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Abstract

The development of detection methods for oriented object de-
tection remains a challenging task. A considerable obstacle
is the wide variation in the shape (e.g., aspect ratio) of ob-
jects. Sample selection in general object detection has been
widely studied as it plays a crucial role in the performance of
the detection method and has achieved great progress. How-
ever, existing sample selection strategies still overlook some
issues: (1) most of them ignore the object shape information;
(2) they do not make a potential distinction between selected
positive samples; and (3) some of them can only be applied
to either anchor-free or anchor-based methods and cannot
be used for both of them simultaneously. In this paper, we
propose novel flexible shape-adaptive selection (SA-S) and
shape-adaptive measurement (SA-M) strategies for oriented
object detection, which comprise an SA-S strategy for sam-
ple selection and SA-M strategy for the quality estimation of
positive samples. Specifically, the SA-S strategy dynamically
selects samples according to the shape information and char-
acteristics distribution of objects. The SA-M strategy mea-
sures the localization potential and adds quality information
on the selected positive samples. The experimental results on
both anchor-free and anchor-based baselines and four pub-
licly available oriented datasets (DOTA, HRSC2016, UCAS-
AOD, and ICDAR2015) demonstrate the effectiveness of the
proposed method.

Introduction
The detection of arbitrarily oriented objects is a fundamen-
tal yet challenging task in computer vision, and can be ap-
plied in a wide range of scenarios, such as remote sens-
ing (RS) images and text scenes. Because using horizontal
bounding boxes (HBBs) cannot accurately calibrate the po-
sition of arbitrary-oriented objects and can also easily be af-
fected by non-maximum suppression (NMS), using oriented
bounding boxes (OBBs) has become a popular positioning
approach and has made significant progress. Existing ori-
ented object methods based on a deep convolutional neural
network (CNN) mostly focus on the problems of the huge
scale variations of objects and complex backgrounds but pay
little attention to the large aspect ratio variations of objects.
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Figure 1: Different strategies for the selection and measure-
ment of positive samples. Circles represent the positive sam-
ples. (a) K-Nearest uses a static center distribution for sam-
pling. (b) MaxIoU uses a fixed IoU threshold for sampling.
(c) ATSS assigns a dynamic IoU threshold for an object. (d)
The SA-S strategy uses a dynamic IoU threshold, and then
the SA-M strategy adds quality information for selected pos-
itive samples, which is indicated by different colors.

As reported in ATSS (Zhang et al. 2020), the selection
of positive and negative samples plays a critical role in de-
tection performance, and is also the essential difference be-
tween anchor-based and anchor-free methods. Existing sam-
ple selection strategies are mainly divided into fixed and
dynamic strategies. Although the simplicity and intuitive-
ness of fixed label assignment strategies make them a pop-
ular choice, they ignore the actual shape and content of the
intersecting region of objects, particularly for oriented ob-
ject detection. As shown in Fig. 1 (a) and (b), anchor-based
methods (e.g., RetinaNet (Lin et al. 2017b)) use the max
intersection over union (IoU) value (MaxIoU, for simplic-
ity) between proposals and objects, and anchor-free method
(e.g., FCOS (Tian et al. 2020)) uses k-nearest distance (K-
Nearest for simplicity) between a point and the object’s cen-
ter for sample selection. The developers of ATSS proposed
a sample selection strategy using dynamic IoU thresholds,
which is shown in Fig. 1 (c). In other recent works, re-
searchers have proposed dynamic sample selection or an-
chor learning strategies (Yang et al. 2018a; Kim and Lee
2020; Zhang et al. 2020). Although these strategies are more
efficient than fixed assignment strategies, they have the fol-
lowing problems: (1) the oriented object shape information
(e.g., large aspect ratio) is overlooked; (2) selected positive
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samples are processed in a uniform manner without consid-
ering their quality; and (3) there are limited applications to
insertable architectures, for example, some dynamic anchor
learning or selection strategies cannot be used for anchor-
free architectures. Therefore, to avoid the aforementioned
problems and further optimize the entire process, two shape-
adaptive strategies for arbitrary-oriented object detection are
proposed in this study for dynamically selecting samples and
evaluating the quality of positive samples.

Specifically, for the purpose of adaptively selecting sam-
ples, the shape-adaptive selection (SA-S) strategy is pro-
posed, which uses the object shape information effectively,
and the object shape information is focused on the aspect ra-
tio, which is calculated as the ratio of the long edge to the
short edge in this study. The proposed SA-S strategy is de-
signed to calculate optimal IoU thresholds for the objects
with different shapes, so it is suitable for both anchor-based
and anchor-free methods which adopt IoU threshold to as-
sign labels.

Furthermore, considering that the selected positive sam-
ples have different qualities and potentials, a shape-adaptive
measurement (SA-M) strategy is designed to add quality in-
formation to them. The SA-M strategy measures the positive
sample’s quality using a new concept, that is, the normalized
shape distance, which combines the center and shape of the
object to calculate the distance of the sample point relative
to the object. Additionally, a boundary-center loss function
is elaborated based on an anchor-free architecture for key-
point learning. The main contributions of this study are as
follows.

1. A novel dynamic SA-S strategy is proposed, which se-
lects positive samples according to the shape and charac-
teristics distribution of objects.

2. A new SA-M strategy is proposed, which evaluates the
quality of the selected positive samples. Additionally,
the new concept of the normalized shape distance is de-
signed, which eliminates the effect of the object shape on
the estimation of relative object distances.

3. Sufficient experiments were conducted to prove that the
proposed dynamic sample selection and measurement
strategies can be embedded into both anchor-free and
anchor-based methods to achieve significant improve-
ments in detection performance.

The experimental results demonstrated that the proposed
method was superior to other state-of-the-art methods on the
benchmark datasets DOTA (Xia et al. 2018), UCAS-AOD
(Zhu et al. 2015), HRSC2016 dataset (Liu et al. 2017), and
ICDAR2015 (Karatzas et al. 2015).

Related Work
Oriented Object Detection
Representation of object in object detection has been dom-
inated by HBBs for several years, whose cornerstone is the
horizontal anchor (Ren et al. 2015; Lin et al. 2017b). With
the growing demand for the detection of objects with arbi-
trary orientation, such as text and targets in remote sens-
ing scenes, oriented object detection methods (Yang et al.

2018b, 2021c,d) have attracted much attention. There are
five types of detection methods for oriented object detec-
tion: (1) generating oriented region proposals directly (Az-
imi et al. 2018; Ding et al. 2019); (2) regressing the an-
gle parameters based on horizontal region proposals (Yang
et al. 2019a; Zhang, Lu, and Zhang 2019; Yang et al. 2020b);
(3) using the mask prediction of the mask branch to locate
the object area (Li et al. 2020); (4) regressing the angle pa-
rameters (Yang et al. 2021b; Han et al. 2021); and (5) pre-
dicting angles using a classification method (Yang and Yan
2020; Yang et al. 2021a; Yang, Yan, and He 2020). Although
the anchor-based methods mentioned above have obtained
promising detection results, some limitations remain, such
as too many hyperparameters, overlapping calculations, and
complex post-processing.

To overcome the shortcomings of anchor-based meth-
ods, anchor-free methods have become a new research focus
in recent years. Horizontal object representations based on
anchor-free methods can be summarized as keypoint-based
methods (Zhou, Zhuo, and Krahenbuhl 2019; Duan et al.
2019), pixel-based methods (Tian et al. 2020), and point set-
based methods (Yang et al. 2019b). Many excellent studies
have emerged recently that explore the effective represen-
tation using anchor-free methods for oriented object detec-
tion. O2-Det (Wei et al. 2020) detects a pair of correspond-
ing middle lines. PolarDet (Zhao et al. 2021), and P-RSDet
(Zhou et al. 2020) represent the oriented objects using the
polar method in the polar coordinate system.

Sample Selection for Object Detection
Classical anchor-based detectors, for example, RetinaNet
(Lin et al. 2017b), select positive and negative samples based
on the fixed MaxIoU matching strategy, which adopts the
IoU value (anchor with ground-truth box) as a matching
metric. Many excellent dynamic sample selection strate-
gies have been proposed recently. MetaAnchor (Yang et al.
2018a) is a type of anchor function that generates adaptive
anchors from arbitrary customized prior boxes. DAL (Ming
et al. 2021b) dynamically assigns anchors according to a de-
fined matching degree, which can comprehensively evaluate
the localization potential of the anchors. FreeAnchor (Zhang
et al. 2021) is a learning-to-match approach that allows ob-
jects to dynamically select anchors under the maximum like-
lihood principle. PAA (Kim and Lee 2020) is a novel anchor
assignment strategy that adaptively separates anchors into
positive samples and negative samples for a ground-truth
bounding box in a probabilistic manner.

Although these adaptive strategies achieve dynamic sam-
ple selection, most of them ignore object shape information
and the differentiation between the selected positive and can
only be applied to either the anchor-free or anchor-based
methods.

The Proposed Method
The oriented anchor-free method RepPoints is used as a
baseline example to introduce the proposed method, and the
pipeline is illustrated in Fig. 2. RepPoints is constructed with
a backbone network, initial detection head, and refinement
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Figure 2: Pipeline of the proposed method. The SA-S strategy dynamically selects samples based on the shape of the object for
the refinement detection head, and then SA-M strategy measures the quality of positive samples in the initial detection head
and refinement detection head. Boxes represent the predicted point sets for a clear visualization, where solid boxes and dashed
boxes represent positive and negative samples, respectively. µ and σ denote the mean and standard deviation of the IoU values
between the proposal predictions and the ground-truth box. γ is the aspect ratio of the object.

PL RA BC SP SV TC LV HA

TIoU

AP γm

1.0 1.0 1.12 1.22 1.72 1.89 3.45 3.92

0.5, 0.4 87.78 71.26 72.36 68.85 75.35 89.60 55.72 48.38
0.4, 0.3 87.48 67.68 82.54 70.36 78.12 90.78 58.72 60.93
0.3, 0.2 80.81 67.16 76.88 69.01 78.47 90.84 58.69 60.25
0.1, 0.1 79.07 66.82 77.95 65.66 63.12 90.07 59.64 67.58

Table 1: Pilot experiments for the relationship between pre-
defined IoU threshold and the aspect ratio of the object on
DOTA.

detection head. The initial detection head generates coarse
point sets, which are converted into convex hulls using the
Jarvis March (Jarvis 1973) algorithm and further refined in
the refinement detection head inspired by (Guo et al. 2021).
The proposed SA-S strategy is adopted in the refinement de-
tection head to dynamically select positive samples. The SA-
M strategy is used in both heads to evaluate the quality of the
selected positive samples. A boundary-center loss function
is designed for the anchor-free pipeline.

The Motivation
First, the motivation for conducting pilot experiments to
show the relationship between a reasonable IoU threshold
and the aspect ratio of the object is presented, and exper-
imental results are listed in Table 1. TIoU represents the
predefined IoU threshold containing positive and negative

thresholds, γm represents the mean aspect ratio of all ob-
jects in one category, and AP is the average precision. It can
be seen in Table 1 that while the aspect ratio of the object
is larger, the performance is better with a low IoU threshold.
This may be because the IoU value has different sensitivities
to localization errors under different shapes.

Therefore, because the traditional IoU-based sample se-
lection strategy uses the same predefined IoU threshold for
all objects, mining high-quality samples for multi-class ob-
ject detection is ineffective, particularly when a wide variety
of object shapes exists. Motivated by the above experimental
results and analysis, two shape-adaptive strategies are pro-
posed, SA-S and SA-M, for dynamically selecting and mea-
suring the samples, respectively.

Shape-Adaptive Selection
The IoU-based selection strategy is used in the refinement
detection head of RepPoints. However, the IoU-based strat-
egy ignores the object shape and processes all objects using
the same fixed rule, which may be applicable to most ob-
jects, but some objects with special shapes are ignored.

To optimize the selection process, an SA-S strategy is pro-
posed that adaptively adjusts the IoU threshold according to
the shape and characteristics distribution of objects to select
samples. Inspired by the ATSS (Zhang et al. 2020), the mean
and standard deviation of objects are adopted to dynamically
calculate the IoU threshold. For the i-th ground-truth box,
the IoU threshold T IoU

i for selecting samples is calculated
as:

T IoU
i = f(γi) ∗ (µ+ σ) , (1)
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where

µ =
1

J

J∑
j=1

Ii,j , σ =

√√√√ 1

J

J∑
j=1

(Ii,j − µ)2,

J is the number of candidate samples, and Ii,j is the IoU
value between the i-th ground-truth box and the j-th pre-
diction. γi represents the aspect ratio of the ground-truth
box corresponding to the prediction and is calculated as the
ratio of the long edge to the short edge. According to the
above analysis, the weight should decrease as the aspect ra-
tio increases so that elongated objects are assigned a low IoU
threshold. A monotonic decreasing function is designed for
the weighting factor that depends on the object’s aspect ra-
tio. f(γi) is the weighting factor function of the object and
is calculated as:

f(γi) = e−
γi
ω , (2)

where ω is a weighted parameter that defaults empirically
to 4. A larger ω usually achieves better performance when
a dataset contains a large number of elongated objects. Pos-
itive samples are selected using a general assignment strat-
egy, which selects candidates whose IoUs are greater than or
equal to the threshold T IoU

i .

Shape-Adaptive Measurement
Compared with the points located inside the object, the
points located near the boundaries of the object contain more
information about the clutter background, and even nearby
objects. Therefore, the points located inside the object, par-
ticularly the points located around the center of the ob-
ject, are more representative of the object’s features than the
points located close to the boundaries of the object. Process-
ing all positive samples in the same manner would lead to
the misjudgment of some high-quality samples. Points in-
side the object that are far from the center of the object
are likely to be suppressed by background points that are
closer to the center of the object. The above analysis leads
to the conclusion that the detection potential of each point is
strongly related to the shape of the object and not only the
distance of each point from the the object center.

To optimize this process, an SA-M strategy is proposed to
evaluate and add quality information to each positive sam-
ple. The quality of a positive sample is estimated using its
position relative to the object, which is called the normal-
ized shape distance in this study. A function is elaborated to
calculate the normalized shape distance using the distance
from the sample to the corresponding object’s center and the
shape information of the object. Specifically, each ground-
truth box is described as five parameters (x, y, w, h, θ),
where (x, y), w, and h denote the center coordinates, width,
and height of the ground-truth box, respectively, and θ repre-
sents the angle of box following (Han et al. 2021). The nor-
malized selection of (w, h) on the x or y-axis is determined
by the angle. The normalized shape distance ∆dij from the
j-th sample point to the i-th object’s center is calculated as:

∆dij =


√

(xi−xj)2

wi
+

(yi−yj)2

hi
if 0 ≤ θi ≤ π/2√

(xi−xj)2

hi
+

(yi−yj)2

wi
otherwise

.

(3)

Then, the quality Q̄ij of the positive sample is calculated
after obtaining the normalized shape distance:

Q̄ij = e−∆dij . (4)

For the selected positive samples, a distinction is established
in terms of quality and the influence of inappropriate process
for selecting positive samples is eliminated.

Loss Functions
Boundary-Center Loss An isolated point with a large de-
viation greatly affects the quality of the convex hull (calcu-
lated from predicted point set) and has a negative influence
on precise localization. To address this problem, a boundary-
center loss is proposed in this study. The left-most, right-
most, top-most and bottom-most point are selected from the
point set, and a mean center point is calculated by the aver-
age x and y coordinates of all the points in the point set. The
five points’ coordinates of prediction and ground-truth box
are represented by pi and gi, where i = (1, 2, ..., 5), is the
index of the selected five points. The boundary-center loss
Lbc is used to constrain the boundary and center points, and
defined as:

Lbc =
5∑

i=1

Lsmooth(pi, gi), (5)

where Lsmooth is the smooth L1, which is defined as

smoothl1(t) =
{
0.5t2 if |t| < 1

|t| − 0.5 otherwise
. (6)

The smooth L1 distance of the five points from the predicted
point set and ground-truth bounding box is calculated using
smoothl1(||pi − gi||), which is defined in (6), and ||pi − gi||
is the L2 distance between the two i-th points.

Total Loss The total loss is calculated as:

L = λ1Lc + λ2L1 + λ3L2, (7)

where Lc, L1, and L2 represent the classification loss, initial
detection head loss, and refinement detection head loss, re-
spectively. λ1, λ2, and λ3 are weighting coefficients, which
are empirically set to 1.0, 0.375, and 1.0, respectively. For
the i-th object, the classification loss is denoted as:

Lc
i =

1

N+

1∑
pj∈P+ Q̄ij

∑
ij

Q̄ijLcls
ij , (8)

where j, N+, and P+ respectively represent the index, total
number, and the set of the predicted convex hulls, respec-
tively. The classification loss Lcls adopts the focal loss (Lin
et al. 2017b). Q̄ij is the quality measurement, and the scale-
adaptive weight is assigned to each positive sample on the
basis of Q̄ij . pj represents the predicted convex hull that is
calculated using the predicted point sets.

In the initial detection head, the regression loss is defined
as:

L1
i =

1

N+

1∑
pj∈P+ Q̄ij

∑
ij

Q̄ijLreg
ij + Lbc

ij , (9)
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The regression loss for the convex hull Lreg adopts the
GIoU loss (Rezatofighi et al. 2019) and is calculated as:

Lreg = 1− GIoU. (10)

GIoU is an improved version of the IoU that takes the non-
overlapping regions that IoU overlooks into consideration to
reflect the overlap degree of the predicted box P and ground-
truth box G, and is defined as:

GIoU = IoU − area(C\(P ∪G))

area(C)
, (11)

where C is the smallest box enclosing P and G.
In the refinement detection head, the regression loss for

the convex hull is defined as:

L2
i =

1

N+

1∑
pj∈P+ Q̄′

ij

∑
ij

Q̄′
ijLreg

ij (12)

where Q̄′
ij is the quality measurement for each positive

sample in the refinement detection head. Regression loss
Lreg also adopts GIoU loss.

Experiments and Discussions
The results of experiments conducted on four typical pub-
licly available datasets containing oriented objects, that is,
DOTA (Xia et al. 2018), HRSC2016 (Liu et al. 2017),
UCAS-AOD (Zhu et al. 2015), and ICDAR2015 (Karatzas
et al. 2015) are summarized to evaluate the effectiveness of
the proposed method. The details of the datasets, method im-
plementations, evaluation metrics, and experimental results
are presented in the following subsections.

Datasets
DOTA (Xia et al. 2018) is a public, large aerial image dataset
for oriented object detection that contains 15 categories, and
objects in a wide variety of scales, orientations, and shapes:
plane (PL), baseball diamond (BD), bridge (BR), ground
track field (GTF), small vehicle (SV), large vehicle (LV),
ship (SH), tennis court (TC), basketball court (BC), storage
tank (ST), soccer ball field (SBF), roundabout (RA), har-
bor (HA), swimming pool (SP), and helicopter (HC). DOTA
contains 2,806 aerial images and 188,282 instances. The size
of each image is in the range of 288 to 8,115 pixels in width,
and 211 to 13,383 pixels in height. This dataset contains
three subsets, which are the training set (1/2), validation set
(1/6), and testing set (1/3), and the ground truth of the test
set is not publicly accessible. All images in the training and
validation sets were split into blocks of 1024×1024 pixels,
with an overlap of 200 pixels for the training dataset.

HRSC2016 (Liu et al. 2017) contains 436 images for
training, 181 images for validation, and 444 images for test-
ing. The image size ranges from 300×300 to 1,500×900
pixels. The dataset contains ships with arbitrary aspect ra-
tios and orientations. All images were resized to 800×512
for training and testing.

UCAS-AOD (Zhu et al. 2015) is an aerial image dataset
for oriented car and airplane detection that contains 1,510

images with approximately 659×1280 pixels and 14,596 in-
stances. For the experiments in this study, the dataset con-
tained 1,057 randomly selected images for training and 302
images for testing.

ICDAR2015 (Karatzas et al. 2015) is a challenging
dataset for scene text detection and recognition that contains
1,000 images for training and 500 images for testing and is
used for the detection of arbitrarily oriented text.

Implementation Details
The baselines were an anchor-free method RepPoints (Yang
et al. 2019b) and an anchor-based method S2A-Net (Han
et al. 2021) for oriented object detection. They both con-
sisted of a backbone for feature extraction and two detec-
tion heads for predicted results refinement. FPN (Lin et al.
2017a) with ResNet50 (He et al. 2016) was used as the
backbone to extract features, unless special notes were pro-
vided. The framework was trained using the SGD optimizer,
where the initial learning rate, momentum, and weight de-
cay were 0.01, 0.9, and 0.0001, respectively. The framework
was trained respectively for 12, 36, 120, and 240 epochs
on the DOTA, HRSC2016, UCAS-AOD, and ICDAR2015
datasets, respectively. The numbers of the points in a point
set in RepPoints and the anchors at each position in S2A-Net
were set to 9 and 1, respectively. The weighted parameter
ω in (2) was empirically set as 4 on DOTA, UCAS-AOD,
and ICDAR2015. Considering that the HRSC2016 dataset
contains a large number of elongated ships, ω was set as 14
on it. Additionally, all experiments were performed using
MMDetection-1.1 (Chen et al. 2019) and PyTorch-1.3/1.2
on 2 Titan V GPUs with 11G memory and 4 Tesla V GPUs
with 32G memory, while the operating system is Ubuntu
16.04. Experiments were performed more than twice and
stable values were taken as final results. Data augmentation
consisted of random flipping and random rotation. The ex-
perimental results for the baseline and “ours” shown in Table
5, 7, and 8 used multi-scale training and data augmentation
for a fair comparison with other methods.

Ablation Study
To analyze the effectiveness of the proposed method when
other conditions were fixed, a series of controlled variable
comparison experiments were performed. The impact of the
individual structure proposed in this paper was studied on
DOTA and HRSC2016, and the results are shown in Table
2. The results demonstrate that each of the proposed struc-
tures achieved different degrees of improvement for detec-
tion performance on all datasets.

Effect of Shape-Adaptive Selection. Table 3 shows
the improvements of 7.65%, 12.28%, and 15.66% were
achieved for the classic large aspect ratio categories, BR,
HA, and HC, respectively, which demonstrates that the dy-
namic SA-S strategy was effective for objects with large as-
pect ratios. The mAP significantly increased by 3.64% when
the SA-S strategy was used, which confirms the effective-
ness of the SA-S strategy.

Also, the shape-adaptive idea can be applied to other sam-
ple selection strategies to further improve detection per-
formance. As Table 4 shows, “MaxIoU-SA (ours)” repre-
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Dataset BCL SA-S SA-M mAP(%) I SI

DOTA

× × × 70.25√
× × 70.96 +0.71 +0.71√ √

× 74.60 +3.64 +4.35√ √ √
74.92 +0.32 +4.67

HRSC2016

× × × 75.11√
× × 77.38 +2.27 +2.27√ √

× 87.01 +9.63 +11.90√ √ √
88.60 +1.59 +13.49

Table 2: Ablation study results for each structure based on
RepPoints on the DOTA and HRSC2016 datasets. “BCL”
denotes the boundary-center loss, and “I” and “SI” indicate
the individual improvement and the total improvement in
mAP values for this structure compared with the baseline,
respectively.

Sample Selection BR HA HC mAP(%)
MaxIoU 45.07 60.93 44.41 70.96

ATSS (Zhang et al. 2020) 50.51 63.68 51.21 72.10
SA-S (ours) 52.72 73.21 60.07 74.60

Table 3: Results of the SA-S strategy for objects with large
aspect ratios based on RepPoints on DOTA.

sents the strategy that adopted the shape-adaptive idea in
the MaxIoU-based strategy. In particular, the IoU thresh-
old for an object was dynamically adjusted as follows:
e(−

γ
14 ) ∗ IoUthreshold, where γ and IoUthreshold denote the as-

pect ratio of the object and the predefined IoU threshold,
respectively. Experiments were performed on HRSC2016,
which contained a large number of various slender ships, to
convincingly prove the effectiveness of the SA-S strategy.

Effect of Shape-Adaptive Measurement. As the results
listed in the rows 5 and 10 of Table 2 show, the mAP perfor-
mance is further improved to 74.92% and 88.60% on DOTA
and HRSC2016 after the SA-M strategy was applied, respec-
tively, which verifies the effectiveness of the shape-scale at-
tention strategy.

The results in Table 4 show that the proposed SA-S and
SA-M strategies improved the detection performance of
both anchor-free and anchor-based detectors, which proves
the excellent generalizability of these proposed strategies.
Rows 3 and 7 in Table 4 demonstrate that the dynamic shape-

Based Method Sample Selection mAP(%)
MaxIoU 75.11

RepPoints MaxIoU-SA (ours) 82.96
(anchor-free) ATSS (Zhang et al. 2020) 78.07

SA-S & SA-M (ours) 88.60 (+13.49)
MaxIoU 80.26

S2A-Net-D MaxIoU-SA (ours) 84.54
(anchor-based) ATSS (Zhang et al. 2020) 88.68

SA-S & SA-M (ours) 88.91 (+8.65)

Table 4: Performance of the SA-S and SA-M strategies on
anchor-free and anchor-based methods on HRSC2016.

Method Backbone mAP
RRD (Liao et al. 2018) VGG16 84.30

RoI-Transformer (Ding et al. 2019) R-101 86.20
RSDet (Qian et al. 2021) R-50 86.50

Gliding Vertex (Xu et al. 2020) R-101 88.20
BBAVec (Yi et al. 2021) R-101 88.6

R3Det (Yang et al. 2021b) R-101 89.26
CSL (FPN) (Yang and Yan 2020) R-101 89.62

DAL (Ming et al. 2021b) R-101 89.77
anchor-free:

RepPoints (baseline) R-101 85.16
Ours (RepPoints-based) R-101 90.00

anchor-based:
S2A-Net (baseline) R-101 90.17

Ours (S2A-Net-based) R-101 90.27

Table 5: Comparison of the mAP values of different rotation
methods on HRSC2016.

adaptive idea could also be adopted in other fixed sample
selection strategies, and further improved mAP. S2A-Net-D
denotes one of the baseline structures of S2A-Net, which
uses deformable convolution to replace the alignment con-
volution layer and was described in (Han et al. 2021) in de-
tail. The results demonstrated that the proposed strategies
boosted mAP on the anchor-free baseline RepPoints and
anchor-based baseline S2A-Net-D by 13.49% and 8.65%,
respectively.

Effect of Boundary-Center Loss. According to the re-
sults in rows 6 and 7 in Table 2, an mAP improvement
of 2.27% was obtained after the boundary-center loss was
added. The boundary-center loss suppressed low-quality
predicted convex hulls by constraining the boundary corner
and mean center points to optimize the detection results un-
der the guidance of spatial information.

Comparisons with State-of-the-art Detectors
Results on HRSC2016. The ship objects in HRSC2016 had
large aspect ratios. Experiments performed on HRSC2016
verified the superiority of the proposed shape-adaptive
method. As shown in Table 5, the object detection perfor-
mance of the proposed method was superior to that of the
other methods, and achieved 90.27% mAP based on S2A-
Net.

Results on DOTA. As shown in Table 6, the anchor-based
methods remained the most popular and high-performing
detectors on the DOTA dataset. The proposed method based
on RepPoints achieved 74.92% mAP with the R-50-FPN
(i.e., ResNet50-FPN) backbone without any tricks (e.g., data
augmentation). The proposed method based on S2A-Net
with the RX-101-FPN backbone achieved the best perfor-
mance with respect to the mAP values compared with all
the one-stage and two-stage methods. The proposed method
achieved comparable performance with other methods with
fewer calculations and less inference time. Notably, because
of the different backbones (e.g., R-50/101/152 (He et al.
2016), RX-101 (Xie et al. 2017), and H-104 (Newell, Yang,
and Deng 2016)), different input image configurations, and
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Method BB PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP(%)
two-stage:

GSDet R-101 81.12 76.78 40.78 75.89 64.50 58.37 74.21 89.92 79.40 78.83 64.54 63.67 66.04 58.01 52.13 68.28
RADet* RX-101 79.45 76.99 48.05 65.83 65.45 74.40 68.86 89.70 78.14 74.97 49.92 64.63 66.14 71.58 62.16 69.06
RoI-T* R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CAD R-101 87.8 82.4 49.4 73.5 71.1 63.5 76.7 90.9 79.2 73.3 48.4 60.9 62.0 67.0 62.2 69.9

SCRDet* R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
SARD R-101 89.93 84.11 54.19 72.04 68.41 61.18 66.00 90.82 87.79 86.59 65.65 64.04 66.68 68.84 68.03 72.95
FADet* R-101 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.64 53.40 65.42 74.17 69.69 64.86 73.28

MFIAR* R-152 89.62 84.03 52.41 70.30 70.13 67.64 77.81 90.85 85.40 86.22 63.21 64.14 68.31 70.21 62.11 73.49
GV R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

CSL-F* R-152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
one-stage:
P-RSDet R-101 89.02 73.65 47.33 72.03 70.58 73.71 72.76 90.82 80.12 81.32 59.45 57.87 60.79 65.21 52.59 69.82
O2-Det H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04

BBAVec* R-101 88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 73.32
DRN* H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
R3Det* R-152 89.24 80.81 51.11 65.62 70.67 76.03 78.32 90.83 84.89 84.42 65.10 57.18 68.10 68.98 60.88 72.81

PolarDet* R-101 89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.64
DAL* R-50 89.69 83.11 55.03 71.00 78.30 81.90 88.46 90.89 84.97 87.46 64.41 65.65 76.86 72.09 64.35 76.95

Ours-RP R-50 86.42 78.97 52.47 69.84 77.30 75.99 86.72 90.89 82.63 85.66 60.13 68.25 73.98 72.22 62.37 74.92
Ours-RP* RX-101 88.41 83.32 54.00 74.34 80.87 84.10 88.04 90.74 82.85 86.26 63.96 66.78 78.40 73.84 61.97 77.19
Ours-S* RX-101 89.54 85.94 57.73 78.41 79.78 84.19 89.25 90.87 85.80 87.27 63.82 67.81 78.67 79.35 69.37 79.17

Table 6: Comparison of different detectors of mAP values on the OBB-based task of the DOTA-v1.0. “*” indicates that multi-
scale training/testing was used in the method. “BB” represents “Backbone”. Values with underlines indicate that the best mAP
values are achieved compared to all methods. “Ours-RP” means the implementation of our method based on RepPoints,
and “Ours-S” means the implementation of our method based on S2A-Net. The references of the methods involved in the
comparison are listed below: GSDet (Li, Wei, and Zhang 2021), RADet (Li et al. 2020), RoI-T (i.e. RoI-Transformer) (Ding
et al. 2019), CAD (Zhang, Lu, and Zhang 2019), SCRDet (Yang et al. 2019a), SARD (Wang et al. 2019), FADet (Li et al.
2019), MFIAR(Yang et al. 2020a), GV (i.e. Gliding Vertex) (Xu et al. 2020), CSL-F (i.e. CSL FPN-based) (Yang and Yan
2020), P-RSDet (Zhou et al. 2020), O2-Det (Wei et al. 2020), BBAVec (Yi et al. 2021), DRN (Pan et al. 2020), R3Det (Yang
et al. 2021b), PolarDet (Zhao et al. 2021), and DAL (Ming et al. 2021b).

different tricks used in each method, these results are only
for reference.

Results on UCAS-AOD. To further verify the effective-
ness of the proposed shape-adaptive strategies, a series of
experiments were conducted on the UCAS-AOD dataset and
the results are listed in Table 7. Our method based on Rep-
Points achieved the best AP values, 89.96 % and 90.78%,
on both categories and performed better than all the state-of-
the-art methods under both AP50 and AP75, using the VOC
2007 metric proposed in (Everingham et al. 2010), where
IoU thresholds for the evaluation and test were set to 0.50
and 0.75, respectively, thereby proving the superiority of the
performance of the proposed method.

Results on ICDAR2015. Considering that ICDAR2015
contained many text boxes with a large aspect ratio, a series
of experiments was also conducted on ICDAR2015, and the
results are listed in Table 8. The Precision, Recall, and F-
measure were the evaluation metrics following official cri-
teria. Precision and Recall are denoted as P and R in Table
8. Because the anchor-based method S2A-Net had excellent
performance, our method only improved the value of the
F-measure by 0.8% on the baseline after careful parameter
selection. The proposed method was even better than some
methods designed for oriented text detection, such as RRD

Method car airplane AP50 AP75

YOLOv3 74.63 89.52 82.08 -
RetinaNet 84.64 90.51 87.57 -

Faster-RCNN 86.87 89.86 88.36 47.08
RoI-Transformer 88.02 90.02 89.02 50.54

RIDet-Q 88.50 89.96 89.23 -
RIDet-O 88.88 90.35 89.62 -

DAL 89.25 90.49 89.87 -
anchor-based:

S2A-Net (baseline) 89.56 90.42 89.99 -
Ours (S2A-Net-based) 89.49 90.53 90.00 -

anchor-free:
RepPoints (baseline) 83.02 89.34 86.18 49.30

Ours (RepPoints-based) 89.96 90.78 90.38 58.66

Table 7: Comparison of the AP with state-of-the-art meth-
ods on UCAS-AOD. The references of the methods involved
in the comparison are listed below: YOLOv3 (Redmon and
Farhadi 2018), RetinaNet (Lin et al. 2017b), Faster-RCNN
(Ren et al. 2015), RoI-Transformer (Ding et al. 2019),
RIDet-Q (Ming et al. 2021a), RIDet-O (Ming et al. 2021a)
and DAL (Ming et al. 2021b).
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Method P R F-measure
RRPN (Ma et al. 2018) 82.2 73.2 77.4

SCRDet (Yang et al. 2019a) 81.3 78.9 80.1
RRD (Liao et al. 2018) 85.6 79.0 82.2

DAL (Ming et al. 2021b) 84.4 80.5 82.4
anchor-based:

S2A-Net (baseline) 80.4 78.2 79.3
Ours (S2A-Net-based) 81.4 78.8 80.1

anchor-free:
RepPoints(baseline) 74.2 72.1 73.2

Ours (RepPoints-based) 86.0 81.8 83.9

Table 8: Comparison of the performance of different meth-
ods on ICDAR2015. “P” is “Precision” and “R” is “Recall”.

(Liao et al. 2018), thereby demonstrating the robustness of
the proposed method in different scenarios.

Conclusions
In this study, two novel shape-adaptive strategies were pro-
posed, SA-S and SA-M, for oriented object detection. These
strategies dynamically select samples and adaptively assign
quality weights to the selected positive samples. The pro-
posed SA-S strategy dynamically selects high-quality can-
didate samples as positive samples, considering the shape
and characteristics distribution of objects. The SA-M strat-
egy adds quality information to different positive samples.
The shape-adaptive strategies outperformed in terms of the
oriented object detection performance when there was a
wide aspect ratio variation between objects. Extensive ex-
periments were conducted on both anchor-free and anchor-
based baselines and four publicly available datasets, and
the results demonstrates that the proposed method achieves
state-of-the-art performance and can be easily embedded
into other detectors to improve detection performance. The
source code of the paper will be available publicly at https:
//github.com/houliping/SASM.
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