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Abstract
Image composition targets at inserting a foreground object
into a background image. Most previous image composition
methods focus on adjusting the foreground to make it com-
patible with background while ignoring the shadow effect
of foreground on the background. In this work, we focus on
generating plausible shadow for the foreground object in the
composite image. First, we contribute a real-world shadow
generation dataset DESOBA by generating synthetic com-
posite images based on paired real images and deshadowed
images. Then, we propose a novel shadow generation net-
work SGRNet, which consists of a shadow mask prediction
stage and a shadow filling stage. In the shadow mask predic-
tion stage, foreground and background information are thor-
oughly interacted to generate foreground shadow mask. In
the shadow filling stage, shadow parameters are predicted to
fill the shadow area. Extensive experiments on our DESOBA
dataset and real composite images demonstrate the effective-
ness of our proposed method. Our dataset and code are avail-
able at https://github.com/bcmi/Object-Shadow-Generation-
Dataset-DESOBA.

1 Introduction
Image composition (Niu et al. 2021) targets at copying a
foreground object from one image and pasting it on another
background image to produce a composite image. In recent
years, image composition has drawn increasing attention
from a wide range of applications in the fields of medical sci-
ence, education, and entertainment (Arief, McCallum, and
Hardeberg 2012; Zhang, Liang, and Wang 2019; Liu et al.
2020). Some deep learning methods (Lin et al. 2018a; Azadi
et al. 2020; van Steenkiste et al. 2020; Azadi et al. 2019)
have been developed to improve the realism of composite
image in terms of color consistency, relative scaling, spa-
tial layout, occlusion, and viewpoint transformation. How-
ever, the above methods mainly focus on adjusting the fore-
ground while neglecting the effect of inserted foreground on
the background such as shadow or reflection. In this paper,
we focus on dealing with the shadow inconsistency between
the foreground object and the background, that is, generating
shadow for the foreground object according to background
information, to make the composite image more realistic.

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: 1) The green arrows illustrate the process of ac-
quiring paired data. We select a foreground object in the
ground-truth target image Ig , and replace its shadow area
with the counterpart in deshadowed image Id to synthesize a
composite image Ic. 2) The red arrow illustrates our shadow
generation task. Given Ic and its foreground maskMfo, we
aim to generate the target image Ĩg with foreground shadow.

To accomplish this image-to-image translation task, deep
learning techniques generally require adequate paired train-
ing data, i.e., a composite image without foreground shadow
and a target image with foreground shadow. However, it
is extremely difficult to obtain such paired data in the real
world. Therefore, previous works (Zhang, Liang, and Wang
2019; Liu et al. 2020) insert a virtual 3D object into 3D
scene and generate shadow for this object using rendering
techniques. In this way, a rendered dataset with paired data
can be constructed. However, there exists large domain gap
between rendered images and real-world images, which re-
sults in the inapplicability of rendered dataset to real-world
image composition problem.

Therefore, we tend to build our own real-world shadow
generation dataset by synthesizing composite image from
a ground-truth target image with object-shadow pairs. We
build our dataset on the basis of Shadow-OBject Associ-
ation (SOBA) dataset (Wang et al. 2020), which collects
real-world images in complex scenes and provides annotated
masks for object-shadow pairs. SOBA contains 3,623 pairs
of shadow-object associations over 1000 images. Based on
SOBA dataset, we remove all the shadows to construct our
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DEshadowed SOBA (DESOBA) dataset, which can be used
for shadow generation task as well as other relevant vision
applications. At the start, we tried to remove the shadows
with the state-of-the-art deshadow methods (Zhang et al.
2020; Le and Samaras 2020; Cun, Pun, and Shi 2020). How-
ever, their performance is far from satisfactory due to com-
plex scenes. Thus, with shadow images and shadow masks
from SOBA datasets, we employ professional photo edi-
tors to manually remove the shadows in each image to ob-
tain deshadowed images. We carefully check each deshad-
owed image to ensure that the background texture is main-
tained to the utmost, the transition over shadow boundary is
smooth, and the original shadowed area cannot be identified.
Although the deshadowed images may not be perfectly ac-
curate, we show that the synthetic dataset is still useful for
method comparison and real-world image composition. One
example of ground-truth target image Ig and its deshadowed
version Id is shown in Figure 1. To obtain paired training
data for shadow generation task, we choose a foreground
object with associated shadow in the ground-truth target im-
age Ig and replace its shadow area with the counterpart in
the deshadowed image Id, yielding the synthetic composite
image Ic. In this way, pairs of synthetic composite image Ic
and ground-truth target image Ig can be obtained.

With paired training data available, the shadow genera-
tion task can be defined as follows. Given an input com-
posite image Ic and the foreground object mask Mfo, the
goal is to generate realistic shadow for the foreground ob-
ject, resulting in the target image Ĩg which should be close to
the ground-truth Ig (see Figure 1). For ease of description,
we use foreground (resp., background) shadow to indicate
the shadow of foreground (resp., background) object. Exist-
ing image-to-image translation methods (Isola et al. 2017;
Zhu et al. 2017; Huang et al. 2018; Lin et al. 2018b) can be
used for shadow generation, but they cannot achieve plausi-
ble shadows without considering illumination condition or
shadow property. ShadowGAN (Zhang, Liang, and Wang
2019) was designed to generate shadows for virtual objects
by combining a global discriminator and a local discrimina-
tor. ARShadowGAN (Liu et al. 2020) searched clues from
background using attention mechanism to assist in shadow
generation. However, the abovementioned methods did not
model the thorough foreground-background interaction and
did not leverage typical illumination model, which motivates
us to propose a novel Shadow Generation in the Real-world
Network (SGRNet) to generate shadows for the foreground
objects in complex scenes.

As illustrated in Figure 3, SGRNet consists of a shadow
mask prediction stage and a shadow filling stage. Such two-
stage approach has not been explored in shadow generation
task before. In the shadow mask prediction stage, provided
with a synthetic composite image Ic and foreground object
mask Mfo, we design a foreground encoder to extract the
required information of the foreground object and a back-
ground encoder to infer illumination information from back-
ground. To achieve thorough foreground and background in-
formation interaction, a cross-attention integration layer is
employed to help generate shadow mask for the foreground
object. The shadow filling stage is designed based on illumi-

nation model (Le and Samaras 2019), which first predicts the
shadow property and then edits the shadow area. Besides, we
design a conditional discriminator to distinguish real object-
shadow-image triplets from fake triplets, which can push the
generator to produce realistic foreground shadow. To verify
the effectiveness of our proposed SGRNet, we conduct ex-
periments on DESOBA dataset and real composite images.

Our main contributions are summarized as follows: 1)
we contribute the first real-world shadow generation dataset
DESOBA using a novel data acquisition approach; 2) we de-
sign a novel two-stage network SGRNet to generate shadow
for the foreground object in composite image; 3) extensive
experiments demonstrate the effectiveness of our way to
construct dataset and the superiority of our network.

2 Related Work
2.1 Image Composition
Image composition (Niu et al. 2021) targets at pasting a fore-
ground object on another background image to produce a
composite image (Lin et al. 2018a; Wu et al. 2019; Zhan,
Huang, and Lu 2019; Zhan et al. 2020b; Liu et al. 2020).
Many issues would significantly degrade the quality of com-
posite images, such as unreasonable location of foreground
or inconsistent color/illumination between foreground and
background. Previous works attempted to solve one or mul-
tiple issues. For example, image blending methods (Pérez,
Gangnet, and Blake 2003; Wu et al. 2019; Zhang, Wen, and
Shi 2020; Zhang et al. 2021) were developed to blend fore-
ground and background seamlessly. Image harmonization
methods (Tsai et al. 2017; Cun and Pun 2020; Cong et al.
2020, 2021) were proposed to address the color/illumina-
tion discrepancy between foreground and background. Some
other approaches (Chen and Kae 2019; Weng et al. 2020;
Zhan, Zhu, and Lu 2019) aimed to cope with the incon-
sistency of geometry, color, and boundary simultaneously.
However, these methods did not consider the shadow effect
of inserted foreground on background image, which is the
focus of this paper.

2.2 Shadow Generation
Prior works on shadow generation can be divided into two
groups: rendering based methods and image-to-image trans-
lation methods.
Shadow Generation via Rendering: This group of meth-
ods require explicit knowledge of illumination, reflectance,
material properties, and scene geometry to generate shadow
for inserted virtual object using rendering techniques. How-
ever, such knowledge is usually unavailable in the real-
world applications. Some methods (Karsch et al. 2014; Kee,
O’Brien, and Farid 2014; Liu, Xu, and Martin 2017) re-
lied on user interaction to acquire illumination condition
and scene geometry, which is time-consuming and labor-
intensive. Without user interaction, some methods (Liao
et al. 2019; Gardner et al. 2019; Zhang et al. 2019b; Arief,
McCallum, and Hardeberg 2012) attempted to recover ex-
plicit illumination condition and scene geometry based on a
single image, but this estimation task is quite tough and inac-
curate estimation may lead to terrible results (Zhang, Liang,
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Figure 2: Some examples from our DESOBA dataset. BOS test image pairs with Background Object-Shadow (BOS) pairs are
shown in the left subfigure, from left to right: synthetic composite image, foreground object mask, background object mask,
background shadow mask, and ground-truth target image. BOS-free test image pairs are shown in the right subfigure, from left
to right: synthetic composite image, foreground object mask, and ground-truth target image.

and Wang 2019).
Shadow Generation via Image-to-image Translation:
This group of methods learn a mapping from the input im-
age without foreground shadow to the output with fore-
ground shadow, without requiring explicit knowledge of il-
lumination, reflectance, material properties, and scene ge-
ometry. Most methods within this group have encoder-
decoder network structures. For example, the shadow re-
moval method Mask-ShadowGAN (Hu et al. 2019) could be
adapted to shadow generation, but the cyclic generation pro-
cedure failed to generate shadows in complex scenes. Shad-
owGAN (Zhang, Liang, and Wang 2019) combined a global
conditional discriminator and a local conditional discrimi-
nator to generate shadow for inserted 3D foreground ob-
jects without exploiting background illumination informa-
tion. In (Zhan et al. 2020a), an adversarial image composi-
tion network was proposed for harmonization and shadow
generation simultaneously, but it calls for extra indoor illu-
mination dataset (Gardner et al. 2017; Cheng et al. 2018).
ARShadowGAN (Liu et al. 2020) released Shadow-AR
dataset and proposed an attention-guided network. Distinc-
tive from the above works, our proposed SGRNet encour-
ages thorough information interaction between foreground
and background, and also leverages typical illumination
model to guide network design.

3 Dataset Construction
We follow the training/test split in SOBA dataset (Wang
et al. 2020). SOBA has 840 training images with 2, 999
object-shadow pairs and 160 test images with 624 object-
shadow pairs. We discard one complex training image whose
shadow is hard to remove. Since most images in SOBA are
outdoor images, we focus on outdoor illumination in this
work. For each image in the training set, to obtain more
training image pairs, we use a subset of foreground objects
with associated shadows each time. Specifically, given a real
image Ig with n object-shadow pairs {(Oi,Si)|ni=1} and its
deshadowed version Id without shadows {Si|ni=1}, we ran-
domly select a subset of foreground objects from Ig and re-
place their shadow areas with the counterparts in Id, leading
to a synthetic composite image Ic. In this way, based on the
training set of SOBA, we can obtain abundant training image

pairs of synthetic composite images and ground-truth target
images. In Section 4, for ease of description, we treat a sub-
set of foreground objects as one whole foreground object.

For the test set, we can get pairs of synthetic compos-
ite images and ground-truth target images in the same way.
We focus on synthetic composite images with only one fore-
ground object and ignore those with too small foreground
shadow after the whole image is resized to 256 × 256. Af-
terwards, we obtain 615 test image pairs, which are divided
into two groups according to whether they have background
object-shadow pairs. Specifically, we refer to the test im-
age pairs with Background Object-Shadow (BOS) pairs as
BOS test image pairs, and the remaining ones as BOS-free
test image pairs. Despite the absence of strong cues like
background object-shadow pairs, the background in BOS-
free images could also provide a set of illumination cues
(e.g., shading, sky appearance variation) (Lalonde, Efros,
and Narasimhan 2012; Zhang et al. 2019b). Some examples
of BOS test image pairs and BOS-free test image pairs are
shown in Figure 2.

4 Our Method
Given a synthetic composite image Ic without foreground
shadow and the foreground object maskMfo, our proposed
Shadow Generation in the Real-world Network (SGRNet)
targets at generating Ĩg with foreground shadow. Our SGR-
Net consists of two stages: a shadow mask prediction stage
and a shadow filling stage (see Figure 3). This two-stage
approach enables the network to focus on one aspect (i.e.,
shadow shape or shadow intensity) in each stage, which
has not been explored in previous shadow generation meth-
ods (Zhang, Liang, and Wang 2019; Zhan et al. 2020a; Liu
et al. 2020). In the shadow mask prediction stage, a shadow
mask generator GS with foreground branch and background
branch is designed to generate shadow mask M̃fs. In the
shadow filling stage, a shadow parameter predictorEP and a
shadow matte generatorGM are used to fill the shadow mask
to produce the target image Ĩg with foreground shadow.

4.1 Shadow Mask Generator
The shadow mask generator GS aims to predict the binary
shadow mask M̃fs of the foreground object. We adopt U-
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Figure 3: The framework of our SGRNet which consists of a shadow mask prediction stage and a shadow filling stage. In
the shadow mask prediction stage, shadow mask M̃fs is generated by the shadow mask generator composed of foreground
encoder EFS , background encoder EBS , Cross-Attention Integration (CAI) layer, and decoder DS . In the shadow filling stage,
shadow parameters {w̃dark, b̃dark} are predicted by EP for producing darkened image Ĩdarkc , and shadow matte predictor
GM = {EM , DM} generates shadow matte α̃. The final target image Ĩg is obtained by blending Ĩdarkc and Ic using α̃.

Net (Ronneberger, Fischer, and Brox 2015) structure con-
sisting of an encoder ES and a decoder DS . To better ex-
tract foreground and background information, we split ES

into a foreground encoder EFS and a background encoder
EBS . The foreground encoder EFS takes the concatenation
of input composite image Ic and foreground object mask
Mfo as input, producing the foreground feature mapXf =
EFS(Ic,Mfo). The background encoder EBS is expected
to infer implicit illumination information from background.
Considering that the background object-shadow pairs can
provide strong illumination cues, we introduce background
object-shadow maskMbos enclosing all background object-
shadow pairs. The background encoder EBS takes the con-
catenation of Ic and Mbos as input, producing the back-
ground feature mapXb = EBS(Ic,Mbos).

The illumination information in different image regions
may vary due to complicated scene geometry and light
sources, which greatly increases the difficulty of shadow
mask generation (Zhang, Liang, and Wang 2019). Thus, it is
crucial to attend relevant illumination information to gener-
ate foreground shadow. Inspired by previous attention-based
methods (Zhang et al. 2019a; Wang et al. 2018; Vaswani
et al. 2017), we use a Cross-Attention Integration (CAI)
layer to help foreground feature map Xf attend relevant il-
lumination information from background feature mapXb.

Firstly, Xf ∈ RH×W×C and Xb ∈ RH×W×C are pro-
jected to a common space by f(·) and g(·) respectively,
where f(·) and g(·) are 1× 1 convolutional layer with spec-
tral normalization (Miyato et al. 2018). For ease of calcu-
lation, we reshape f(Xb) ∈ RW×H×C

8 (resp., g(Xf ) ∈
RW×H×C

8 ) into f̄(Xb) ∈ RN×C
8 (resp., ḡ(Xf ) ∈ RN×C

8 ),
in which N = W × H . Then, we can calculate the affinity
map betweenXf andXb:

A = softmax
(
ḡ(Xf )f̄(Xb)

T
)
. (1)

With obtained affinity map A, we attend information from

Xb and arrive at the attended feature mapX ′b:

X ′b = v
(
Ah̄(Xb)

)
, (2)

where h̄(·) means 1× 1 convolutional layer followed by re-
shaping to RN×C

8 , similar to f̄(·) and ḡ(·) in Eqn. 1. v(·)
reshapes the feature map back to RW×H×C

8 and then per-
forms 1× 1 convolution. Because the attended illumination
information should be combined with the foreground infor-
mation to generate foreground shadow mask, we concate-
nate X ′b and Xf , which is fed into the decoder DS to pro-
duce foreground shadow mask M̃fs:

M̃fs = DS([X ′b,Xf ]), (3)

which is enforced to be close to the ground-truth foreground
shadow maskMfs by

LS = ||Mfs − M̃fs||22. (4)

Although cross attention is not a new idea, this is the
first time to achieve foreground-background interaction via
cross-attention in shadow generation task.

4.2 Shadow Area Filling
We design our shadow filling stage based on the illumi-
nation model used in (Shor and Lischinski 2008; Le and
Samaras 2019). According to (Shor and Lischinski 2008;
Le and Samaras 2019), the value of a shadow-free pixel
I lit(k, i) can be linearly transformed from its shadowed
value Idark(k, i):

I lit(k, i) = wlit(k)Idark(k, i) + blit(k), (5)

in which I(k, i) represents the value of the pixel i in color
channel k (k ∈ R,G,B). wlit(k) and blit(k) are constant
across all pixels in the umbra area of the shadow. Inversely,
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Figure 4: Shadow generation via image composition. The
ground-truth target image Ig with foreground shadow can be
expressed as the combination of synthetic composite image
Ic and darkened image Idarkc with shadow matte α.

the value of a shadowed pixel Idark(k, i) can be linearly
transformed from its shadow-free value I lit(k, i):

Idark(k, i) = wdark(k)I lit(k, i) + bdark(k). (6)

To accurately locate the foreground shadow area, we tend
to learn a soft shadow matte α. The value of α is 0 in the
non-shadow area, 1 in the umbra of shadow area, and vary-
ing gradually in the penumbra of shadow area. Then, the
target image with foreground shadow can be obtained using
the following composition system (see Figure 4):

Ig = Ic ◦ (1−α) + Idarkc ◦α, (7)

Idarkc (k) = wdark(k)Ic(k) + bdark(k), (8)

in which ◦ means element-wise multiplication, I(k) rep-
resents image I in color channel k, Idarkc (k) is the
darkened version of Ic(k) through Eqn. 8. wdark =
[wdark(R), wdark(G), wdark(B)] and similarly defined
bdark are called shadow parameters. Given paired
images {Ic, Ig}, the ground-truth shadow parameter
{wdark,bdark} for the foreground shadow can be easily
calculated by using linear regression (Shor and Lischinski
2008). Specifically, we need to calculate the optimal regres-
sion coefficients {wdark,bdark} which regress pixel val-
ues Ic(k, i) to Ig(k, i) in the foreground shadow area. The
ground-truth shadow parameters of training images can be
precomputed before training, but the ground-truth shadow
parameters of test images are unavailable in the testing stage.
Thus, we learn a shadow parameter predictorEP to estimate
{wdark,bdark}.

Our EP is implemented as an encoder, which takes
the concatenation of composite image Ic and predicted
shadow mask M̃fs as input to predict the shadow param-
eters {w̃dark, b̃dark}:

{w̃dark, b̃dark} = EP (Ic,M̃fs). (9)

{w̃dark, b̃dark} are supervised with ground-truth shadow
parameters {wdark, bdark} by regression loss:

LP = ||wdark − w̃dark||22 + ||bdark − b̃dark||22. (10)

After estimating {w̃dark, b̃dark}, we can get the darkened
image Ĩdarkc (k) = w̃dark(k)Ic(k) + b̃dark(k) via Eqn. 8.

Then, to obtain the final target image, we need to learn
a shadow matte α for image composition as in Eqn. 7.
Our shadow matte generator GM is based on U-Net (Ron-
neberger, Fischer, and Brox 2015) with encoder EM and de-
coder DM . GM concatenates composite image Ic, darkened
image Ĩdarkc , and predicted shadow mask M̃fs as input, pro-
ducing the shadow matte α̃:

α̃ = GM (Ic, Ĩ
dark
c ,M̃fs). (11)

Finally, based on Ĩdarkc , Ic, and α̃, the target image with
foreground shadow can be composed by

Ĩg = Ic ◦ (1− α̃) + Ĩdarkc ◦ α̃. (12)

The generated target image is supervised by the ground-truth
target image with a reconstruction loss:

LI = ||Ig − Ĩg||22. (13)

To the best of our knowledge, we are the first to generate
shadow by blending original image and darkened image.

4.3 Conditional Discriminator
To ensure that the generated shadow mask M̃fs and the
generated target image Ĩg are close to real shadow mask
Mfs and real target image Ig respectively, we design a
conditional discriminator D to bridge the gap between
the generated triplet {M̃fs, Ĩg,Mfo} and the real triplet
{Mfs, Ig,Mfo}. The architecture of our conditional dis-
criminator is similar to Patch-GAN (Isola et al. 2017), which
takes the concatenation of triplet as input. We adopt the
hinge adversarial loss (Miyato and Koyama 2018) as fol-
lows,

LD = EM̃fs,Ĩg,Mfo
[max(0, 1 + D(M̃fs, Ĩg,Mfo))] +

EMfs,Ig,Mfo
[max(0, 1−D(Mfs, Ig,Mfo)],

LGD = −EM̃fs,Ĩg,Mfo
[D(M̃fs, Ĩg,Mfo)]. (14)

4.4 Optimization
The overall optimization function can be written as

L = λSLS + λILI + λPLP + λGDLGD + LD, (15)

where λS , λI , λP , and λGD are trade-off parameters.
The parameters of {ES , CAI,DS , EP , EM , DM} are

denoted as θG, while the parameters ofD are denoted as θD.
Following adversarial learning framework (Gulrajani et al.
2017), we use related loss terms to optimize θG and θD alter-
natingly. In detail, θD is optimized by minimizingLD. Then,
θG is optimized by minimizing λSLS + λILI + λPLP +
λGDLGD.

5 Experiments
5.1 Experimental Setup
Datasets We conduct experiments on our constructed DES-
OBA dataset and real composite images. On DESOBA
dataset, we perform both quantitative and qualitative eval-
uation based on 615 test image pairs with one foreground,
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Method BOS Test Images BOS-free Test Images
GRMSE ↓ LRMSE ↓ GSSIM ↑ LSSIM ↑ GRMSE ↓ LRMSE ↓ GSSIM ↑ LSSIM ↑

Pix2Pix 7.659 75.346 0.926 0.588 18.875 81.444 0.858 0.482
Pix2Pix-Res 5.961 76.046 0.971 0.612 18.365 81.966 0.901 0.506
ShadowGAN 5.985 78.412 0.984 0.612 19.306 87.017 0.918 0.498
Mask-ShadowGAN 8.287 79.212 0.952 0.599 19.475 83.457 0.891 0.500
ARShadowGAN 6.481 75.099 0.983 0.617 18.723 81.272 0.917 0.513
Ours 4.754 61.763 0.988 0.684 15.128 61.439 0.928 0.555

Table 1: Results of quantitative comparison on our DESOBA dataset.

which are divided into 581 BOS test image pairs and 34
BOS-free test image pairs. We also show the qualitative re-
sults of test images with two foregrounds in Supplementary.
The experiments on real composite images will be described
in Supplementary due to space limitation.
Implementation After a few trials, we set λS = λI = 10,
λP = 1, and λGD = 0.1 by observing the generated im-
ages during training. We use Pytorch 1.3.0 to implement our
model, which is distributed on RTX 2080 Ti GPU. All im-
ages in our used datasets are resized to 256×256 for training
and testing. We use adam optimizer with the learning rate
initialized as 0.0002 and β set to (0.5, 0.99). The batch size
is 1 and our model is trained for 50 epochs.
Baselines Following (Liu et al. 2020), we select
Pix2Pix (Isola et al. 2017), Pix2Pix-Res, Shadow-
GAN (Zhang, Liang, and Wang 2019), ARShadow-
GAN (Liu et al. 2020), and Mask-ShadowGAN (Hu et al.
2019) as baselines. Pix2Pix (Isola et al. 2017) is a popular
image-to-image translation method, which takes composite
image as input and outputs target image. Pix2Pix-Res
has the same architecture as Pix2Pix except producing
a residual image, which is added to the input image to
generate the target image. ShadowGAN (Zhang, Liang, and
Wang 2019) and ARShadowGAN (Liu et al. 2020) are two
closely related methods, which can be directly applied to
our task. Mask-ShadowGAN (Hu et al. 2019) originally
performs both mask-free shadow removal and mask-guided
shadow generation. We adapt it to our task by exchanging
two generators to perform mask-guided shadow removal
and mask-free shadow generation, in which the mask-free
shadow generator can be used in our task.
Evaluation Metrics Following (Liu et al. 2020), we adopt
Root Mean Square Error (RMSE) and Structural SIMilar-
ity index (SSIM). RMSE and SSIM are calculated based on
the ground-truth target image and the generated target im-
age. Global RMSE (GRMSE) and Global SSIM (GSSIM)
are calculated over the whole image, while Local RMSE
(LRMSE) and Local SSIM (LSSIM) are calculated over the
ground-truth foreground shadow area.

5.2 Evaluation on Our DESOBA Dataset
On DESOBA dataset, BOS test set and BOS-free test set
are evaluated separately and the comparison results are
summarized in Table 1. We can observe that our SGR-
Net achieves the lowest GRMSE, LRMSE and the highest
GSSIM, LSSIM, which demonstrates that our method could

Method GRMSE ↓ LRMSE ↓ GSSIM ↑ LSSIM↑
w/o EBS 5.549 68.876 0.985 0.651
w/o CAI 5.106 68.031 0.986 0.653
w/o Mbos 4.931 63.141 0.986 0.672
w/o Fill 5.328 67.789 0.941 0.598
w/o LP 4.929 65.054 0.986 0.669
Naive D 5.059 65.238 0.987 0.671
w/o LGD 5.453 67.056 0.986 0.667
Ours 4.754 61.763 0.988 0.684

Table 2: Ablation studies of loss terms and alternative net-
work designs on BOS test images from DESOBA dataset.

generate more realistic and compatible shadows for fore-
ground objects compared with baselines. The difference be-
tween the results on BOS test set and BOS-free test set is
partially caused by the size of foreground shadow, because
BOS-free test images usually have larger foreground shad-
ows than BOS test images as shown in Figure 2. We will
provide more in-depth comparison by controlling the fore-
ground shadow size in Supplementary.

For qualitative comparison, we show some example im-
ages generated by our SGRNet and other baselines on BOS
and BOS-free test images in Figure 5. We can see that
our SGRNet can generally generate foreground shadows
with reasonable shapes and shadow directions compatible
with the object-shadow pairs in background. In contrast,
other baselines produce foreground shadows with implausi-
ble shapes, or even fail to produce any shadow. Our method
can also generate reasonable shadows for BOS-free test im-
ages, because the background in BOS-free images could also
provide a set of illumination cues (e.g., shading, sky ap-
pearance variation) (Lalonde, Efros, and Narasimhan 2012;
Zhang et al. 2019b) as discussed in Section 3. More visual-
ization results including the intermediate results (e.g., gen-
erated foreground shadow mask, generated darkened image)
can be found in Supplementary.

5.3 Ablation Studies
We analyze the impact of loss terms and alternative network
designs of our SGRNet on BOS test images from DESOBA
dataset. Quantitative results are reported in Table 2.
Shadow mask prediction stage: To investigate the neces-
sity of background encoder, we remove the background en-

919



Figure 5: Visualization comparison on our DESOBA dataset. From left to right are input composite image (a), foreground object
mask (b), results of Pix2Pix (c), Pix2Pix-Res (d), ShadowGAN (e), Mask-ShadowGAN (f), ARShadowGAN (g), our SGRNet
(h), ground-truth (i). The results on BOS (resp., BOS-free) test images are shown in row 1-2 (resp., 3-4).

coder EBS , which is referred to as “w/o EBS” in Table 2.
To verify the effectiveness of Cross-Attention Integration
(CAI) layer, we remove CAI layer and directly concate-
nate [Xf ,Xb], which is referred to as “w/o CAI”. The per-
formance of “w/o CAI” is better than “w/o EBS”, which
shows the advantage of extracting foreground and back-
ground information separately. The performance of “w/o
CAI” is worse than our full method, which shows the bene-
fit of encouraging thorough information interaction between
foreground and background. To study the importance of
background object-shadow mask, we set the value of Mbos

as zero, which is referred to as “w/o Mbos”. The perfor-
mance is better than “w/o EBS” and “w/o CAI”, which
can be explained as follows. CAI layer can help foreground
encoder exploit illumination information from background,
even without explicit background object-shadow mask. The
comparison between “w/o Mbos” and full method proves
that background object-shadow mask can indeed provide
useful shadow cues as guidance.
Shadow filling stage: To corroborate the superiority of im-
age composition system in Section 4, we replace our EP

and {EM , DM} with a U-Net (Ronneberger, Fischer, and
Brox 2015) model which takes M̃fs and Ic as input to gen-
erate the final target image directly, which is referred to as
“w/o Fill” in Table 2. The result is worse than full method,
which demonstrates the advantage of composition system.
We also remove the supervision for shadow parameters by
setting LP = 0, which is referred to as “w/o LP ”. We find
that the performance is better than “w/o Fill” but worse than
full method, which demonstrates the necessity of supervi-
sion from ground-truth shadow parameters.
Adversarial learning: We remove conditional information
{Mfo,Mfs} (resp., {Mfo,M̃fs}), and only feed Ig (resp.,
Ĩg) into the discriminatorD, which is named as “Naive D” in

Table 2. It can be seen that conditional discriminator can en-
hance the quality of generated images. To further investigate
the effect of adversarial learning, we remove the adversarial
loss LGD from Eqn. 15 and report the result as “w/o LGD”.
The result is worse than “Naive D”, which indicates that
adversarial learning can help generate more realistic fore-
ground shadows.

We visualize some examples produced by different ab-
lated methods and conduct ablation studies on BOS-free test
images in Supplementary.

5.4 Evaluation on Real Composite Images

To obtain real composite images, we select test images from
DESOBA as background images, and paste foreground ob-
jects also from test images at reasonable locations on the
background images. In this way, we create 100 real compos-
ite images without foreground shadows for evaluation. Be-
cause real composite images do not have ground-truth target
images, it is impossible to perform quantitative evaluation.
Therefore, we conduct user study on the 100 composite im-
ages for subjective evaluation. The visualization results and
user study are left to Supplementary.

6 Conclusion

In this work, we have contributed a real-world shadow gen-
eration dataset DESOBA. We have also proposed SGR-
Net, a novel shadow generation method, which can predict
shadow mask by inferring illumination information from
background and estimate shadow parameters based on illu-
mination model. The promising results on our constructed
dataset and real composite images have demonstrated the ef-
fectiveness of our method.
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