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Abstract

This paper introduces Ranking Info Noise Contrastive Esti-
mation (RINCE), a new member in the family of InfoNCE
losses that preserves a ranked ordering of positive samples.
In contrast to the standard InfoNCE loss, which requires a
strict binary separation of the training pairs into similar and
dissimilar samples, RINCE can exploit information about a
similarity ranking for learning a corresponding embedding
space. We show that the proposed loss function learns favor-
able embeddings compared to the standard InfoNCE whenever
at least noisy ranking information can be obtained or when
the definition of positives and negatives is blurry. We demon-
strate this for a supervised classification task with additional
superclass labels and noisy similarity scores. Furthermore, we
show that RINCE can also be applied to unsupervised train-
ing with experiments on unsupervised representation learn-
ing from videos. In particular, the embedding yields higher
classification accuracy, retrieval rates and performs better in
out-of-distribution detection than the standard InfoNCE loss.

Introduction
Contrastive learning recently triggered progress in self-
supervised representation learning. Most existing variants
require a strict definition of positive and negative pairs used
in the InfoNCE loss or simply ignore samples that can not be
clearly classified as either one or the other (Zhao et al. 2021).
Contrastive learning forces the network to impose a similar
structure in the feature space by pulling the positive pairs
closer to each other while keeping the negatives apart.

This binary separation into positives and negatives can be
limiting whenever the boundary between those is blurry. For
example, different samples from the same classes are used
as negatives for instance recognition, which prevents the net-
work from exploiting their similarities. One way to address
this issue is supervised contrastive learning (SCL) (Khosla
et al. 2020), which takes class labels into account when mak-
ing pairs: samples from the same class are treated as positives,
while samples of different classes pose negatives. However,
even in this optimal setting with ground truth labels, the prob-
lem persists – semantically similar classes share many visual
features (Deselaers and Ferrari 2011) with the query – and
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some samples cannot clearly be categorized as either positive
or negative, e.g. the dog breeds in Fig. 1. Treating them as
positives makes the network invariant towards the distinct
attributes of the samples. As a result, the network struggles to
distinguish between different dog breeds. If they are treated
as negatives, the network cannot exploit their similarities. For
transfer learning to other tasks, e.g. out-of-distribution detec-
tion, a clean structure of the embedding space, s.t. samples
sharing certain attributes will be closer, is beneficial.

Another example comes from video representation learn-
ing: In addition to spatial crops as for images, videos allow
to create temporal crops, i.e. creating a sample from different
frames of the same video. To date, it is an open point of
discussion whether temporally different clips from the same
video should be treated as positive (Feichtenhofer et al. 2021)
or negative (Dave et al. 2021). Treating them as positives will
force the network to be invariant towards changes over time,
but treating them as negatives will encourage the network to
ignore the features that stay constant. In summary, a binary
classification in positive and negative will, for most appli-
cations, lead to a sub-optimal solution. To the best of our
knowledge, a method that benefits from a fine-grained defini-
tion of negatives, positives and various states in between is
missing.

As a remedy, we propose Ranking Info Noise Contrastive
Estimation (RINCE). RINCE supports a fine-grained defini-
tion of negatives and positives. Thus, methods trained with
RINCE can take advantage of various kinds of similarity
measures. For example similarity measures can be based on
class similarities, gradual changes of content within videos,
pretrained feature embeddings, or even the camera positions
in a multi-view setting etc. In this work, we demonstrate class
similarities and gradual changes in videos as examples.

RINCE puts higher emphasis on similarities between re-
lated samples than SCL and cross-entropy, resulting in a
richer representation. We show that RINCE learns to repre-
sent semantic similarities in the embedding space, s.t. more
similar samples are closer than less similar samples. Key to
this is a new InfoNCE-based loss, which enforces gradually
decreasing similarity with increasing rank of the samples.

The representation learned with RINCE on Cifar-100 im-
proves significantly over cross-entropy for classification, re-
trieval and OOD detection, and outperforms the stronger
SCL baseline (Khosla et al. 2020). Here, improvements are
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Figure 1: Contrastive Learning should not be binary. In many scenarios a strict separation of samples in “positives” and “negatives”
is not possible. So far, this grey zone (left) was neglected, leading to sub-optimal results. We propose a solution to this problem,
which embeds same samples very close and similar samples close in the embedding space (right).

particularly large for retrieval and OOD detection. To ob-
tain ranked positives for RINCE, we use the superclasses of
Cifar-100. Further, we demonstrate that RINCE works on
large scale datasets and in more general applications, where
ranking of samples is not initially given and contains noise.
To this end, we show that RINCE outperforms our baselines
on ImageNet-100 using only noisy ranks provided by an off-
the-shelf natural language processing model (Liu et al. 2019).
Finally, we showcase that RINCE can be applied to the fully
unsupervised setting, by training RINCE unsupervised on
videos, treating temporally far clips as weak positives. This
results in a higher accuracy on the downstream task of video
action classification than our baselines and even outperforms
recent video representation learning methods.

In summary, our contributions are: 1) We propose a new
InfoNCE-based loss that replaces the binary definition of
positives and negatives by a ranked definition of similarity. 2)
We study the properties of RINCE in a controlled supervised
setting. Here, we show mild improvements on Cifar-100
classification and sensible improvements for OOD detection.
3) We show that RINCE can handle significant noise in the
similarity scores and leads to improvements on large scale
datasets. 4) We demonstrate the applicability of RINCE to
self-supervised learning with noisy similarities in a video
representation learning task and show improvements over
InfoNCE in all downstream tasks. 5) Code is available at1.
The Sup. Mat. can be found in (Hoffmann et al. 2022).

Related Works
Contrastive Learning. Contrastive learning has recently
advanced the field of self-supervised learning. Current state-
of-the-art methods use instance recognition, originally pro-
posed by (Dosovitskiy et al. 2016), where the task is to rec-
ognize an instance under various transformations. Modern
instance recognition methods utilize InfoNCE (van den Oord,
Li, and Vinyals 2018), which was first proposed as N-pair
loss in (Sohn 2016). It maximizes the similarity of positive
pairs – which are obtained from two different views of the

1https://github.com/boschresearch/rince

same instance – while minimizing the similarity of negative
pairs, i.e. views of different instances. Different views can
be generated from multi-modal data (Tian, Krishnan, and
Isola 2020), permutations (Misra and van der Maaten 2020),
or augmentations (Chen et al. 2020a). The negative pairs
play a vital role in contrastive learning as they prevent short-
cuts and collapsed solutions. In order to provide challenging
negatives, (He et al. 2020) introduce a memorybank with
a momentum encoder, which allows to store a large set of
negatives. Other approaches explicitly construct hard nega-
tives from patches in the same image (van den Oord, Li, and
Vinyals 2018) or temporal negatives in videos (Behrmann,
Gall, and Noroozi 2021). More recent works omit negative
pairs completely (Chen and He 2021; Grill et al. 2020).

In the above cases, positive pairs are obtained from the
same instance, and different instances serve as negatives even
when they share the same semantics. Previous work addresses
this issue by allowing multiple positive samples: (Miech et al.
2020) allows several positive candidates within a video, (Han,
Xie, and Zisserman 2020) and (Caron et al. 2020) obtain pos-
itives by clustering the feature space, whereas (Khosla et al.
2020) uses class labels to define a set of positives. False neg-
atives are eliminated from the InfoNCE loss by (Huynh et al.
2020), either using labels or a heuristic. Integrating multiple
positives in contrastive learning is not straightforward: the
set of positives can be noisy and include some samples that
are more related than others. In this work, we provide a tool
to properly incorporate such samples.

Supervised Contrastive Learning. Labelled training data
has been used in many recent works on contrastive learning.
(Romijnders et al. 2021) use pseudo labels obtained from a
detector, (Tian et al. 2020) use labels to construct better views
and (Neill and Bollegala 2021) use similarity of class word
embeddings to draw hard negatives. The term supervised
contrastive learning (SCL) is introduced in (Khosla et al.
2020) showing that SCL outperforms standard cross-entropy.

In the SCL setting ground truth labels are available and
can be used to define positives and negatives. Commonly,
samples from the same class are treated as positive, while in-
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stances from all other classes are treated as negatives. (Khosla
et al. 2020) find that the SCL loss function outperforms cross-
entropy in the supervised setting. In contrast, (Huynh et al.
2020) aim for an unsupervised detection of false negatives.
They propose to only eliminate false negatives from the In-
foNCE loss which leads to best results for noisy labels.

Along these lines, (Winkens et al. 2020) show that In-
foNCE loss is better suited for out-of-distribution detection
than cross-entropy. Here, we introduce a method to deal with
non-binary similarity labels and study different versions of it
in the SCL setting free from label noise and show that we get
similar results in more noisy and even unsupervised settings.

Ranking. Learning to Rank has been studied exten-
sively (Burges et al. 2005; Cakir et al. 2019; Cao et al. 2007;
Liu 2009). These works aim for downstream applications
that require ranking e.g. image or document retrieval, Natural
Language Processing and Data Mining. In contrast, we are
not interested in the ranking per-se, but rather use the ranking
task to improve the learned representation.

Some approaches in the field metric learning use rank-
ing losses to learn a feature embedding: Contrastive losses
such as triplet loss (Weinberger, Blitzer, and Saul 2006) or
N-pair loss (Sohn 2016) can be interpreted as ranking the pos-
itive higher w.r.t. the anchor than the negative. For instance,
(Tschannen et al. 2020) use the triplet loss, to learn represen-
tations, but focus on learning invariances. (Ge 2018) learn
a hierarchy from data for hard example mining to improve
the triplet loss. Further, these approaches only consider two
ranks, whereas our method can work with multiple ranks.

Methods
InfoNCE
We start with the most basic form of the InfoNCE. In this
setting, two different views of the same data – e.g. two differ-
ent augmentations of the same image – are pulled together in
feature space, while pushing views of different samples apart.
More specifically, for a query q, a single positive p and a set
of negatives N = {n1, . . . nk} is given. The views are fed to
an encoder network f , followed by a projection head g (Chen
et al. 2020a). To measure the similarity between a pair of fea-
tures we use the cosine similarity cos_sim. Overall the task is
to train a critic h(x, y) = cos_sim

(
g(f(x)), g(f(y))

)
using

the loss:

L = − log
exp

(h(q,p)
τ

)
exp

(h(q,p)
τ

)
+
∑
n∈N

exp
(h(q,n)

τ

) , (1)

where τ is a temperature parameter (Chen et al. 2020a). The
above loss relies on the assumption that a single positive pair
is available. One drawback with this approach is that all other
samples are treated as negatives, even if they are semantically
close to the query. Potential solutions include removing them
from the negatives (Zhao et al. 2021) or adding them to
the positives (Khosla et al. 2020), which we denote by P =
{p1, . . . , pl}. In other cases, we naturally have access to more
than one positive, e.g. we can sample several clips from a
single video, see Fig. 3. Having multiple positives per query
leaves two options, which we discuss in the following.

Logout Positives. A straightforward approach to include
multiple positives is to compute Eq. (1) for each of them,
i.e. take the sum over positives outside of the log. This en-
forces similarity between all positives during training, which
suits a clean set of positives well.

Lout = −
∑
p∈P

log
exp

(h(q,p)
τ

)
exp

(h(q,p)
τ

)
+
∑
n∈N

exp
(h(q,n)

τ

) . (2)

However, the set of positives can be noisy, e.g. sampling a
temporally distant clip may include sub-optimal positives due
to drastic changes in the video.

Login Positives. An alternative approach, which is more
robust to noise or inaccurate samples (Miech et al. 2020),
is to take the sum inside the log, Eq. (3). To minimize this
loss, the network is not forced to set a high similarity to all
pairs. It can neglect the noisy/false positives, given that a
sufficiently large similarity is set for the true positives, see
Tab. 4. However, if a discrepancy between positives exists,
it results in a degenerate solution of discarding hard posi-
tives. For instance, consider supervised learning where both
augmentations and class positives are available for a given
query: the class positives, which are harder to optimize, can
be ignored.

Lin = − log

∑
p∈P

exp
(h(q,p)

τ

)
∑
p∈P

exp
(h(q,p)

τ

)
+
∑
n∈N

exp
(h(q,n)

τ

) . (3)

The above methods assume a binary set of positives and
negatives. Thus, they can not exploit the similarity of posi-
tives and negatives. In the following, we discuss the proposed
ranking version of InfoNCE that allows us to preserve the
order of the positives and benefit from the additional infor-
mation.

RINCE: Ranking InfoNCE
Let us assume that for a given query sample q, we have access
to a set of ranked positives in a form of P1, . . . ,Pr, where
Pi includes the positives of rank i. Let us also assumeN is a
set of negatives. Our objective is to train a critic h such that:

h(q, p1) > · · · > h(q, pr) > h(q, n) ∀pi ∈ Pi, n ∈ N .
(4)

Note that Pi can contain multiple positives. For ease of no-
tation we omit these indices. To impose the desired ranking
presented by the positive sets, we use InfoNCE in a recursive
manner where we start with the first set of positives, treat the
remaining positives as negatives, drop the current positive,
and move to the next. We repeat this procedure until there
are no positives left. More precisely, the loss function reads
Lrank =

∑r
i=1 `i, where

`i = − log

∑
p∈Pi

exp
(h(q,p)

τi

)
∑

p∈
⋃

j≥i Pj

exp
(h(q,p)

τi

)
+
∑
n∈N

exp
(h(q,n)

τi

)
(5)
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Naming # positives per rank loss

RINCE-uni single Eq. (1)
RINCE-out multiple Eq. (2)
RINCE-in multiple Eq. (3)

RINCE-out-in multiple Eq. (2) (`1);
Eq. (3) (`i, i > 1)

Table 1: Different variants of RINCE. For the exact loss
functions see the Sup. Mat.

and τi < τi+1. Eq. (5) denotes the Lin version of InfoNCE
for positives of same rank; other variants are summarized
in Tab. 1. The rational behind this loss is simple: The i-
th loss is optimized when I) exp(h(q, pi)/τi) � 0, II)
exp(h(q, pj)/τi)→ 0 for j > i and III) exp(h(q, n)/τi)→
0 for all i, j, n. I) and II) are competing across the losses:
`i entails exp(h(q, pi+1)/τi) → 0 but `i+1 requires
exp(h(q, pi+1)/τi+1)� 0. This requires the model to trade-
off the respective loss terms, resulting in a ranking of posi-
tives h(q, pi) > h(q, pi+1).

In the following we explain the intuition behind our choice
of τ values based on the analyses of (Wang and Liu 2021);
for a more detailed analysis see Sup. Mat. A low temperature
in the InfoNCE loss results in a larger relative penalty on the
high similarity regions, i.e. hard negatives. As the temperature
increases, the relative penalty distributes more uniformly, pe-
nalizing all negatives equally. A low temperature in `i allows
the network to concentrate on forcing h(q, pi) > h(q, pi+1),
ignoring easy negatives. A higher temperature on `r relaxes
the relative penalty of negatives with respect to pr so that the
network can enforce h(q, pr) > h(q, n).

Experiments
We first study the properties of RINCE in the controlled
supervised setting, looking at classification accuracy, retrieval
and out-of-distribution (OOD) detection on Cifar-100. Next,
we show that RINCE leads to significant improvements on
the large scale dataset ImageNet-100 in terms of accuracy
and OOD, even with more noisy similarity scores. Last, we
showcase exemplary with unsupervised video representation
learning that RINCE can be used in an unsupervised setting.
For all experiments we follow the MoCo v2 setting (Chen
et al. 2020b) with a momentum encoder, a memory bank
and a projection head. Throughout the section we compare
different versions of RINCE (Tab. 1), to study their behavior
in different settings. More ablations in the Sup. Mat.

Learning from Class Hierarchies
The optimal testbed to study the proposed loss functions is
the supervised contrastive learning (SCL) setting. The effect
of the proposed loss functions can be studied without con-
founding noise, using ground truth labels and ground truth
rankings. In SCL all samples with the same class are con-
sidered as positives, thus either Eq. (2), or Eq. (3) is used.
However, semantically similar classes share similar visual
features (Deselaers and Ferrari 2011). When strictly treated
as negatives the model does not mirror the structure available
by the labels in its feature space. This, however, is favorable

for transferability to other tasks. RINCE allows the model
to keep this structure, and learn not only dissimilarities be-
tween, but also similarities across classes. We show quanti-
tatively that RINCE learns a higher quality representation
than cross-entropy and SCL on Cifar-100 and ImageNet-100
by evaluating on linear classification, image retrieval, and
OOD tasks. Unless otherwise stated, we report results for
ResNet-50. More implementation details in the Sup. Mat.

Datasets. Cifar-100 (Krizhevsky, Hinton et al. 2009) pro-
vides both, class and superclass labels, defining a semantic
hierarchy. We use this hierarchy to define first rank positives
(same class) and second rank positives (same superclass).

TinyImageNet (Le and Yang 2015) comprises 200 Ima-
geNet (Deng et al. 2009) classes at low resolution. ImageNet-
100 (Tian, Krishnan, and Isola 2020) is a 100 class subset of
ImageNet. We use the RoBERTa (Liu et al. 2019) model to
obtain semantic word embeddings for all class names. Second
rank positives are based on the word embedding similarity
and a predefined threshold. Details in the Sup. Mat.

Baselines and SOTA. As baselines we use cross-entropy,
cross-entropy with the same augmentations as RINCE (cross-
entropy s.a.), Triplet loss (Weinberger, Blitzer, and Saul
2006) and SCL (Khosla et al. 2020), trained with Eq. (2)
(SCL-out) or Eq. (3) (SCL-in). An advantage of RINCE
compared to these baselines is that it benefits from extra
information provided by the superclasses. To show that mak-
ing use of this knowledge is not trivial, we compare to the
following baselines: 1) We train SCL on Cifar-100 with 20
superclasses, denoted by SCL superclass. 2) Hierarchical
Triplet (Ge 2018), which uses the superclasses to mine hard
examples. 3) Fast AP (Cakir et al. 2019), a “learning to rank”
approach that directly optimizes Average Precision. 4) Label
smoothing (Szegedy et al. 2016), which reduces network
over-confidence and can improve OOD detection (Lee and
Cheon 2020). Here, we assign some probability mass to the
classes from the same superclass. 5) A multi-classification
baseline, referred to as two heads, that jointly predicts class
and superclass labels. 6) SCL two heads, a variant of two
heads, that uses the SCL loss instead of cross-entropy. Details
for all baselines are given in the Sup. Mat.

Classification and Retrieval on Cifar. For the classifica-
tion evaluation we train a linear layer on top of the last layer
of the frozen pre-trained networks. The non-parametric re-
trieval evaluation involves finding the relevant data points in
the feature space of the pre-trained network in terms of class
labels via a simple similarity metric, e.g. cosine similarity.
RINCE is superior to the baselines for all experiments, Tab. 2.
Note, that all evaluations in Tab. 2 are based on the same
pre-trained weights using Cifar-100 fine labels as rank 1 and,
if applicable, superclass labels as rank 2.

These experiments indicate that training with RINCE main-
tains ranking order and results in a more structured feature
space in which the samples of the same class are well sep-
arated from the other classes. This is further approved by a
qualitative comparison between embedding spaces in Fig. 2.

Furthermore, we find that the grouping of classes is learned
by the MLP head. The increased difficulty of the ranking task
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Method Cifar100 fine Cifar100 superclass AUROC
Accuracy R@1 R@1 Dout: Cifar-10 Dout: TinyImageNet

SCL-out 76.50 N/A N/A N/A N/A
Soft Labels◦ 76.90 N/A N/A N/A 67.50
ODIN† N/A N/A N/A 77.20 85.20
Mahalanobis† N/A N/A N/A 77.50 97.40
Contrastive OOD‡ N/A N/A N/A 78.30 N/A
Gram Matrices N/A N/A N/A 67.90 98.90

Cross-entropy∗ 74.52 ± 0.32 74.84 ± 0.21 83.99 ± 0.21 75.32 ± 0.65 77.76 ± 0.77
Cross-entropy s.a.∗ 75.46 ± 1.09 76.03 ± 1.04 84.68 ± 0.86 75.91 ± 0.10 79.44 ± 0.50
Triplet 68.44 ± 0.18 47.73 ± 0.14 72.29 ± 0.27 70.33 ± 0.54 80.76 ± 0.24
Hierarchical Triplet∗ 69.27 ± 1.64 65.31 ± 2.69 77.41 ± 1.55 71.97 ± 2.48 76.22 ± 1.27
Fast AP∗ 66.96 ± 0.88 62.03 ± 0.51 69.56 ± 0.54 69.14 ± 1.02 72.44 ± 0.94
Smooth Labels 75.66 ± 0.27 74.90 ± 0.06 85.59 ± 0.12 74.35 ± 0.65 80.10 ± 0.77
Two heads 74.08 ± 0.40 73.62 ± 0.31 81.92 ± 0.21 77.99 ± 0.07 78.35 ± 0.39
SCL-in superclass∗ 74.41 ± 0.15 69.83 ± 0.28 85.35 ± 0.51 74.40 ± 0.72 80.20 ± 1.05
SCL-in∗ 76.86 ± 0.18 73.20 ± 0.19 82.16 ± 0.24 74.63 ± 0.16 78.96 ± 0.45
SCL-out∗ 76.70 ± 0.29 74.45 ± 0.39 82.94 ± 0.39 75.32 ± 0.59 79.80 ± 0.70
SCL-in two heads∗ 77.15 ± 0.14 74.36 ± 0.10 83.31 ± 0.09 75.41 ± 0.16 79.34 ± 0.19
SCL-out two heads∗ 76.91 ± 0.08 74.87 ± 0.37 83.74 ± 0.16 75.27 ± 0.34 79.64 ± 0.53
Contrastive OOD N/A N/A N/A 74.20 ± 0.40 N/A
RINCE-out 76.94 ± 0.16 76.68 ± 0.09 86.10 ± 0.25 77.76 ± 0.09 81.02 ± 0.14
RINCE-out-in 77.59 ± 0.21 77.47 ± 0.16 86.20 ± 0.23 76.82 ± 0.44 81.40 ± 0.38
RINCE-in 77.45 ± 0.05 77.56 ± 0.03 86.46 ± 0.21 77.03 ± 0.53 81.78 ± 0.05

Table 2: Classification, retrieval and OOD results for Cifar-100 pretraining. Left: classification and retrieval; fine-grained task
(fine) with 100 classes and superclass task (superclass) with 20 classes. Right: OOD task with inlier dataset Din: Cifar-100 and
outlier dataset Dout: Cifar-10 and TinyImageNet. We report the mean and standard deviation over 3 runs. Contrastive OOD
averaged over 5 runs. Best method in bold, second best underlined. Note that, models indicated with † are not directly comparable,
since they use data explicitly labeled as OOD samples for tuning. ∗ indicates methods of others trained by us, ◦ uses 2× wider
ResNet-40, ‡ 4× wider ResNet-50. The lower part of the table uses ResNet-50. Methods not references in text: Soft Labels (Lee
and Cheon 2020), Gram Matrices (Sastry and Oore 2020), Triplet (Weinberger, Blitzer, and Saul 2006).

of RINCE results in a more structured embedding space
before the MLP compared with SCL, see Sup. Mat. Fig. 7.

Out-of-distribution Detection. To further investigate the
structure of the learned representation of RINCE we evaluate
on the task of out-of-distribution detection (OOD). As argued
in (Winkens et al. 2020), models trained with cross-entropy
only need to distinguish classes and can omit irrelevant fea-
tures. Contrastive learning differs, by forcing the network to
distinguish between each pair of samples, resulting in a more
complete representation. Such a representation is beneficial
for OOD detection (Hendrycks et al. 2019; Winkens et al.
2020). Therefore, OOD performance can be seen as evalua-
tion of representation quality beyond standard metrics like
accuracy and retrieval. RINCE incentivizes the network to
learn an even richer representation. Besides that, OOD bene-
fits from good trade-off between alignment and uniformity,
which RINCE manages well (Fig. 9 in Sup. Mat.).

We follow common evaluation settings for OOD (Lee et al.
2018; Liang, Li, and Srikant 2018; Winkens et al. 2020).
Here Cifar-100 is used as the inlier dataset Din, Cifar-10
and TinyImageNet as outlier dataset Dout. Note that Cifar-
100 and Cifar-10 have disjoint labels and images. For both
protocols we only use the test or validation images. Our
models are identical to those in the previous section. Inspired
by (Winkens et al. 2020), we follow a simple approach, and

fit class-conditional multivariate Gaussians to the embedding
of the training set. We use the log-likelihood to define the
OOD-score. As a result, the likelihood to identify OOD-
samples is high, if each in-class follows roughly a Gaussian
distribution in the embedding space, compare Fig. 2a and
2c. For evaluation, we compute the area under the receiver
operating characteristic curve (AUROC), details in Sup. Mat.

Results and a comparison to the most related previous
work is shown in Tab. 2. Note that we aim here to com-
pare the learned representation space via RINCE to its coun-
terparts, i.e. cross-entropy and SCL, but show well known
methods as reference. Most importantly, RINCE clearly out-
performs cross-entropy, all SCL variants, contrastive OOD
and our own baselines using the identical OOD approach.
Only two-heads outperforms all other methods in the near
OOD setting with Dout: Cifar-10. However, performance on
all other settings is low, showing weak generalization. This
underlines our hypothesis, that training with RINCE yields a
more structured and general representation space. Comparing
to related works, RINCE not only outperforms Contrastive
OOD (Winkens et al. 2020) using the same architecture, but
even approaches the 4× wider ResNet on Cifar-10 as Dout.
ODIN (Liang, Li, and Srikant 2018) and Mahalanobis (Lee
et al. 2018) require samples labelled as OOD to tune param-
eters of the OOD approach. Here we evaluate in the more
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(a) (b) (c)

Figure 2: Qualitative comparison of embedding spaces. T-SNE plot of (a) supervised contrastive learning (SCL-in) and (b)
RINCE-in (c) RINCE-out-in on Cifar-100. Best seen in color, on screen and zoomed in. Color and marker type combined indicate
class. Labels omitted for clarity. Sup. Mat. contains a version of this plot with color indicating the superclass. RINCE learns a
more structured embedding space than SCL, e.g. classes are linearly separable and can be modelled well by a Gaussian.

Method Accuracy
AUROC

Dout: Dout:
ImageNet-100† AwA2

Cross-entropy s.a. 83.94 79.076 ± 1.477 79.04
SCL-out 84.18 79.779 ± 1.274 79.05
RINCE-out-in 84.90 80.473 ± 1.210 80.73

Table 3: ImageNet-100 classification accuracy and OOD de-
tection for Din: ImageNet-100, and Dout: ImageNet-100†
and AwA2 (Xian et al. 2018). ImageNet-100† denotes three
ImageNet-100 datasets with non-overlapping classes.

realistic setting without labelled OOD samples. Despite us-
ing significantly less information, RINCE is compatible with
them and even outperforms them for Dout: Cifar-10.

Large Scale Data and Noisy Similarities
Additionally, we perform the same evaluations on ImageNet-
100, a 100-class subset of ImageNet, see Tab. 3. Here, we
use ResNet-18. We obtain the second rank classes for a given
class via similarities of the RoBERTa (Liu et al. 2019) class
name embeddings. In contrast to the previous experiments,
where ground truth hierarchies are known, these similarity
scores are noisy and inaccurate – yet it still provides valu-
able information to the model. We evaluate our model via
linear classification on ImageNet-100 and two OOD tasks:
AwA2 (Xian et al. 2018) as Dout and ImageNet-100†, where
we use the remaining ImageNet classes to define three non-
overlapping splits and report the average OOD.

Result are shown in Tab. 3. Again, RINCE significantly
improves over SCL and cross-entropy in linear evaluation as
well as on the OOD tasks. This demonstrates 1) that RINCE
can handle noisy rankings and 2) that RINCE leads to im-
provements on large scale datasets. Next, we move to an even

less controlled setting and define a ranking based on temporal
ordering for unsupervised video representation learning.

Unsupervised RINCE
In this section we demonstrate that RINCE can be used in a
fully unsupervised setting with noisy hierarchies by applying
it to unsupervised video representation. Inspired by (Tschan-
nen et al. 2020), we construct three ranks for a given query
video, same frames, same shot and same video, see Fig. 3.

The first positive xf is obtained by augmenting the query
frames. The second positive xs is a clip consecutive to the
query frames, where small transformations of the objects,
illumination changes, etc. occur. The third positive xv is
sampled from a different time interval of the same video,
which may show visually distinct but semantically related
scenes. Naturally, xf shows the most similar content to the
query frames, followed by xs and finally xv. We compare
temporal ranking with RINCE to different baselines.

Baselines. We compare to the basic InfoNCE, where a
single positive is generated via augmentations (Chen et al.
2020a; He et al. 2020), i.e. only frame positives xf . When
considering multiple clips from the same video such as xs
and xv, there are several possibilities: We can treat them all
as positives (hard positive), we can use the distant xv as
a hard negative or ignore it (easy positive). In both cases
Lout, Eq. (2), and Lin, Eq. (3), are possible. Additionally,
we compare to two recent methods trained in comparable
settings, i.e. VIE (Zhuang et al. 2020), LA-IDT (Tokmakov,
Hebert, and Schmid 2020).

Ranking Frame-, Shot- and Video-level Positives. We
sample short clips of a video, each consisting of 16 frames.
We augment each clip with a set of standard video augmen-
tations. For more details we refer to the Sup. Mat. For the
anchor clip x, we define positives as in Fig. 3: p1 = xf con-
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Figure 3: Positives in Videos. For a given query clip we use frame positives xf , shot positives xs and video positives xv .

Method Loss Positives Negatives Top 1 Accuracy Retrieval mAP
HMDB UCF HMDB UCF

VIE - - - 44.8 72.3 - -
LA-IDT - - - 44.0 72.8 - -

InfoNCE L {xf} N 41.5 71.3 0.0500 0.0688

hard positive Lin {xf , xs, xv} N 42.6 74.3 0.0685 0.1119
Lout {xf , xs, xv} N 41.4 73.6 0.0666 0.1204

easy positive Lin {xf , xs} N 42.7 74.5 0.0581 0.1257
Lout {xf , xs} N 40.7 73.5 0.0593 0.1297

hard negative Lin {xf , xs} {xv} ∪ N 43.6 74.3 0.0678 0.1141
Lout {xf , xs} {xv} ∪ N 43.5 75.2 0.0675 0.1193

RINCE RINCE-uni xf > xs > xv N 44.9 75.4 0.0719 0.1395

Table 4: Finetuning on UCF and HMDB. L, Lin and Lout correspond to Eq. (1), Eq. (3) and Eq. (2), respectively. Positives and
Negatives indicates how xf , xs, xv were incorporated into contrastive learning, where N denotes the set of negative pairs from
random clips. Since we consider only a single positive per rank we use the RINCE-uni loss variant for RINCE.

sists of the same frames as x, p2 = xs is a sequence of 16
frames adjacent to x, and p3 = xv is sampled from a different
time interval than xf and xs. Negatives xn are sampled from
different videos. Since each rank i contains only a single
positive pi, Eq. (2) = Eq. (3), we call this variant RINCE-uni.
By ranking the positives we ensure that the similarities sat-
isfy sim(x, xf ) > sim(x, xs) > sim(x, xv) > sim(x, xn),
adhering to the temporal structure in videos.

Datasets and Evaluation. For self-supervised learning,
we use Kinetics-400 (Kay et al. 2017) and discard the labels.
Our version of the dataset consists of 234.584 training videos.
We evaluate the learned representation via finetuning on
UCF (Soomro, Zamir, and Shah 2012) and HMDB (Kuehne
et al. 2011) and report top 1 accuracy. In this evaluation, the
pretrained weights are used to initialize a network and train
it end-to-end using cross-entropy. Additionally, we evaluate
the representation via nearest neighbor retrieval and report
mAP. Precision-Recall curves can be found in the Sup. Mat.

Experimental Results. For all experiments we use a 3D-
ResNet-18 backbone. Training details can be found in the
Sup. Mat. We report the results for RINCE as well as the
baselines in Tab. 4. Adding shot- and video-level samples
to InfoNCE improves the downstream accuracies. We ob-
serve that adding xv to the set of negatives to provide a hard
negative rather than adding it to the set of positives leads
to higher performance, suggesting that this should not be a
true positive. This is further supported by the second and
third row, where all three positives are treated as true pos-
itives. Here, Lout, which forces all positives to be similar,

leads to inferior performance compared to Lin. Lin allows
more noise in the set of positives by weak influence of false
positives xv. With RINCE we can impose the temporal or-
dering xf > xs > xv and treat xv properly, leading to the
highest downstream performance. Improvements of RINCE
over Lout is less pronounced on UCF. This is due to the strong
static bias (Li, Li, and Vasconcelos 2018) of UCF and Lout en-
courages static features. Contrarily, improvements of RINCE
over Lout on HMDB are substantial, due to the weaker bias
towards static features. Last, we compare our method to two
recent unsupervised video representation learning methods
that use the same backbone network in Tab. 4. We outperform
these methods on both datasets.

Conclusion
We introduced RINCE, a new member in the family of In-
foNCE losses. We show that RINCE can exploit rankings to
learn a more structured feature space with desired properties,
lacking with standard InfoNCE. Furthermore, representations
learned through RINCE can improve accuracy, retrieval and
OOD. Most importantly, we show that RINCE works well
with noisy similarities, is applicable to large scale datasets
and to unsupervised training. We compare the different vari-
ants of RINCE. Here lies a limitation: Different variants
are optimal for different tasks and must be chosen based on
domain knowledge. Future work will explore further applica-
tions of obtaining similarity scores, e.g. based on distance in
a pretrained embedding space, distance between cameras in
a multi-view setting or distances between clusters.
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