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Abstract
Unsupervised domain adaptive person re-identification aims
at learning on an unlabeled target domain with only labeled
data in source domain. Currently, the state-of-the-arts usu-
ally solve this problem by pseudo-label-based clustering and
fine-tuning in target domain. However, the reason behind the
noises of pseudo labels is not sufficiently explored, especially
for the popular multi-branch models. We argue that the con-
sistency between different feature spaces is the key to the
pseudo labels’ quality. Then a SElf-Consistent pseudo la-
bel RefinEmenT method, termed as SECRET, is proposed
to improve consistency by mutually refining the pseudo la-
bels generated from different feature spaces. The proposed
SECRET gradually encourages the improvement of pseudo
labels’ quality during training process, which further leads
to better cross-domain Re-ID performance. Extensive exper-
iments on benchmark datasets show the superiority of our
method. Specifically, our method outperforms the state-of-
the-arts by 6.3% in terms of mAP on the challenging dataset
MSMT17. In the purely unsupervised setting, our method
also surpasses existing works by a large margin. Code is avail-
able at https://github.com/LunarShen/SECRET.

Introduction
Person re-identification (Re-ID) is to match persons across
non-overlapping cameras. Due to the laborious human label-
ing efforts in supervised person Re-ID methods (Luo et al.
2019; Wang et al. 2018; Sun et al. 2018), unsupervised do-
main adaptive (UDA) person Re-ID has become an active re-
search field in recent years. UDA Re-ID aims at learning on
an unlabeled target domain with only labeled data in source
domain. Currently, there are roughly two ways to tackle the
problem: (1) generative-model-based methods (Wei et al.
2018; Deng et al. 2018), in which generative models like
GAN are used to translate the source domain data to the
target domain together with their corresponding labels, so
that supervised methods can be performed with the gener-
ated data. (2) pseudo-label-based methods (Fu et al. 2019;
Ge, Chen, and Li 2020), which firstly pre-trains a model on
source domain data by supervised methods and then alter-
nates between generating pseudo labels by clustering and

*equal contribution
†corresponding author

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0 10 20 30 40 50 60 70 80

epoch

84

86

88

90

92

94

96

98

co
ns

is
te

nc
y SUP-consistency

SUP-mAP
UDA-consistency
UDA-mAP

30

40

50

60

70

80

m
AP

Global

Top

Bottom

Figure 1: (a) A multi-branch CNN model. (b) Clustered re-
sults of global and local space. Shapes denote pseudo la-
bels. (c) The consistency and mAP curves of a multi-branch
model on Market-1501 during training epochs. SUP: super-
vised setting, where the three features are all supervised by
the ground truth ID. UDA: unsupervised domain adaptive
setting, where the three features are independently super-
vised by their respective pseudo labels.

fine-tuning with pseudo labels in the target domain. Benefit-
ing from exploring relations between samples in the target
domain, pseudo-label-based ones (Fu et al. 2019; Ge, Chen,
and Li 2020) have achieved better performance and are at-
tracting more attention.

Despite the fact that pseudo-label-based methods have ob-
tained promising performance, the key issue: the quality of
the pseudo labels, is still unexplored. If generated pseudo la-
bels exactly match the ground truths, then the performance
of UDA Re-ID methods will reach the supervised counter-
parts. Therefore, improvements on the quality of pseudo la-
bels will potentially lead to a great performance gain. In this
work, we move along this line to directly optimize pseudo
labels’ quality during the training process. Multi-branch is a
popular pseudo-label-based method (Fu et al. 2019) which
can explore global and local feature spaces simultaneously
(as shown in Figure 1(a)). We argue that the consistency of
different feature spaces is a key to improving performance.
By consistency, we mean that different feature spaces should
induce the same label space. In the supervised setting, the
consistency is kept by the same supervision signals (such as
person IDs) (Sun et al. 2018; Wang et al. 2018). However,
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Figure 2: The overall framework of the proposed self-consistent pseudo label refinement (SECRET) method. It is composed of
a backbone network, a global and local feature extraction module and a mutual refinement strategy of pseudo labels. The global
feature space is refined by the two local feature spaces. Each of the two local feature spaces is only refined by the global feature
space. The refined pseudo labels for each feature space are used as supervision signals to fine-tune the network.

in the unsupervised setting, there is no ground truth label to
supervise each feature space. So simply ignoring the consis-
tency and supervising each feature space by its own pseudo
labels will lead to the limited performance.

To demonstrate the inconsistency problem, Figure 1(b)
shows the clustering results of features from global and lo-
cal branches. In the global space, the two persons (denoted
by blue triangles and diamonds) can be easily distinguished.
The training signal for global branch is “push”. But in the
(bottom) local space, they are very similar, thus clustered
into the same group. The training signal for local branch is
“pull”. In this way, it is confusing to train the model with
inconsistent signals. Figure 1(c) also shows the consistency
and mAP of a multi-branch model during the training epochs
in the supervised and pseudo-label-based UDA settings. The
consistency is measured by the agreement of label spaces in-
duced by the global and two local feature spaces. For the
supervised setting, as the consistency becomes better, the
performances measured by mAP is also improved. But for
the UDA setting, the consistency is only slightly improved
during the training epochs, so the performance is relatively
lower than the supervised counterpart.

Motivated by the importance of consistency, we propose
to improve the quality of pseudo labels by keeping consis-
tency of different feature spaces in the UDA person Re-ID
task. However, it is nontrivial to achieve this goal. Because
there is no ground truth IDs in target domain for UDA task, it
is infeasible to apply the same strategy as supervised meth-
ods. Moreover, global features usually represent a holistic
view of a person, while local features pay more attention to
specific parts or details. If there is no constraint on the con-
sistency of these feature spaces, clustered results obtained

from different feature spaces will easily disagree with each
other, leading to the poor performance. Therefore, in order to
keep consistency, we propose to mutually refine the pseudo
labels generated by different feature spaces. Due to the fact
that different feature spaces characterize the input instance
from different aspects, in each feature space, we only re-
main the instances together with their pseudo labels that are
in agreement with other feature spaces. In this way, the su-
pervision signals for different feature spaces will gradually
be consistent, leading to consistent feature spaces.

In summary, our contributions are as follows: (1) We are
the first to reveal that the consistency of different feature
spaces is a key to unsupervised domain adaptive person Re-
ID. By keeping the consistency, the quality of pseudo la-
bels will be improved. (2) We adopt a multi-branch net-
work and design a self-consistent pseudo label refinement
method to gradually improve the consistency of global and
local feature spaces. (3) The overall method is evaluated on
benchmark datasets, Market-1501, DukeMTMC-reID and
MSMT17. Experimental results validate the consistency as-
sumption and show significant improvements over the state-
of-the-arts. In the more challenging unsupervised setting,
our method also surpasses existing works by a large margin.

Related Works
Currently, unsupervised domain adaptive (UDA) person Re-
ID can be roughly categorized into two classes: the GAN-
based translation method and the pseudo-label-based fine-
tuning method. GAN-based methods (Wei et al. 2018; Deng
et al. 2018; Chen, Zhu, and Gong 2019; Huang et al. 2019)
first translate the labeled source domain data to the target
domain, and then apply supervised methods in the target
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Figure 3: An example illustration of self-consistent pseudo
label refinement. left: local feature is refined by global fea-
ture. right : global feature is refined by local feature.

domain with translated labeled data. But the quality of the
translated data cannot be well controlled, thus the perfor-
mances are still very low. Besides, the computational re-
quirement is also high.

The second approach first pre-trains a model on source
domain data by supervised methods and then alternates be-
tween clustering and fine-tuning in the target domain. This
approach shows promising results than the GAN-based ap-
proach in recent works (Fan et al. 2018; Fu et al. 2019;
Zhang et al. 2019; Zhong et al. 2019; Ge, Chen, and Li 2020;
Zhong et al. 2020b; Wang and Zhang 2020). PUL (Fan et al.
2018) first introduced the clustering and fine-tuning pipeline
in Re-ID. To obtain more reliable pseudo labels, SSG (Fu
et al. 2019) enhanced similarity measurement by human
part features. MMT (Ge, Chen, and Li 2020) adopted mean
teacher (Tarvainen and Valpola 2017) and mutual learn-
ing (Zhang et al. 2018). SpCL (Ge et al. 2020) used the
intersection of stringent and lax parameters of clustering al-
gorithm. It should be noted that these methods generally fo-
cus on the individual features, no matter on global or part
level, and neglect the mutual information between them. Our
method aims to improve consistency between different fea-
ture spaces by mutual learning from each other, which po-
tentially lead to better performance.

Method
Overview

Figure 2 shows an overview of the proposed self-consistent
pseudo label refinement (SECRET) method. In order to get
different feature spaces, and gradually obtain self-consistent
pseudo labels from multiple feature spaces, specifically: (1)
we adopt a multi-branch network architecture to simultane-
ously obtain global and local features for an input person
image; (2) three types of features are independently clus-
tered by DBSCAN (Ester et al. 1996) algorithm; (3) clus-
tered results are filtered by others, leading to more consis-
tent results; (4) the three groups of pseudo labels are simul-
taneously used as the supervision signals for each branch to
fine-tune the network.

Algorithm 1: Mutual refinement of pseudo labels
Input:
G: data set induced from global feature space
Lt: data set induced from local top feature space
Lb: data set induced from local bottom feature space
K: hyper-parameters to control the strictness
Output: optimized data set G′

, L′

t and L′

b
/* Filter global set G with local

top set Lt */
1 Gt = call Algorithm 2 with arguments (G, Lt, K)
/* Filter global set G with local

bottom set Lb */
2 Gb = call Algorithm 2 with arguments (G, Lb, K)
/* Intersect the filtered results Gt

and Gb */

3 G′
= {(x, y) | ∀ (x, y) ∈ Gt and (x, y) ∈ Gb}

/* Filter local top set Lt with
global set G */

4 L′

t = call Algorithm 2 with arguments (Lt, G, K)
/* Filter local top set Lb with

global set G */

5 L′

b = call Algorithm 2 with arguments (Lb, G, K)

Network Architecture
We adopt ResNet (He et al. 2016) as backbone. For a given
image I , the feature map obtained from backbone is f , after
a global average pooling (GAP), the global feature fglobal
will be a 2048 dimensional vector. As for local features, we
first add a lightweight bottleneck on top of the feature map f

to produce f
′
, and then horizontally split f

′
into two parts.

After global average pooling, the resulting features ftop and
fbottom are both 2048 dimensional vectors. The bottleneck
for local features is similar to the building block in ResNet.
The structure and detailed parameters are shown in the bot-
tom left of Figure 2. Therefore, for an input image I , the
outputs are global feature fglobal, top local feature ftop and
bottom local feature fbottom.

The network architecture is used in both source domain
pre-training and target domain fine-tuning. At inference
time, by default, only the global features are used (SE-
CRET), so there is no additional cost compared with plain
ResNet. The bottleneck in local branch only brings cost at
training time. If additional cost can be afforded, the com-
bination of global and local features can even improve the
performance (SECRET-Joint).

Mutual Refinement of Pseudo Labels
The most important part of the proposed SECRET is the mu-
tual refinement of pseudo labels. It is executed after indepen-
dent clustering on global features and two local features in
each training epoch. Then the refined pseudo labels for each
branch will be used to fine-tune the whole network.

Figure 3 shows the motivation of refining pseudo labels
by different feature spaces. If only the global features are
considered, it is very likely to cluster the right two images
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Figure 4: A toy example of the mutual refinement procedure
for the global feature space.

into a group, as they are very similar from a holistic view.
Using the erroneous clustered results as supervision signals
to train the network will lead to poor performance. But if
we also involve some local features, such as the specialized
features for the top part of a person in the right of Figure 3,
the difference in details will be emphasized, so that it will
be easily distinguished between these two persons using lo-
cal features. In this way, local features can be used to refine
the clustered results of global features. Similarly, global fea-
tures can also be used to refine the results of local features.
As shown in the left of Figure 3, only clustering on local fea-
tures of the bottom part cannot easily distinguish between
persons wearing skirt and shorts, but with the help of global
features, their differences are amplified.

The core idea of the mutual refinement procedure is to
only remain the instances together with their pseudo labels
that are in agreement with other feature spaces. Algorithm 1
is the pseudo-code for the mutual refinement procedure. For
global feature space, we first refine its pseudo labels by local
top and local bottom features individually, and then use the
intersection of these two as the results. For each local feature
space, only the global feature refines it. Algorithm 2 is the
pseudo-code for eliminating the noisy instances by calculat-
ing the distribution of target feature space on the reference
feature space. The hyper-parameter K controls the degree
of agreement between two feature spaces. If K is large, only
the instances with high agreement will be remained. Other-
wise, instances with low agreement will also be kept. We
also prove that the mutual refinement algorithm guarantees
the improvement of consistency between different feature
spaces. Details are in the supplementary materials. Com-
pared with model training, the cost of mutual refinement is
very low. In our experiment, it only takes about 1s in a whole
training epoch, which takes about 200s.

Figure 4 shows a toy example of the refinement process
of global space using two local spaces. In the clustered re-
sults of global features, for a given pseudo label (circle in
global feature space) and its corresponding instances a to
g, from the viewpoint of local features of these instances,
the pseudo labels are at to gt (for top feature) and ab to gb
(for bottom feature). The minorities in the top feature space
(at and et) and bottom feature space (eb) will be eliminated
from the original global feature space. The refined global
feature space of the given pseudo label now contains only

Algorithm 2: Noisy instance elimination
Input:
T : target set to be refined
R: reference set used to refine target set
K: hyper-parameters to control the strictness
Output: optimized data set T ′

1 T ′
= ∅

2 for each pseudo label l in T do
/* Get all instances in T with

pseudo label l */
3 Tl = {(x, y) | ∀ (x, y) ∈ T and y = l}

/* For each instance in Tl, get
the corresponding pseudo label
in R */

4 P l = {(x, y)| ∀ (x, y) ∈ R and x ∈ Tl}
5 for each pseudo label m in P l do
6 P l

m = {(x, y) | ∀ (x, y) ∈ P l and y = m}
/* Only remain the dominating

instances, which is
controlled by K */

7 T m
l = {(x, y) | ∀ (x, y) ∈ Tl and x ∈ P l

m}
8 if |Pl

m|
|Tl| > K then

9 T ′
= T ′ ∪ T m

l

five instances (b, c, d, f, g).

Loss Function
Source Domain For Ns labeled instances in source domain,
each is associated with a ground truth label. For each of the
feature in (fg, ftop, fbottom), we simultaneously apply both
cross-entropy loss and triplet loss.
Target Domain For N t unlabeled instances in target do-
main, the feature set for all instances is as follows:

F =


Fg =

{
f1
g , ..., f

Nt

g

}
Ftop =

{
f1
top, ..., f

Nt

top

}
Fbottom =

{
f1
bottom, ..., fNt

bottom

} (1)

At T -th epoch, after first running DBSCAN (Ester et al.
1996) algorithm independently on Fg , Ftop and Fbottom,
and then conducting mutual refinement of pseudo labels, in-
stances with their improved pseudo labels in the target do-
main will be as follows:

Xt =
{
xt
i : (y

i
global, y

i
top, y

i
bottom; 1 ≤ i ≤ N t

T )
}

(2)

Note that N t
T < N t, as noisy instances that found by clus-

tering algorithm and the refinement procedure, are discarded
from the fine-tuning data set. But we observe that in the
later epochs, very few instances are eliminated due to the
high consistency between global and local feature spaces (as
shown in Figure 5). Similar to the loss functions in source
domain, we also apply cross-entropy loss and triplet loss in
target domain for each of fg , ftop and fbottom.

882



Duke-to-Market Market-to-Duke Market-to-MSMT
mAP Rank-1 mAP Rank-1 mAP Rank-1

SPGAN (Deng et al. 2018) 22.8 51.5 22.3 41.1 – –
HHL (Zhong et al. 2018) 31.4 62.2 27.2 46.9 – –
ECN (Zhong et al. 2019) 43.0 75.1 40.4 63.3 – –
PDA-Net (Li et al. 2019) 47.6 75.2 45.1 63.2 – –

CR-GAN (Chen, Zhu, and Gong 2019) 54.0 77.7 48.6 68.9 – –
PCB-PAST (Zhang et al. 2019) 54.6 78.4 54.3 72.4 – –

SSG (Deng et al. 2018) 58.3 80.0 53.4 73.0 13.2 31.6
MMCL (Wang and Zhang 2020) 60.4 84.4 51.4 72.4 15.1 40.8

SNR (Jin et al. 2020) 61.7 82.8 58.1 76.3 – –
ECN++ (Zhong et al. 2020b) 63.8 84.1 54.4 74.0 15.2 40.4
AD-Cluster (Zhai et al. 2020) 68.3 86.7 54.1 72.6 – –

HGA (Zhang et al. 2021) 70.3 89.5 67.1 80.4 25.5 55.1
MMT (Ge, Chen, and Li 2020) 71.2 87.7 65.1 78.0 22.9 49.2

SpCL (Ge et al. 2020) 76.7 90.3 68.8 82.9 25.4 51.6
UNRN (Zheng et al. 2021) 78.1 91.9 69.1 82.0 25.3 52.4

SECRET 79.8 92.3 67.1 80.3 24.3 49.9
SECRET-Joint 79.9 92.3 68.2 81.5 25.4 51.2
SECRET(MT) 82.9 93.1 68.8 81.7 31.2 59.7

SECRET-Joint(MT) 83.0 93.3 69.2 82.0 31.7 60.0

Table 1: Experimental results of state-of-the-arts UDA methods and the proposed SECRET.

Experiments

Evaluation Setting and Metrics

The proposed SECRET is evaluated on the popular
benchmark datasets: Market-1501 (Zheng et al. 2015),
DukeMTMC-reID (Ristani et al. 2016) and MSMT17 (Wei
et al. 2018). In the setting of unsupervised domain adap-
tive person Re-ID, we first pre-train the model in the source
domain with annotated data, and then alternates between
clustering and pseudo label fine-tuning in the target do-
main without annotation. Following the common setting,
three adaptation tasks are set up: Market-to-Duke, Duke-
to-Market and Market-to-MSMT. Mean average precision
(mAP) and rank-1 accuracy are adopted to evaluate the per-
formance of the proposed SECRET.

Implementation Details

We use ResNet-50 as our backbone. The input images are
resized to 256 × 128. Random flip, padding, and random
crop are used as data augmentation in both source do-
main pre-training and target domain fine-tuning. Random
erase (Zhong et al. 2020a) is only used in target domain fine-
tuning. We randomly sample 4 instances per ground truth (in
pre-training) or pseudo label (in fine-tuning) in a mini-batch,
resulting in batch size 64. In pre-training, the initial learning
rate is set to 3.5 × 10−4, and decays by 0.1 at 40 and 70
epoch, and 80 epochs in total. In fine-tuning, clustering-and-
pseudo-label-fine-tuning runs 80 epochs in total. The learn-
ing rate is set to 3.5 × 10−4. The hyper-parameters K in
filtering pseudo labels of global and local features is set to
be 40%. By default, the evaluation results are reported on
the global feature only.

Comparisons with State-of-the-arts
We compare our proposed SECRET with the recent ad-
vances in UDA person Re-ID. The results are shown in Ta-
ble 1. In order to make a fair comparison, We also adopt
mean teacher (Tarvainen and Valpola 2017) to stabilize
the training process, which is denoted as SECRET(MT)
and SECRET-Joint(MT). The state-of-the-arts usually im-
plement the mean teacher by moving average of model
weights (Ge, Chen, and Li 2020), or memory bank (Ge et al.
2020). The proposed SECRET and SECRET-Joint show
competitive performance with recent baselines. When mean
teacher is adopted, SECRET(MT) and SECRET-Joint(MT)
outperform all baselines by a large margin on Duke-to-
Market and Market-to-MSMT, and slightly improved on
Market-to-Duke. Specifically, SECRET-Joint(MT) achieves
an improvement of 6.3% mAP over the best baseline on the
challenging setting Market-to-MSMT.

Table 2 shows the results of a more challenging unsuper-
vised setting, where there is no labeled source domain and
the network is initialized by ImageNet (Deng et al. 2009)
pre-trained model. Both SECRET and SECRET-Joint (with
their MT counterparts) show significant improvement over
state-of-the-arts on Market and MSMT. On Duke, they are
slightly lower than SpCL, but also surpass other baselines
by a large margin.

Ablation Studies
In this section, we evaluate each component of the proposed
SECRET. Compared baselines are as follows:
• Baseline: ResNet-50; Clustering and fine-tuning on the

global feature.
• SECRET w/o Mutual Refinement — SECRET-MR:

ResNet-50 with the proposed two local branches; clus-
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tering on each feature individually; fine-tuning with its
own pseudo labels of each branch.

• naı̈ve SECRET: A naı̈ve way to keep consistent; cluster-
ing and fine-tuning work on the concatenation of global
and two local features; others are same as Baseline.

• SECRET w/o Top — SECRET-T: mutual refinement
only works for global and bottom branch, others are same
as SECRET.

• SECRET w/o Bottom — SECRET-B: mutual refine-
ment only works for global and top branch, others are
same as SECRET.

• SECRET: ResNet-50 with the proposed two local
branches; clustering on each feature individually; mu-
tual refinement works for all the global and two local
branches. It is the full version of our proposed method.

Effectiveness of the mutual refinement procedure As
shown in Table 3: (1) Compared with SECRET-MR, the per-
formance of naı̈ve SECRET is slightly lower. It indicates
that the naı̈ve approach of forcing the label space of global
and local to be exactly the same may be harmful. (2) The
performance of SECRET and its two variants, SECRET-T
and SECERT-B, are better than SECRET-MR and baseline.
It validates effectiveness of the proposed mutual refinement
method. (3) As top and bottom feature characterize differ-
ent aspects of the inputs, mutual refinement with global and
only one local feature space (SECRET-T and SECRET-B)
results in lower performance than the full SECRET.
Consistency Analysis of SECRET In order to further ver-
ify the assumption of consistency made in the Introduction
section and analyze the reason behind the good performance
of SECRET, we also design two metrics: accuracy and con-
sistency of pseudo labels. The accuracy of pseudo labels in-
duced by a feature space is obtained by setting the label of a
given cluster by its dominating ground truth label. Then in-
stances in the cluster with that label are clean, and others are
noisy. Then the accuracy of the cluster is # clean instances

# all instances .
The overall accuracy is the mean accuracy of all clusters.
The definition of consistency of different feature spaces is
based on the accuracy. For two pseudo label sets P and Q
induced from two different feature spaces, if we regard any
one label set as the ground truth, and calculate the accuracy
of the other set against it, the consistency between P and Q
can be defined as the mean accuracy of Q against P and P
against Q. Then the overall consistency of all feature spaces
is the mean of all pairs of feature spaces.

Figure 5 shows these two metrics together with mAP
and Rank-1 during the training epochs. All methods here
adopt the mean teacher strategy, so for simplicity we omit
MT. SECRET-MR is with no consistency constraint. Naı̈ve
SECRET is a naı̈ve way to keep consistent, where cluster-
ing and fine-tuning work on the concatenation of all fea-
ture spaces. With mutual refinement of pseudo labels, the
consistency of SECRET is much higher than SECRET-MR
and naı̈ve SECRET. The high consistency leads to the high-
quality pseudo labels, and eventually obtains high perfor-
mance. We also observe that the MT version of naı̈ve SE-
CRET performs slightly better than SECRET-MR, which
could be ascribed to the more robust representation by mean
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Figure 5: Consistency Analysis of SECRET: the consistency
between different feature spaces, the accuracy of pseudo la-
bels, and the mAP and Rank-1 during training epochs.

teacher strategy. Nevertheless, there is still no obvious evi-
dence that the naı̈ve way to keep consistency is useful.
Feature Selection at Inference Time As the proposed
model can simultaneously generate one global feature and
two local features, there are multiple choices of features at
inference time: only global feature (default setting), only
top local feature, only bottom local feature and a combina-
tion of these three features. The combination can be imple-
mented by a weighted sum of distance individually calcu-
lated from three different features. For simplicity, we use
the same weight η for both local features:

di,j = dglobali,j + η · dtopi,j + η · dbottomi,j (3)
Experimental results of each feature are shown in Table 4.

Local feature alone (top or bottom) leads to much poor per-
formance. This makes sense because local features are spe-
cialized in local details, and are not as discriminative as
global features. The global features alone show a much bet-
ter performance.

Figure 6 shows the experimental results of different
weight parameters. η = 1.0 means all features are equally
important, while η = 0.0 means only using the global fea-
ture (denoted by the red line in the figure). Results of dif-
ferent η show small fluctuation (mAP from 78.1 to 79.9
for Duke-to-Market, from 67.1 to 68.2 for Market-to-Duke).
For Duke-to-Market, the joint feature cannot bring signifi-
cant improvements, and the performance of global feature
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Market Duke MSMT
mAP Rank-1 mAP Rank-1 mAP Rank-1

SSL (Lin et al. 2020) 37.8 71.7 28.6 52.5 – –
BUC (Lin et al. 2019) 38.3 66.2 27.5 47.4 – –

MMCL (Wang and Zhang 2020) 45.5 80.3 40.2 65.2 11.2 35.4
HCT (Zeng et al. 2020) 56.4 80.0 50.7 69.6 – –
SpCL (Ge et al. 2020) 72.6 87.7 65.3 81.2 19.1 42.3

SECRET 78.7 91.7 63.2 77.4 25.8 53.4
SECRET-Joint 79.3 92.2 64.1 78.6 26.4 53.7
SECRET(MT) 80.8 92.1 63.1 77.4 30.5 60.3

SECRET-Joint(MT) 81.0 92.6 63.9 77.9 31.3 60.4

Table 2: Experimental results of state-of-the-arts unsupervised Re-ID methods and the proposed SECRET.

Duke-to-Market Market-to-Duke
mAP Rank-1 mAP Rank-1

Baseline 67.3 85.1 56.5 73.2
SECRET-MR 72.4 88.2 61.0 76.0

naı̈ve SECRET 71.5 88.5 58.7 74.1
SECRET-T 75.4 90.1 61.1 76.0
SECRET-B 74.8 89.9 61.6 76.3
SECRET 79.8 92.3 67.1 80.3

SECRET(MT ) 82.9 93.1 68.8 81.7

Table 3: Evaluation results of the proposed mutual refine-
ment methods on Market-1501 and DukeMTMC-reID.
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Figure 6: Sensitivity Analysis of Hyper-parameter η

alone has already been close to the best joint performance.
For Market-to-Duke, compared with global only, 1.1% im-
provement in mAP can be obtained by the best joint feature.

Therefore, we can draw conclusions: (1) global feature
is good enough and can also save computation cost. (2) if
one can afford the additional cost, joint of global and local
features can slightly improve the performance.
Sensitivity Analysis of Hyper-parameter K We also test
the sensitivity of hyper-parameter K in the mutual refine-
ment procedure. If K is extremely large, it is very easy to
filter out most instances from a given pseudo label, which
leads to insufficient training data. On the contrary, if K is
small enough, very few instances will be eliminated from a
given pseudo label, then the quality of pseudo labels cannot
be effectively improved. Therefore, setting a moderate value
for K will be a general choice. Figure 7 shows the experi-
mental results of different hyper-parameters K. As K is set

Duke-to-Market Market-to-Duke
mAP Rank-1 mAP Rank-1

SECRET(-Global) 79.8 92.3 67.1 80.3
SECRET-Local-Top 65.6 86.6 58.5 76.5

SECRET-Local-Bottom 68.2 85.5 55.7 74.1
SECRET-Joint 79.9 92.3 68.2 81.5

Table 4: Evaluation of different features at inference time on
Market-1501 and DukeMTMC-reID.
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Figure 7: Sensitivity Analysis of Hyper-parameter K

to be larger, the mAP results first improve and then drop.
The best results are obtained at K = 40% for both Duke-to-
Market and Market-to-Duke.

Conclusions
In this work, we propose a self-consistent pseudo label re-
finement method for unsupervised domain adaptive person
Re-ID. The key is to preserve consistency between global
and local features, so that the quality of pseudo labels will be
improved, leading to a performance gain. Extensive experi-
ments on benchmark datasets show that our method outper-
forms the state-of-the-arts by a large margin in most cases.
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