
Flow-Based Unconstrained Lip to Speech Generation

Jinzheng He1, Zhou Zhao*1, Yi Ren1

Jinglin Liu1, Baoxing Huai2, Nicholas Yuan2,
1Zhejiang University, China

2Huawei Cloud
{3170106086,zhaozhou,rayeren,jinglinliu}@zju.edu.cn,

{huaibaoxing,nicholas.yuan}@huawei.com

Abstract

Unconstrained lip-to-speech aims to generate corresponding
speeches based on silent facial videos with no restriction to
head pose or vocabulary. It is desirable to generate intelligi-
ble and natural speech with a fast speed in unconstrained set-
tings. Currently, to handle the more complicated scenarios,
most existing methods adopt the autoregressive architecture,
which is optimized with the MSE loss. Although these meth-
ods have achieved promising performance, they are prone
to bring issues including high inference latency and mel-
spectrogram over-smoothness. To tackle these problems, we
propose a novel flow-based non-autoregressive lip-to-speech
model (GlowLTS) to break autoregressive constraints and
achieve faster inference. Concretely, we adopt a flow-based
decoder which is optimized by maximizing the likelihood
of the training data and is capable of more natural and fast
speech generation. Moreover, we devise a condition mod-
ule to improve the intelligibility of generated speech. We
demonstrate the superiority of our proposed method through
objective and subjective evaluation on Lip2Wav-Chemistry-
Lectures and Lip2Wav-Chess-Analysis datasets. Our demo
video can be found at https://glowlts.github.io/.

Introduction
Given a silent facial video, lip-to-speech aims to generate
corresponding speech. This technology can be widely used
in a variety of applications such as video conferencing in
silent or noisy environments (Vougioukas et al. 2019), long-
range listening for surveillance (Ephrat, Halperin, and Peleg
2017) and artificial voice aid for people suffering from apho-
nia (Mira et al. 2021).

Currently, most existing lip-to-speech methods (Ephrat
and Peleg 2017; Kumar et al. 2019b; Akbari et al. 2018;
Vougioukas et al. 2019) are proposed to explore constrained
lip-to-speech, where videos are collected in an artificially
constrained environment with nearly no head motion and
speeches contain a narrow vocabulary, for example, only 56
tokens in GRID corpus (Cooke et al. 2006). Unconstrained
lip-to-speech, however, uses real lecture videos, which con-
tain observable head motion (see Figure 1) and nearly 100x
larger vocabulary, which puts forward higher requirements
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Figure 1: An example of video and audio in unconstrained
datasets. In the blue box, the audio pronounces ”process”,
while in the red box, the audio pronounces ”hybrid”. Large
head movements exist in unconstrained settings.

for the modeling power of the lip-to-speech model: previous
work (Prajwal et al. 2020) investigates the problem using
the autoregressive sequence-to-sequence architecture, and
demonstrates that such architecture can generate more intel-
ligible speech compared with other previous lip-to-speech
methods.

In unconstrained lip-to-speech, naturalness and intelli-
gibility are the crucial parts of speech quality. Moreover,
the inference speed is also worthy of consideration (e.g.,
in some applications like online video conferencing, the
speech generation latency can greatly affect the user expe-
rience). Current method (Prajwal et al. 2020) designed for
unconstrained lip-to-speech faces several challenges. 1) Big
gap in naturalness between generated speech and realistic
speech: the existing method in unconstrained lip-to-speech
adopts the MSE criterion in predicting each spectrogram
frame. Such design can not capture the correlation among
frequency bins in a frame, which leads to over-smoothness
in spectrogram (Sheng and Pavlovskiy 2019). 2) High infer-
ence latency: the existing method utilizes the autoregressive
architecture, generating current frames conditioned on pre-
vious ones. Such architecture suffers from a low inference
speed (Gu et al. 2017; Chen et al. 2019).
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To tackle these problems, we develop a flow-based non-
autoregressive lip-to-speech generation model for uncon-
strained settings. We adopt generative flow (Glow) (Kingma
and Dhariwal 2018) as the main part of the decoder. As a
powerful non-autoregressive generative architecture, Glow
has been proved to be efficient in modeling images and
waveforms (Prenger, Valle, and Catanzaro 2019) by simply
maximizing the likelihood of the training data. During the
training of our flow-based decoder, the frequency channels
are closely connected through affine coupling layers, which
contributes to modeling correlation among frequency bins
and results in an improvement in speech naturalness. How-
ever, we find that the normalizing flow-based decoder some-
times focuses more on local details in mel-spectrogram (e.g.,
high-frequency part reconstruction) but less on global se-
mantic information (e.g., word-level pronunciation), which
is consistent with the findings described in Kirichenko, Iz-
mailov, and Wilson (2020) that normalizing flow tends to fo-
cus on pixel-level local correlations. This issue can be more
severe in the unconstrained lip-to-speech task since the vi-
sual inputs can not provide enough certain information about
the pronunciation, leading to a drop in speech intelligibility.

To solve this problem, we propose a condition module
to generate coarse but more intelligible speech based on
aligned visual features. Then the flow-based decoder is uti-
lized to generate more realistic speech conditioned on the
coarse speech. Such design improves the intelligibility of
generated speech. Through extensive experiments, we ob-
serve an improvement in both naturalness and intelligibility.
Our key contributions are as follow:

• We propose GlowLTS, the first flow-based non-
autoregressive lip-to-speech method for the challenging
unconstrained settings, to generate natural speech with
low inference latency.

• We propose a condition module to generate coarse but
intelligible speech as the condition of our proposed flow-
based decoder, which observably improves the intelligi-
bility of generated speech.

• GlowLTS can generate more intelligible and much more
natural speech with a speed of 5.377x faster than the cur-
rent state-of-the-art model.

The rest of the paper is organized as follows: First, we survey
recent progress in constrained lip-to-speech, unconstrained
lip-to-speech, and flow-based methods. Then we introduce
our proposed GlowLTS in detail. Next, we introduce our ex-
periment settings, report detailed results and conduct analy-
ses. Finally, we conclude this paper.

Related Work
Constrained Lip-to-speech
Constrained lip-to-speech generates speech based on given
facial videos from small datasets (Cooke et al. 2006) with
narrow vocabulary speech in artificially constrained envi-
ronments. Early approaches (Ephrat and Peleg 2017; Ku-
mar et al. 2019b) adopt an end-to-end CNN-based method
and utilize low-dimensional LPC (Linear Predictive Coding)
features as regression targets. However, the low-dimensional

LPC features contain insufficient speech information to be
converted back to natural speech waveforms. More recently,
methods proposed in Ephrat, Halperin, and Peleg (2017);
Akbari et al. (2018) adopt the high-dimensional spectro-
grams as the training targets and utilize vocoders to con-
vert spectrograms back to waveforms. Other methods pro-
posed in Vougioukas et al. (2019); Mira et al. (2021) in-
troduce GANs (Goodfellow et al. 2014) into lip-to-speech
and struggle to generate the waveform directly. Our work fo-
cuses on unconstrained lip-to-speech with no limitation on
head movements and vocabulary.

Unconstrained Lip-to-speech
Unconstrained lip-to-speech is a more challenging task as
it aims to generate large vocabulary speech based on real-
world videos. To the best of our knowledge, only one promi-
nent work, named Lip2Wav (Prajwal et al. 2020), exists
in the current literature. Lip2Wav uses a modified version
of Tacotron2 (Shen et al. 2018) model designed for lip-to-
speech. Like Tacotron2, Lip2Wav adopts an autoregressive
structure and takes mel-spectrogram as the generation target.
While it has achieved decent intelligibility, Lip2Wav adopts
the MSE loss in predicting each mel-spectrogram frame,
which ignores the frequency correlation in each frame and
leads to mel-spectrogram over-smoothness. In addition, the
inference speed of Lip2Wav is also slow due to the adoption
of autoregressive architecture. Our method adopts the flow-
based non-autoregressive architecture, which can model the
frequency correlation effectively and achieve parallel gener-
ation.

Flow-based Generation Architecture
The flow generation model (Dinh, Krueger, and Bengio
2014; Kingma and Dhariwal 2018) is very attractive be-
cause of the tractability of the exact log-likelihood. It in-
corporates a stack of invertible transformations, converting
the simple Gaussian distribution to a more complex distribu-
tion. The powerful distribution fitting ability of flow models
has encouraged many studies in different generation areas.
Videoflow (Kumar et al. 2019a) incorporates flow architec-
ture for predicting future video frames. C-flow (Pumarola
et al. 2020) brings flow architecture to the field of 3D point
clouds. Methods in Miao et al. (2020); Kim et al. (2020) use
flow-based architecture in text-to-speech generation. Meth-
ods proposed in Prenger, Valle, and Catanzaro (2019); Kim
et al. (2018) incorporate flow architecture in the vocoder
area and observe an improvement. However, to the best
of our knowledge, flow-based methods have not been used
in unconstrained lip-to-speech. In this paper, we propose
the first flow-based unconstrained lip-to-speech method to
model the frequency correlation and generate more natural
speech based on lip motions.

Our Method
Problem Definition
In this section, we consider the task of the unconstrained lip-
to-speech generation. Given an unconstrained facial video
V = {v1, v2, ..., vM}, where M is the total number of video
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Figure 2: The overall architecture of GlowLTS. In subfigure (b), the visual encoder extracts visual features from the facial video.
Visual features are aligned based on the alignment. In subfigure (c), the condition module generate coarse speech. In subfigure
(d), the flow-based decoder generate more natural speech conditioned on the coarse speech.

frames, and vi represents ith video frame in this video. Un-
constrained lip-to-speech aims to generate the correspond-
ing mel-spectrogram A = {a1, a2, ..., aN} where N is the
total number of mel-spectrogram frames, and aj is the jth
frame. In our case, we try to achieve a non-autoregressive
unconstrained lip-to-speech synthesis, which means A =
{a1, a2, ..., aN} is generated in parallel.

Model Overview
In this section, we introduce the overall architecture of our
proposed GlowLTS. As shown in Figure 2(a), GlowLTS is
built from the following blocks: the visual encoder, the con-
dition module, and the flow-based decoder. Visual features
are first extracted through the visual encoder. Due to the in-
consistency in length between video and mel-spectrogram
frames, we expand these visual features to the length of
the corresponding mel-spectrogram according to the tempo-
ral synchronization of video and audio. Next, we feed the
aligned visual features to the condition module to generate
a coarse but intelligible mel-spectrogram. Finally, we pro-
vide the coarse mel-spectrogram as a condition to the flow-
based decoder to generate a more natural and realistic mel-
spectrogram. We convert the mel-spectrogram back to the
waveform through the Griffin-Lim algorithm (Griffin and
Lim 1984) for a fair comparison with other methods.

Visual Encoder and Alignment
In this section, we introduce the visual encoder and align-
ment method used in our method. The visual encoder (Fig-
ure 2(b)) is adopted to extract semantic information from fa-
cal videos. Given a facial video V = {v1, v2, ..., vM}, where
vi is of size H×W ×3, we use a stack of 3D-CNN (Ji et al.

2012) blocks with batch normalization and relu activation to
downsample each of the video frame vi to a D-dimensional
vector. The 3D-CNN blocks can leverage the neighboring
contexts and contribute to reducing the homophenes. The
result features F = {f1, f2, ..., fM}, where fi ∼ RD, are
then fed into a bidirectional LSTM (Hochreiter and Schmid-
huber 1997) to leverage the long-range contexts.

On top of the visual encoder, we utilize a simple align-
ment method to map M video features to N expanded
video features through directly repeating. The alignment
in lip-to-speech is unique and exact, owing to the tempo-
ral synchronization between the video stream and the au-
dio stream. Given M video frames, N mel-spectrogram
frames and M < N , if N is M -divisible, the alignment
is {N/M,N/M, ...}. If not, we try to ensure the tempo-
ral synchronization of audio and video to the maximum
extent. For example, if we are given 240 mel-spectrogram
frames and 90 video frames, we set the alignment as
{3, 3, 2, 3, 3, 2, 3, 3, 2, ...}.

Condition Module
In this section, we introduce the proposed condition mod-
ule which adopts the non-autoregressive architecture and
aims to generate intelligible speech as a condition for the
flow-based decoder. Concretely, as shown in Figure 2(c),
we feed the aligned visual features to a stack of feed-
forward transformers (Ren et al. 2019) with layer normal-
ization and multi-head attention mechanism (Vaswani et al.
2017). These feed-forward transformers contribute to bet-
ter utilization of contexts and alleviating ambiguity. A fully
connected layer is designed to linearly project the feed-
forward transformer output to the same channel number of
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mel-spectrogram, namely 80 in our settings. Then we use
MSE loss Lmse to constrain the condition module. Lmse is
defined as:

Lmse = ||cond− y||2, (1)

where cond is the output of the condition module, and y is
the ground-truth mel-spectrogram.

The adoption of MSE loss provides more direct supervi-
sion for extracting semantic information from facial videos.

Flow-based Decoder
In this section, we propose the flow-based decoder (Figure
2(d)) which aims to convert the coarse spectrogram cond
generated by the condition module to more detailed speech
spectrogram y. We parameterize the conditional distribution
P (y|cond) by using an invertible neural network fθ, which
is defined as:

z = fθ(y; cond),

y = f−1
θ (z; cond),

(2)

where z ∼ N (0, I). The probability density py|cond can be
explicitly calculated as:

p(y|cond, θ) = pz(fθ(y; cond)))|det
∂fθ
∂y

(y; cond)|. (3)

With the explicit probability density, we can train the net-
works by minimizing the negative log-likelihood which is
calculated as:

Lmle = −logp(y|cond, θ)

= −logpz(fθ(y; cond)))− log|det∂fθ
∂y

(y; cond)|.
(4)

In the rest of this section, we introduce the key designs of our
flow-based decoder. On the whole, we follow the scheme
of squeeze, actnorm, invertible 1x1 conv, affine coupling,
and unsqueeze. For the brevity of introduction, we give the
following definition: x and y represent the input and output
of each module during the training process separately, and
their size is t × c, where t is the temporal dimension, and c
is the frequency channel dimension.

Squeeze and unsqueeze As utilized in Kim et al. (2020),
in the squeeze layer, we split 80-channel mel-spectrogram
frames into two halves along the temporal dimension and
group them into one 160-channel feature map. The un-
squeeze layer is the inverse operation of the squeeze layer
to restore the mel-spectrogram shape.

Actnorm The actnorm layer is designed as a replacement
for batch normalization to train deep models. We use the
original design proposed in Kingma and Dhariwal (2018).
The Jacobian log-determinant of actnorm layer is calculated
as sum(log(|s|))× t, where s is the scale.

Invertible 1x1 conv This invertible 1x1 conv layer is
firstly proposed in Kingma and Dhariwal (2018) and used as
a generalization of the permutation operation. It reweights
each channel to achieve channel information fusion. In our
model, following Kim et al. (2020), we split input channels

into 40 groups. Then the weight W is defined as a c
40 × c

40
matrix. The transformation is then defined as:

yi = Wxi, (5)

where W is a c
40 ×

c
40 weigth matrix, and xi, yi represent ith

group of x, y. The Jacobian log-determinant is calculated as
40× log(|det(W )|)× t.

Affine coupling The affine coupling layer (Dinh, Sohl-
Dickstein, and Bengio 2016) is utilized to implement an in-
vertible neural network. In our case, we utilize a conditional
setting:

yb = xb,

(log sc, tc) = func(xb, cond),

ya = sc · xa + tc,

(6)

where x = (xa, xb) is a partition in the channel dimen-
sion. cond is the output of our proposed condition module
and is utilized as the guidance for speech generation. Here
func can be any transformation. The affine coupling layer
preserves invertibility for the overall network, even though
func does not need to be invertible. In our case, follow-
ing Prenger, Valle, and Catanzaro (2019), func uses lay-
ers of dilated convolutions with gated-tanh nonlinearities, as
well as residual connections and skip connections. The cor-
responding Jacobian log-determinant is simply computed as
sum(log(|sc|)).

From Equation (6), one frequency channel partition ya is
closely connected with the other channel partition xb during
the training of the affine coupling layer, which contributes to
learning the correlation among frequency channels. There-
fore, the proposed flow-based decoder can greatly improve
the naturalness.

Training Details
In our experiment, we adopt a two-stage training method-
ology. In the first stage, we only train the visual encoder
and the condition module via loss Lmse. After training, the
condition module can output coarse but intelligible mel-
spectrogram. In the second stage, with the pretrained con-
dition module and visual encoder, we add Lmle to train the
flow-based decoder:

Lmle = 0.5× (log(2π) +
||z||2

t× c
)

−
∑Act

i sum(log(|si|))
c

−
∑Couple

k sum(log(|sck|))
t× c

−
∑Conv

j log(|det(Wj)|)× 40

c
,

where z represents the output of the flow training process.
Act, Couple, and Conv represent all actnorm, affine cou-
pling and invertible 1x1 conv layers respectively. The first
term in Lmle comes from the log-likelihood of a spherical
Gaussian. And the remaining terms account for the Jacobian
log-determinant of actnorm, affine coupling and invertible
1x1 conv layers.
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Figure 3: Visualization of the input videos with the corresponding mel-spectrogram. Input videos are visualized in the first
column. Ground-truth (GT) mel-spectrogram, mel-spectrogram generated by Lip2Wav and our GlowLTS are visualized in the
following columns respectively.

Experiments
Datasets and Preprocessing
In this section, we introduce datasets and preprocessing
methods used in our experiments in detail.
Datasets In this paper, we focus on more challeng-
ing unconstrained, real-world settings and conduct ex-
periments on Lip2Wav-Chemistry-Lectures and Lip2Wav-
Chess-Analysis datasets proposed in Prajwal et al. (2020),
which are the currently largest datasets for unconstrained
settings. About 20 hours of real lectures videos from
Youtube are included in each dataset.
Preprocessing In our experiments, videos and audios are
preprocessed before training and inference. For video pre-
processing, we extract the facial regions of video frames
with a pre-trained face detection model. Facial images are
then resized as proposed in Prajwal et al. (2020). Due
to the existence of video frames without faces, we filter
out these frames and corresponding audios during train-
ing and inference. For audio preprocessing, we sample the
raw audio at 16kHz and set the window-size, hop-size, and
mel-dimension as 800, 200, and 80 respectively for mel-
spectrogram extraction.

Model Configurations
In this section, we introduce the configurations of our pro-
posed model. We use the same network configurations as in
Lip2Wav (Prajwal et al. 2020) for the visual encoder. We use
4 feed-forward Transformer blocks with 2 attention heads

and a dropout of 0.1 in our condition module. For our flow-
based decoder, we use 12 flow blocks in the training and in-
ference process. Each flow block includes 1 actnorm layer,
1 invertible 1x1 conv layer, and 4 affine coupling layers. We
optimize our model using Adam (Kingma and Ba 2014) op-
timizer with an initial learning rate of 2 × 10−4 and weight
decay of 1 × 10−6 in both stages. It takes about 200k steps
for the first stage of training and about 100k steps for the
second stage. Our implementation is based on PyTorch.

Evaluation Methods
We evaluate our method through both objective evaluation
and subjective evaluation. During the objective evaluation,
we evaluate our lip-to-speech model using STOI and ESTOI,
which capture the intelligibility of audios. In addition, we
also evaluate the naturalness and intelligibility of generated
speeches through direct and subjective human perception.
Objective Evaluation For objective evaluation, we utilize
STOI (Taal et al. 2011) and ESTOI (Jensen and Taal 2016)
for quantitative evaluation of the speech intelligibility. The
higher STOI and ESTOI reflect better speech intelligibility.
Subjective Evaluation Though objective evaluation meth-
ods can partially reflect the intelligibility of generated
speech, the quality of speech is determined by human per-
ception. None of the existing objective metrics is highly cor-
related with human perception (Mira et al. 2021). Therefore,
subjective human evaluation is the important and decisive
criterion. In our experiments, we perform human evaluation
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Figure 4: The inference time of different models for different input video lengths. (a) represents Lip2Wav, which uses an
autoregressive architecture. (b) represents the GlowLTS model we proposed. We adopt a non-autoregressive architecture. (c)
shows the acceleration ratio between GlowLTS and Lip2Wav. All measurements are conducted with 1 NVIDIA 2080Ti GPU.

and report the mean opinion scores (MOS) of our GlowLTS
and Lip2Wav (current state-of-the-art model), following the
similar procedures proposed in Prajwal et al. (2020). 15
participants are asked to rate generated samples from each
method. The video content keeps consistent among different
systems so that testers only examine the audio naturalness
and intelligibility. We also report the mean opinion scores of
the corresponding ground-truth for reference.

Results
We conduct experiments on Lip2Wav-Chemistry-Lectures
and Lip2Wav-Chess-Analysis datasets and compare the re-
sults of GlowLTS with other lip-to-speech methods. Both
objective evaluation results and subjective evaluation re-
sults are reported to demonstrate the superiority of generated
speeches. We also present the inference speed and show the
observable acceleration we achieve compared with the cur-
rent state-of-the-art method.
Objective Evaluation Results We compute STOI and ES-
TOI to approximate the intelligibility of generated speeches.
We report the scores of Lip2Wav1 (current state-of-the-
art model). Moreover, we also report two constrained lip-
to-speech methods, namely, the GAN-based method (Vou-
gioukas et al. 2019) and improved vid2speech (Ephrat,
Halperin, and Peleg 2017) as in Lip2Wav. The results can
be found in Table 1 and 2. On the whole, our method and
Lip2Wav perform much better than the other two methods
on both datasets, indicating constrained lip-to-speech meth-
ods are hard to achieve comparable results in unconstrained
settings. Our method achieve better performance compared
with Lip2Wav. This fact shows that our method can bet-
ter capture the semantic information from facial videos and
generate more intelligible speech.
Subjective Evaluation Results For the two datasets used
above, we calculate MOS scores to subjectively evaluate
the intelligibility and naturalness of generated speeches. Ac-
cording to the results shown in Table 3 and 4, we can find
that the speech generated by our proposed model is bet-
ter than the current state-of-the-art model in terms of in-

1The results are obtained using the official pre-trained model.

Method STOI ESTOI

GAN-based 0.192 0.132
Improved vid2speech 0.165 0.087

Lip2Wav 0.449 0.321
GlowLTS 0.470 0.328

Table 1: Objective Evaluation on Chemistry Lectures

Method STOI ESTOI

GAN-based 0.195 0.104
Improved vid2speech 0.184 0.098

Lip2Wav 0.377 0.257
GlowLTS 0.394 0.259

Table 2: Objective Evaluation on Chess Analysis

Method intelligibility naturalness

groudtruth+Griffin-Lim 4.16 4.18

Lip2Wav+Griffin-Lim 3.46 3.41
GlowLTS+Griffin-Lim 3.57 3.83

Table 3: MOS on Test set of Chemistry Lectures

Method intelligibility naturalness

groudtruth+Griffin-Lim 4.13 3.93

Lip2Wav+Griffin-Lim 3.45 3.35
GlowLTS+Griffin-Lim 3.51 3.67

Table 4: MOS on Test set of Chess Analysis

telligibility, which is consistent with the objective evalua-
tion results. More importantly, in terms of naturalness, our
model outperforms Lip2Wav by a significant margin, which
demonstrates that our model can capture the frequency cor-
relation in the mel-spectrogram more effectively.
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System intelligibility naturalness

GlowLTS 0 0
w/o condition module -0.263 0.045

w/o flow-based decoder -0.032 -0.292

Table 5: CMOS comparison in the ablation studies

Speedup: To demonstrate that our method can achieve
faster speech synthesis, we measure the inference latency re-
quired to process different lengths of video on the Lip2Wav-
Chemistry-Lectures dataset. Through measurements, we
find that our model can achieve up to 5.377x acceleration
compared with the autoregressive counterpart. As shown in
Figure 4, we respectively measure the inference time of our
proposed GlowLTS and Lip2Wav to process 3, 6, 9, 12, 15,
18, 21, 24, 27 and 30 seconds of video.

It can be found that 1) as shown in (a), the inference time
required in Lip2Wav increases linearly with the increase of
the video length; 2) as shown in (b), GlowLTS is insensi-
tive to video lengths and the inference latency nearly holds
a small constant; 3) as shown in (c), the longer video length
to process, the greater acceleration our model can achieve.

Ablation Study
In our experiments, we perform the comparison mean opin-
ion score (CMOS) to quantify the magnitude of the differ-
ence in preference between our GlowLTS and ablation set-
tings. The same 15 participants are asked to compare the per-
formance of different ablation settings. To demonstrate the
effectiveness of the condition module, we remove the condi-
tion module and feed the aligned visual features directly to
the flow-based decoder. Similarly, we evaluate the influence
of the flow-based decoder by removing the flow-based de-
coder and utilizing the output of the condition module as the
generated speech. We conduct CMOS evaluation for these
ablation studies. To be mentioned, all ablation results are
based on the Lip2Wav-Chemistry-Lectures dataset.

According to the results of ablation experiments, without
the condition module, the naturalness is not much affected,
but the intelligibility is decreased, which indicates that the
condition module proposed by us contributes to effectively
improving the intelligibility of the generated speech. At the
same time, we find that without the flow-based decoder, the
intelligibility is similar to that of GlowLTS, but there is a
decrease in naturalness, indicating that the flow-based de-
coder can convert the coarse speech output of the condition
module into more natural speech.

Qualitative Visualization
In order to show the superiority of our model more intu-
itively, we perform a visualization analysis. As shown in
Figure 3, we visualize in turn the input face video, the
ground-truth mel-spectrogram, the mel-spectrogram gener-
ated by Lip2Wav and the mel-spectrogram generated by
GlowLTS. It can be found that the result of Lip2Wav suf-
fers from mel-spectrogram over-smoothness due to the igno-
rance of correlation among frequency bins, especially in re-

(a) GT

(b) w/o flow-based decoder

(c) GlowLTS

Figure 5: Visualization of different mel-spectrogram. (a), (b)
and (c) represent the ground-truth mel spectrogram, the mel-
spectrogram generated without the flow-based decoder and
the mel-spectrogram generated by GlowLTS respectively.

gions framed by red boxes. However, the result of our model
is more detailed and sharp, indicating our method can model
the correlation more effectively, and our model can generate
more natural speech.

In addition, we also perform the visualization analysis and
demonstrate the efficiency of the flow-based decoder more
intuitively. As depicted in Figure 5, without the flow-based
decoder, the generated speech suffers from over-smoothness
in mel-spectrogram, especially in red box regions. This is
because the condition module also uses the MSE loss as the
constraint and ignores the frequency bins dependency. The
flow-based contributes a lot in modeling the dependency and
eliminating mel-spectrogram over-smoothness.

Conclusion
In this paper, we present GlowLTS, the first flow-based
non-autoregressive lip-to-speech model in unconstrained
settings, which can generate more intelligible and natu-
ral speech with a faster speed. Instead of directly utilizing
the flow-based decoder, we propose a condition module,
which markedly improves the intelligibility of the generated
speech. We demonstrate through qualitative and quantitative
evaluation that our GlowLTS can achieve faster inference
and generate high-quality speech.

Although the flow-based method achieves promising per-
formance, the size of the flow-based model is relatively
larger. In the future, we will try to compress the footprint
of the flow-based decoder. We will also make an attempt on
utilizing a more advanced vocoder to generate more natural
speech.
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pre-trained model are required to guarantee that they would
not use the model in illegal cases.

Acknowledgments
This work was supported in part by the National Key R&D
Program of China under Grant No.2020YFC0832505, Na-
tional Natural Science Foundation of China under Grant
No.62072397, Zhejiang Natural Science Foundation under
Grant LR19F020006.

References
Akbari, H.; Arora, H.; Cao, L.; and Mesgarani, N. 2018.
Lip2audspec: Speech reconstruction from silent lip move-
ments video. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2516–
2520. IEEE.
Chen, N.; Watanabe, S.; Villalba, J.; and Dehak, N.
2019. Listen and fill in the missing letters: Non-
autoregressive transformer for speech recognition. arXiv
preprint arXiv:1911.04908.
Cooke, M.; Barker, J.; Cunningham, S.; and Shao, X. 2006.
An audio-visual corpus for speech perception and automatic
speech recognition. The Journal of the Acoustical Society of
America, 120(5): 2421–2424.
Dinh, L.; Krueger, D.; and Bengio, Y. 2014. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516.
Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2016. Density
estimation using real nvp. arXiv preprint arXiv:1605.08803.
Ephrat, A.; Halperin, T.; and Peleg, S. 2017. Improved
speech reconstruction from silent video. In Proceedings
of the IEEE International Conference on Computer Vision
Workshops, 455–462.
Ephrat, A.; and Peleg, S. 2017. Vid2speech: speech recon-
struction from silent video. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 5095–5099. IEEE.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial networks. arXiv preprint
arXiv:1406.2661.
Griffin, D.; and Lim, J. 1984. Signal estimation from mod-
ified short-time Fourier transform. IEEE Transactions on
acoustics, speech, and signal processing, 32(2): 236–243.
Gu, J.; Bradbury, J.; Xiong, C.; Li, V. O.; and Socher, R.
2017. Non-autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.

Jensen, J.; and Taal, C. H. 2016. An algorithm for predict-
ing the intelligibility of speech masked by modulated noise
maskers. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 24(11): 2009–2022.
Ji, S.; Xu, W.; Yang, M.; and Yu, K. 2012. 3D convolutional
neural networks for human action recognition. IEEE trans-
actions on pattern analysis and machine intelligence, 35(1):
221–231.
Kim, J.; Kim, S.; Kong, J.; and Yoon, S. 2020. Glow-TTS: A
generative flow for text-to-speech via monotonic alignment
search. arXiv preprint arXiv:2005.11129.
Kim, S.; Lee, S.-G.; Song, J.; Kim, J.; and Yoon, S. 2018.
FloWaveNet: A generative flow for raw audio. arXiv
preprint arXiv:1811.02155.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Genera-
tive flow with invertible 1x1 convolutions. arXiv preprint
arXiv:1807.03039.
Kirichenko, P.; Izmailov, P.; and Wilson, A. G. 2020. Why
normalizing flows fail to detect out-of-distribution data.
arXiv preprint arXiv:2006.08545.
Kumar, M.; Babaeizadeh, M.; Erhan, D.; Finn, C.; Levine,
S.; Dinh, L.; and Kingma, D. 2019a. Videoflow: A
flow-based generative model for video. arXiv preprint
arXiv:1903.01434, 2(5).
Kumar, Y.; Jain, R.; Salik, K. M.; Shah, R. R.; Yin, Y.; and
Zimmermann, R. 2019b. Lipper: Synthesizing thy speech
using multi-view lipreading. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, 2588–
2595.
Miao, C.; Liang, S.; Chen, M.; Ma, J.; Wang, S.; and Xiao,
J. 2020. Flow-TTS: A non-autoregressive network for text
to speech based on flow. In ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 7209–7213. IEEE.
Mira, R.; Vougioukas, K.; Ma, P.; Petridis, S.; Schuller,
B. W.; and Pantic, M. 2021. End-to-End Video-To-
Speech Synthesis using Generative Adversarial Networks.
arXiv:2104.13332.
Prajwal, K.; Mukhopadhyay, R.; Namboodiri, V. P.; and
Jawahar, C. 2020. Learning individual speaking styles for
accurate lip to speech synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 13796–13805.
Prenger, R.; Valle, R.; and Catanzaro, B. 2019. Waveg-
low: A flow-based generative network for speech synthesis.
In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 3617–
3621. IEEE.
Pumarola, A.; Popov, S.; Moreno-Noguer, F.; and Ferrari, V.
2020. C-flow: Conditional generative flow models for im-
ages and 3d point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
7949–7958.

850



Ren, Y.; Ruan, Y.; Tan, X.; Qin, T.; Zhao, S.; Zhao, Z.; and
Liu, T.-Y. 2019. Fastspeech: Fast, robust and controllable
text to speech. arXiv preprint arXiv:1905.09263.
Shen, J.; Pang, R.; Weiss, R. J.; Schuster, M.; Jaitly, N.;
Yang, Z.; Chen, Z.; Zhang, Y.; Wang, Y.; Skerrv-Ryan, R.;
et al. 2018. Natural tts synthesis by conditioning wavenet
on mel spectrogram predictions. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 4779–4783. IEEE.
Sheng, L.; and Pavlovskiy, E. N. 2019. Reducing over-
smoothness in speech synthesis using Generative Adversar-
ial Networks. In 2019 International Multi-Conference on
Engineering, Computer and Information Sciences (SIBIR-
CON), 0972–0974. IEEE.
Taal, C. H.; Hendriks, R. C.; Heusdens, R.; and Jensen, J.
2011. An algorithm for intelligibility prediction of time–
frequency weighted noisy speech. IEEE Transactions on Au-
dio, Speech, and Language Processing, 19(7): 2125–2136.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. arXiv preprint arXiv:1706.03762.
Vougioukas, K.; Ma, P.; Petridis, S.; and Pantic, M. 2019.
Video-driven speech reconstruction using generative adver-
sarial networks. arXiv preprint arXiv:1906.06301.

851


