-
10-rot

CIFAR-
10-rot+

LeNet-5 33.2 18.2 38.7 25.4
LeNet-
5+RRL

71.3 52.8 70.9 49.1

Table 1: Comparison of accuracy (%) on LeNet-5 with and
without RRL.

Figure 4: Feature distributions of LeNet-5 with and without
RRLs, input with different rotation angles

.

provide more convolution kernels to learn the same patterns
with different directions, so it reduces generalization;

3) Without RRLs, the accuracy of recognition can be im-
proved a bit by using data augmentation, but the training cost
increases and the problem is not solved essentially.

In order to analyze the role of RRL more intuitively, the
feature maps are visualized in Figure 4. In Figure 4, the left
columns are the input images. The middle columns are the
output feature of the last layer of the original LeNet-5 net-
work. Except the upright image can be correctly classified,
the other three cases are misidentified. The right columns
are the output features of the last layer of LeNet-5+RRL net-
work, whose features do not change with the rotation angle,
and all predict the correct category. It shows that with the
RRLs, the same features are extracted from the images with
different angles, and the coding invariance is realized.

The visualization results of Grad-CAM(Selvaraju et al.
2017) are shown in Figure 5. The input images are rotated
θ ∈ {0, 90, 180, 270}°. Conv1-grad, Conv2-grad and RRL3-
grad are the heatmaps obtained by gradient calculation of the
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0°

90°

180°

270°

0°

90°

180°

270°

Horse
Conv1
-grad

Conv2
-grad

RRL3-
grad

Bird

Frog
Conv1
-grad

Conv2
-grad

RRL3-
grad

Truck

Figure 5: Visualization of three RRLs output heatmaps in
LeNet-5 + RRL

.

Training
Data

CIFAR-
10

CIFAR-
10

CIFA10-
10-rot

CIFAR-
10-rot+

Testing
Data

CIFAR-
10-rot

CIFAR-
10-rot+

CIFAR-
10-rot

CIFAR-
10-rot+

ResNet-
18

46.5 38.7 73.6 58.7

ResNet-
18+RRL

75.0 65.3 77.9 63.1

Table 2: Comparison of accuracy (%) ResNet-18 with and
without RRL.

feature maps after the first layer, the second layer of convo-
lution and the last regional rotation layer, respectively. It can
be seen that before the last regional rotation, the features are
direction dependent, and the focus position of the model still
changes with the rotation angle of input. At this stage, the
network is only rotation equivariant. After RRL3, the neu-
ral network completes the invariance coding of rotation, and
the features shown by RRL3-grad hardly change with the
rotation.

Image Classification Based on ResNet-18
ResNet-18 (He et al. 2016) was proposed in 2016, and
it consists of 17 convolution layers and a fully connected
layer. The core component of ResNet is the residual module,
which consists of two consecutive convolution layers and a
skip connection.

Table 2 shows the comparison of the accuracy of ResNet-
18 with and without RRL. It can be seen from Table 2 that the
effect of data augmentation is not significant with RRL. No
matter whether the input sample is rotated or not, as long as
the sample itself remains unchanged, the local features will
remain unchanged after RRLs.

Comparison with other methods on CIFAR-10 is shown

Training Data CIFAR-10
Testing Data CIFAR-10-rot CIFAR-10-rot+
LeNet-5 33.2 18.2
LeNet-5+RRL 71.3 52.8
ResNet-18 46.5 38.7
ResNet-18+RRL 75.0 65.3
CyResNet56-P
(Cowen et al. 2015)

- 61.3

PR RF 1 (Follmann
and Bottger 2018)

- 44.1

ORN (Zhou et al.
2017)

60.9 40.7

Table 3: Comparison of accuracy (%) with other methods on
CIFAR-10.

in Table 3. We can see that ResNet-18+RRL has obtained
high accuracy on both data sets. It shows that RRL can help
the original CNN to improve the encoding ability without
increasing the parameters and model complexity, and obtain
stronger generalization ability.

From table 3, we can also find that ResNet + RRL im-
proves performance less than LeNet + RRL does (28.5%
vs 38.1% on CIFAR10-rot, 26.6% vs 34.1% on CIFAR10-
rot+). LBP operator tends to rotate the brighter texture of the
image to the left part of the window. We can guess that with
the restriction of RRL, the obtained features tend to be sim-
ilar and reduce the diversity of features. After the training
data are enhanced, the gap between the two is also signif-
icantly smaller (improve 4.3% on CIFAR10-rot and 4.4%
on CIFAR10-rot+ respectively). For rotated images, the tra-
ditional convolutional network will specially customize the
filter for each direction of the same texture. However, due
to the constraint of RRL, even if the input data are more di-
verse, the feature types with little change in content will not
increase significantly. Therefore, when the model is deep-
ened, the tradition neural networks will improve more than
that of networks with RRL.

Even with data augmentation, the rotation invariance of
conventional convolution network is still not as good as
plugged with RRL. However, it can be predicted that with the
deepening of the network, the rising trend of accuracy with
RRL will slow down. Therefore, the algorithm is suitable for
shallow or medium neural networks or limited training sam-
ples and limited computing resources.

Figure 6 shows the classification results of the same im-
age at different rotation angles with and without RRLs. The
blue sections mean the angle range of correctly classifying
”frogs”. The image is rotated every 12°, thus there are 30
rotation angle sections. Figure 6(a) shows the classification
output of the model without RRLs. When the rotation angle
is between θ ∈ [−36, 24]°or θ ∈ [36, 60]°, it can be clas-
sified correctly. In other states, different prediction results
will be obtained with different angles. Figure 6(b) shows the
classification output of the improved model. The blue area
is larger than that of (a), indicating that the rotation layers
makes the model more insensitive to the input rotation an-
gle.
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(a)                                      (b)

Figure 6: Recognition results with arbitrary rotation angles.
(a)ResNet-18, (b)ResNet-18 + RRL

.
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Figure 7: Sample images in Plankton dataset
.

Plankton Recognition Based on ResNet-44
The plankton dataset(Cowen et al. 2015) consists of 30,336
gray images of different sizes, which are unevenly divided
into 121 categories, corresponding to different kinds of
plankton. There are 27,299 images in training set and 3,037
images in testing set. In order to unify the sample number
of each category, the data are augmented for the categories
with a small number of images. Finally, each category in
the training set contains 2000 images and each category in
the testing set contains 100 images. Each sample resizes to
50 × 50, then pads with white background to 64 × 64, and
finally take its maximum inscribed circle to ensure that the
image is in the centre of the image. Figure 7 shows the re-
sults of data processing and their categories.

Each image contains a single organism, which may be in
any direction in three-dimensional space due to ignoring the
small influence of gravity. And the ocean is full of debris
particles, so there will inevitably be some noise in the image.
The existence of unknown categories requires the model to
deal with unrecognized objects, so it is necessary to classify
those plankton with large shape differences into the same
category. The above factors make the classification more dif-
ficult.

The standard ResNet-44 consists of 43 convolutional lay-
ers and a fully connected layer.A regional rotation layer is
added in front of all convolutional layers.

After 100,000 epochs of training on the training set, the
final plankton classification model is obtained. In order to
compare the effect of regional rotation layer, the original
ResNet-44 and the ResNet-44 + RRL model after adding
regional rotation layer are trained and tested respectively.

Figure 8(a) shows the loss curves of the two algorithms
on the training set. The orange curve is ResNet-44 + RRL

(b)(a)

Figure 8: Comparison of loss and accuracy with and without
RRL by ResNet-44. The blue curve is the orginal ResNet-44
model, and the orange curve is ResNet-44+RRL.

.

Model Multi-class Score
ResNet-44 3.67862

ResNet-44+RRL 2.18777

Table 4: Comparison of loss scores of real testing sets on
Plankton dataset.

model, and the blue curve is the original ResNet-44 model.
It can be seen that the orange curve is always smaller than
the blue curve, that is, the regional rotation layer makes the
model error smaller. Figure 8(b) shows the accuracy curves
of the two algorithms on the testing set. Obviously, after
adding the regional rotation layer, the error of the training
set is reduced, and there is no over-fitting, and the perfor-
mance is improved. Table 4 shows the running results of ap-
plying the two models to the real test set without published
labels. The lower the score means the model performs better.
The performance of the dataset shows that without increas-
ing the model parameters, the convolutional neural network
can have stronger generalization by adding a regional rota-
tion layer, and give the neural network the ability to capture
global and local rotation.

Object Detection Based on MobileNet-tiny-yolov3
MobileNet-tiny-yolov3 is selected as the basic network.
Compared with the darknet53 with residual as the main
structure, mobilenet can achieve a better balance in terms
of calculation, storage space and accuracy. Using the pruned
tiny yolov3, the model is smaller and has more advantages
when the computing resources are limited, and the fast de-
tection speed also makes tiny yolov3 more cost-effective and
easier to be applied in practice.

Rotation Transformation of Coordinate In the object
detection task, the coordinates of the upper left corner and
the lower right corner of the target bounding boxes are usu-
ally provided as labels, so the location changes with the
rotation of the target. The corresponding coordinate labels
need to be recalculated. Here we only consider four rota-
tion angles, θ ∈ {0, 90, 180, 270} °. As shown in Figure
9. There is a rectangular box surrounding the target ob-
ject, which is defined by the upper left coordinate (x1, y1)
and the lower right coordinate (x2, y2). When the image ro-

831



•

•

•

• • •

(a) 0°                               (b) 180°

(c) 90°                              (d) 270°

(x1,y1)

(x2,y2)

x

y

w

h
(w-x2,h-y2)

(w-x1,h-y1)

(y1,w-x2)

(y2,w-x1)

(h-y2,x1)

(h-y1,x2)

Figure 9: Coordinate transformation
.

dog

cat

rotate 90°
cat

rotate 270°
sheep

rotate 270°
person×3

rotate 270°
person, 
motorbike

ground truth   baseline       baseline+rrl

person

person

person

person

person

person

person

person

person

motorbike motorbike

motorbike

Figure 10: Examples of detection effect before and after
model improvement

.

tates 90°counterclockwise, the point (x1, y1) is transformed
into (y1, w − x1), the point (x2, y2) is transformed into
(y2, w − x2), and it represents the points in the lower left
corner and upper right corner of the rectangular box respec-
tively. The final coordinate label becomes a red hollow point
(y1, w−x1) and a red solid point (y2, w−x2). Similarly, (b)
and (d) represent the position label when rotating 180°and
270°counterclockwise.

Dataset Pascal VOC dataset contains 20 categories. The
dataset has been widely used in object detection, seman-
tic segmentation and classification tasks, and as a common
test benchmark. VOC 2007 and VOC 2012 are used in this
experiment. Finally, 16,551 images and 40,058 objects are
used in training, 4,952 images and 12,032 objects are used
in testing.

Model mAP
MobieNet-tiny-yolov3 43.76%

MobieNet-tiny-yolov3+RRL 61.78%

Table 5: mAP of MobileNet-tiny-yolov3 on Pascal VOC
dataset. Trained by upright images and tested by rotated im-
ages.

Experimental Results and Analysis The detection effect
of MobileNet-tiny-yolov3 with and without RRL are shown
in Figure 10. Both models are trained with upright images.
The first column shows the groundtruth after rotating and
scaling the original image, the second and third column are
the testing results on the basic model, and adding RRLs. For
the top two rows, the image contains only one label, but the
basic model outputs two prediction boxes, one of which does
not belong to the correct category, as shown in the green box.
It can be seen that the basic model has some recognition abil-
ity for rotating images, and will be misled into other wrong
categories. The output by the improved model is quite sim-
ilar with real label. The bottom two rows contain multiple
labels, and they all overlap to some extent. The output of
the basic model contains only one target and all objects. It
shows that the model can only be roughly positioned, and
can no longer be finely divided. The improved model can
detect each object with some location errors. IoU threshold
is set to 0.5, trained with upright pictures and tested with ro-
tating pictures. The mAP of the two models is shown in the
table 5.

Conclusion
This paper proposes a regional rotation layer (RRL) to help
CNNs to learn rotation invariant features. By data augmen-
tation, CNN needs to train more filters for each change in the
sample, which leads to the increase of the number of param-
eters. So it is important to balance the network size and the
data size. In this paper, LBP operator is used to encode the
local region so that it has the same local features before and
after rotation. Thus, when the input changes, the local fea-
tures remain the same. Then RRL is integrated with LeNet-5,
ResNet-18 and tiny-yolov3, which verifies the effectiveness
of the method. Experimental results are analysed in detail,
the applicable scenarios and shortcomings of the method are
presented.
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