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Abstract

Current representation learning methods for whole slide im-
age (WSI) with pyramidal resolutions are inherently ho-
mogeneous and flat, which cannot fully exploit the multi-
scale and heterogeneous diagnostic information of different
structures for comprehensive analysis. This paper presents
a novel graph neural network-based multiple instance learn-
ing framework (i.e., H2-MIL) to learn hierarchical represen-
tation from a heterogeneous graph with different resolutions
for WSI analysis. A heterogeneous graph with the “resolu-
tion” attribute is constructed to explicitly model the feature
and spatial-scaling relationship of multi-resolution patches.
We then design a novel resolution-aware attention convo-
lution (RAConv) block to learn compact yet discriminative
representation from the graph, which tackles the heterogene-
ity of node neighbors with different resolutions and yields
more reliable message passing. More importantly, to explore
the task-related structured information of WSI pyramid, we
elaborately design a novel iterative hierarchical pooling (IH-
Pool) module to progressively aggregate the heterogeneous
graph based on scaling relationships of different nodes. We
evaluated our method on two public WSI datasets from the
TCGA project, i.e., esophageal cancer and kidney cancer. Ex-
perimental results show that our method clearly outperforms
the state-of-the-art methods on both tumor typing and staging
tasks.

Introduction
Pathological slide examination is considered as the “gold
standard” for diagnosis and treatment planning of many dis-
eases (Yao et al. 2020; Cai et al. 2021; Ortega et al. 2018).
To facilitate preservation and retrieval, pathological slides
are usually scanned into whole slide images (WSI) with
pyramidal resolutions for quantitative analysis. As shown in
Figure 1, at different resolutions, pathologists can clearly
observe the tissue features ranging from cellular-scale to
millimeter-scale. However, it is a time-consuming and te-
dious task for pathologists to perform manual inspection on
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Figure 1. Top: A WSI can be scaled at different resolutions,
forming a pyramid structure. Bottom: Fixed size patches ob-
tained from WSI pyramid present varying diagnostic infor-
mation ranging from global level to cellular level.

a WSI due to (1) the gigapixels and the pyramidal resolu-
tions of the WSI and (2) the complex colors and patterns of
different structures. Therefore, it is highly demanded to de-
velop automatic and accurate inspection tools for WSI anal-
ysis to reduce the workload of pathologists and improve the
accuracy and efficiency of the examination (Cui and Zhang
2021; Farris et al. 2021).

Due to the huge size and high annotation cost of WSI
(e.g., the usual size is 40000 × 40000), multiple instance
learning (MIL) (Maron and Lozano-Pérez 1998) is a promis-
ing framework to learn effective representations for WSI
analysis. Specifically, we consider each WSI as a bag and
the numerous cropped patches in WSI (e.g., by sliding win-
dow) as instances. With deep neural networks (DNNs),
the features of patches (instances) are extracted and aggre-
gated to produce WSI-level prediction (Ilse, Tomczak, and
Welling 2018; Tu et al. 2019). However, the previous MIL
works usually applied to a single resolution of WSIs (Tellez
et al. 2021; Courtiol et al. 2018; Campanella et al. 2019),
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ignoring the multiscale feature information of WSIs. Re-
cently, inspired by the diagnosis procedure of pathologists,
some researchers have extended MIL to learn representa-
tions from WSI pyramid (Li, Li, and Eliceiri 2021; Chen
et al. 2021), and achieved better performance than previous
single-resolution-based methods.

However, existing methods have not tapped the full poten-
tial of WSI pyramid to produce better representations due
to the following limitations. First, the patches with differ-
ent resolutions present quite different diagnostic informa-
tion ranging from global-scale, cellular-scale (e.g., nucleus
and micro-environment) to tissue-scale (e.g., vessels and
glands). The heterogeneity of different resolution patches
should be sufficiently considered during the learning pro-
cess. While in existing methods, the extracted features of
different resolution patches are often simply concatenated
or linked, which may lead to suboptimal learning. Second,
the existing methods utilize global pooling (e.g., max or av-
erage pooling) to aggregate the local representations of WSI
pyramid, which are inherently flat and incapable of captur-
ing hierarchical structure information from the WSI. These
limitations prohibit existing algorithms from extracting key
information (e.g., differentiation degree and invasion depth
of tumor) of the WSI pyramid for analysis.

In this paper, we propose a novel H2-MIL framework to
learn hierarchical representation from heterogeneous pyra-
midal WSIs for more comprehensive slide-level analysis.
The proposed framework consists of three key components:
(1) a novel heterogeneous graph with an extra “resolution”
attribute, which is constructed from the WSI pyramid and
can be served as an effective data structure for model-
ing WSI pyramid and retaining the heterogeneity of multi-
resolution patches, (2) a new resolution-aware attention con-
volution (RAConv) block, which is proposed for more reli-
able message passing by considering both resolution-level
attention and node-level attention during the learning pro-
cess, and (3) a novel iterative hierarchical pooling (IHPool)
module, which is elaborately designed to explore the task-
related latent structures of WSI pyramid in order to pro-
gressively aggregate the heterogeneous graph, leading to
better analysis performance and richer interpretability. We
extensively evaluated our method on the esophageal can-
cer (ESCA) and kidney cancer (KICA) cohorts from TCGA
project, and our method clearly outperforms state-of-the-art
methods (SOTAs) on WSI typing and staging tasks. Our
main contributions can be summarized as follows.

• We pioneer the usage of heterogeneous graph for WSI
pyramid analysis. A new heterogeneous graph is con-
structed to explicitly model the spatial-scaling relation-
ships and conveniently retain the heterogeneity of multi-
resolution patches in WSI.

• To facilitate the discriminative representation learning
from the graph, we design a new RAConv block to tackle
the heterogeneity of graph nodes with different resolu-
tions and a novel IHPool module to progressively aggre-
gate the graph, yielding more reliable message passing
and richer interpretability.

• Extensive experiments with promising results on two

public TCGA datasets validate the effectiveness of the
proposed method for WSI analysis. The codes are avail-
able at https://github.com/lin-lcx/H2-MIL.

Related Work
Multiple Instance Learning for WSI. MIL itself is
a widely studied topic. Readers can refer Carbonneau
et al. (2018) for a comprehensive survey. We will briefly
review some typical works. According to the representa-
tion objects, existing WSI methods can be divided into
single-resolution and multi-resolution oriented methods.
For single-resolution oriented methods, all instances are
extracted from a certain resolution of WSIs. For exam-
ple, Tellez et al. (2021) recombined the feature vectors of
patches into compressed WSI according to spatial relation-
ship, and trained a Convolutional Neural Network (CNN)
on this compressed WSI to predict WSI-level label. Courtiol
et al. (2018) proposed a Deep Neural Network (DNN) based
MinMax model to aggregate the local descriptors of patches,
to obtain the WSI slide-level representation. Campanella et
al. (2019) adopted a Recurrent Neural Network (RNN) to
integrate the feature vectors of patches into the prediction of
WSI. However, these methods ignored the use of WSI pyra-
mid for representation learning.

In recent years, multi-resolution oriented methods
aroused the interest of researchers. Hashimoto et al. (2020)
applied instance-wise attention to aggregate the features
of multi-resolution patches, which is extracted by scale-
specific extractor networks. Li et al. (2021) concatenated the
feature embeddings of multi-resolution patches and trained
a dual-stream DNN aggregator for WSI prediction. Chen et
al. (2021) first selected several patches based on an attention
map of thumbnail and connected their corresponding multi-
resolution patches as a tree structure. After that, a relevance
enhanced GNN model was proposed to investigate this tree
structure and learn representation for WSI. However, these
methods do not fully consider the heterogeneity of multi-
resolution patches and are lack of hierarchical analysis of
these patches, without fully exploiting the richer pyramid
information for WSI analysis.

Attention Mechanism on Graph Network. The message
passing of traditional GCN (Kipf and Welling 2016) exces-
sively depends on the structure of the graph (i.e., edges and
edge weights). Since the attention mechanism allows the
model to dynamically focus on certain informative parts of
the input to perform the task (Vaswani et al. 2017), it was
widely adopted and achieved state-of-the-art performance
for different tasks (Wang et al. 2019a,b; Guo et al. 2021; Hou
et al. 2021). For example, Petar et al. (2017) first proposed a
graph attention network (GAT) to directly learn the attention
weight of neighborhoods with non-linear layers. However,
in nature, the heterogeneous graph (Zhang et al. 2019) is a
more common data format than homogeneous graph. Thus,
Yang et al. (2021) proposed a Heterogeneous GAT (HGAT)
to deal with the attention score calculation for heterogeneous
graph through a nested GAT network, which improves the
performance of short text classification task. Due to the huge
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Figure 2. Overview of the proposed H2-MIL framework. A WSI pyramid and multi-resolution patches are considered as a bag
and instances, respectively. Our proposed heterogeneous GCN with stacked RAConv blocks and IHPool modules is a typical
MIL operator to progressively aggregate instances information for bag prediction.

size of WSI, the attention mechanism is important to the rep-
resentation learning for WSI pyramid. And it is also urgent
to design a heterogeneous graph convolution suitable for the
representation learning of WSI pyramid.

Hierarchical Graph Pooling. The traditional global pool-
ing methods (Kipf and Welling 2016) directly pool the
whole graph into a node, which may ignore some structured
information in the large-scale graph for graph analysis. For
example, the functional groups of molecules are essential to
the molecular properties prediction. In this regard, Ying et
al. (2018) proposed a DiffPool to cluster all nodes in a graph
with a differential module. Gao et al. (2019) proposed a
TopK pooling scheme for sparse graph classification, which
projects all node features to one dimension and performs
Max operation to filter nodes. Meanwhile, Lee (2019) pro-
posed a SAGP network, which uses self-attention mecha-
nism to learn an allocation result for each node. The hierar-
chical pooling mechanism is also important for GNN-based
WSI pyramidal representation learning, as some key struc-
tured information (e.g., invasion depth of tumor) have im-
portant reference value for many WSI prediction tasks, such
as tumor staging (Rice, Patil, and Blackstone 2017) and sur-
vival prediction (Wang et al. 2018). However, to the best of
our knowledge, few studies are focused on hierarchical pool-
ing method for heterogeneous graph representation learning.

Methodology
To fully exploit the pyramid feature information of WSIs,
we propose a novel H2-MIL framework for whole slide im-
age analysis. Figure 2 illustrates the pipeline of the proposed
framework. Given a WSI pyramid P , our framework pre-
dicts the slide-level label Ŷ by fully considering the het-
erogeneity between the patches with different resolutions
and exploring the task-related structured information of the
WSI. As shown in Figure 2, we first construct a heteroge-

neous graph G0 by taking the feature embeddings of multi-
resolution patches as nodes and their spatial-scaling rela-
tionships as edges. Then, the generated heterogeneous graph
will be fed into the proposed H2-MIL network, equipped
with RAConv blocks and IHPool modules, to extract com-
pact yet discriminative representation, as well as mine hi-
erarchical structure semantics for WSI analysis. Finally, a
WSI-level classifier is employed to obtain the slide-level
prediction based on the learned graph representation. In
the following subsections, we will detail the heterogeneous
graph construction, RAConv calculation, IHPool design, and
the learning strategy of the whole framework.

Heterogeneous Graph Construction
In clinic, pathologists comprehensively observe the tissue-
level information (e.g., vessels and glands) from low-
resolution WSI and cellular-level information (e.g., nucleus
and micro-environment) from high-resolution WSI for diag-
nosis. To simulate this reading scenario, it is necessary to
model the WSI pyramid completely and flexibly. Here we
constructed a heterogeneous graph with multi-resolution at-
tribute to achieve this purpose, which is able to explicitly
represent the spatial-scaling relationships and conveniently
retain the heterogeneity of multi-resolution patches.

As shown in Figure 2, given a WSI pyramid P scanned
by R = {“Thumbnail”,×5,×10, ...} different resolutions,
we first use a sliding window strategy to crop P into numer-
ous multi-resolution patches. Note that we also use a simple
thresholding method (i.e., variance of RGB value is less than
a threshold) to filter those background regions and only crop
patches from the foreground regions. Then, a heterogeneous
graph G0 = {V, E ,R} is constructed based on the feature
embeddings and spatial-scaling relationship of the cropped
multi-resolution patches. Here V is the set of feature embed-
dings of multi-resolution patches, which is usually extracted
by a CNN encoder, such as KimiaNet (Riasatian et al. 2021),
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ImageNet pretrained ResNets (He et al. 2016) and etc.Here
we use the KimiaNet to extract the feature. The set of edges
E represents the relations between patches, including spa-
tial and scaling relations shown in Figure 2. Specifically, the
spatial relations describe the bordering relationship between
patches with the same resolution (colored solid lines) and
the scaling relationship describes the relationship between
patches with different resolutions at the same location (gray
dashed lines). Moreover, R is an extra attribute set which
contains the “resolution” attribute of each node to facilitate
the following calculation.

As can be observed from Figure 2, the constructed het-
erogeneous graph has the following characteristics. First,
each heterogeneous node has the same feature dimension
and unique resolution attribute. Second, the number of nodes
with different resolution attributes is unbalanced. Third, the
heterogeneous graphs are dense, as the dependencies among
nodes are established in an 8-adjacent manner. Overall, the
constructed heterogeneous graph can completely represent
the feature and spatial-scaling relations of WSI pyramid, and
the heterogeneity of multi-resolution patches can be conve-
niently extracted for further analysis.

Resolution-aware Attention Convolution
Different from previous graph-based methods, each node in
the heterogeneous graph is associated with a resolution at-
tribute, which introduces richer information to be exploited
in the learning process. Unfortunately, the existing graph at-
tention convolutions are not suitable for directly processing
the heterogeneous graph of the WSI pyramid due to several
reasons. First, the traditional GAT (Veličković et al. 2017)
suffers from reduced performance as it ignores the hetero-
geneity of nodes. Second, the unbalanced number of hetero-
geneous nodes in different resolutions is not considered in
the HGAT (Yang et al. 2021), leading to the neglect of low
resolution nodes with global semantic information.

To address these issues, we propose a novel RAConv,
which considers the heterogeneity of neighbors and allevi-
ates the bias caused by the imbalance number of hetero-
geneous neighbors when calculating the attention scores.
Specifically, we work on a heterogeneous graph G =
{V, E ,R} generated from a WSI pyramid with R =
{“Thumbnail”,×5,×10, ...} different resolutions. Sup-
posing H(l) ∈ R|V|×d is the hidden representation of Gl in
the lth layer of H2-MIL network, where |V| is a number of
nodes and d is the dimension of each node, the layer-wise
propagation rule is as follows

H(l+1) = σ
(
Ã ·H(l) ·W (l)

)
. (1)

Here Ã denotes the symmetric normalized adjacency ma-
trix, W (l) denotes a layer-specific learnable matrix, and σ(·)
denotes an activation function, such as ReLU. For the WSI
classification task, the neighboring nodes with different res-
olutions may have different influences for message passing.
In this regard, we propose a new dual-stream attention mech-
anism to further re-calibrate the node-level attention by tak-
ing the resolution-level attention into account.

For a source node v, we denote its all neighboring nodes
with resolution r asNr, where r ∈ R and R is the total num-
ber of resolutions. To compute resolution-level attention of
the source node v, we first calculate the prototype of reso-
lution r as hr, which is the mean feature embedding of Nr.
Based on the source node embedding hv and the resolution
prototype hr, the r-th resolution-level attention scores for v
is calculated as

αr =
exp(β(UT

r [hv||hr]))∑
r′∈R exp(β(UT

r [hv||hr′ ]))
, (2)

where Ur is a learnable attention layer for resolution r,
|| denotes the concatenation operation, and β(·) denotes
an activation function, such as LeakyReLU. Besides the
resolution-level attention, we also employ the node-level at-
tention mechanism to strengthen the key neighbors and sup-
press the noise neighbors for each resolution. Specifically,
based on the source node embedding hv and the neighbor-
ing node embedding hv′ , v′ ∈ Nr, the node-level attention
scores can be calculated as

αv′ =
exp(β(V T [hv||hv′ ]))∑

v′′∈Nr
exp(β(V T [hv||hv′′ ]))

. (3)

Here V is a learnable attention layer for neighboring nodes
of v. Finally, the attention score of v to v′ is calculated by
re-calibrating the node-level attention using resolution-level
attention:

αvv′ = αr · αv′ . (4)

Therefore, the layer-wise propagation rule of Eq. (1) can be
replaced as

H(l+1) = σ
(
A ·H(l) ·W (l)

)
, (5)

whereA represents the attention matrix and the vth row and
v′th column element αvv′ is defined as Eq. (4).

Iterative Hierarchical Pooling
As mentioned before, the heterogeneous graph representa-
tion of the WSI pyramid is dense. It is thereby necessary to
introduce a pooling layer into the graph to improve the re-
ceptive field and reduce redundant calculation in the learn-
ing process. Moreover, for some WSI classification tasks,
such as tumor staging, scoring and etc., structured feature
(e.g., aggregation morphology and invasion depth) has great
reference value. Therefore, progressively exploring these la-
tent structured information may be conducive to learn dis-
criminative representation for the WSI pyramid, which is ig-
nored by most of the existing MIL methods. To this end, as
shown in Figure 2, we proposed a novel Iterative Hierarchi-
cal Pooling (IHPool) module to adaptively aggregate nodes
with similar semantic features and spatial distribution while
maintaining the scaling relationship between heterogeneous
nodes, leading to richer multi-resolution structured informa-
tion and interpretability for decision-making.

The design principle of proposed IHPool are as follows:
(1) to maintain the pyramid structure and global informa-
tion, the thumbnail nodes are always retained; (2) to prevent
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Algorithm 1: The IHPool algorithm.
Input: Heterogeneous graph G = {V, E ,R} with node

feature X and adjacent matrix A; Pooling ratio k;
Resolutions R = {“Thumbnail”,×5,×10, ...};
Learnable projection layer P.

Output: Pooled heterogeneous graph G′ with node feature
X ′ and adjacency matrix A′.

1: Initialize an empty node assignment list S;
2: Initialize the number of clusters N ;
3: Initialize a counter c;
4: for r in R do
5: if r is “Thumbnail” then
6: The thumbnail node is individually assigned;
7: Append the assignment result to S;
8: N ← 1.
9: else

10: c← 0;
11: for n in N do
12: Determine the node set Vn

r to be pooled
based on scaling relations;

13: Calculate the fitness set ϕn
r ← tanh(

Vn
r ·P
||P|| );

14: Sample ⌈k · |Vn
r |⌉ clusters based on ϕn

r ;
15: Assign Vn

r to clusters based on the spatial
distance and fitness difference;

16: Append the assignment result of Vn
r to S;

17: c← c+ ⌈k · |Vn
r |⌉.

18: N ← c.
19: Matrix S;
20: X ′ ← STX; // Aggregate node features.
21: A′ ← STAS. // Maintain graph connectivity.

contradictory results, the nodes to be pooled in each itera-
tion are depended on the pooling results of corresponding
low-resolution nodes; (3) pooling centers are dynamically
selected according to the pooling ratio and learned fitness
set φ; and (4) node assignment are determined by combin-
ing spatial distance and fitness difference. The pseudocode
of IHPool is shown in Algorithm 1. To the best of our knowl-
edge, the proposed IHPool is the first attempt to explore the
latent structured information of WSI pyramid.

Network Architecture and Training Strategy
The RAConv and IHPool are the basic components of our
proposed H2-MIL. After going through a L−layer H2-MIL,
the coarse-grained information of the constructed heteroge-
neous graph is extracted dynamically, which can be consid-
ered as different level representations of tissues (e.g., G1 and
GL in Figure 2). As shown in Figure 2, we further employ a
residual connection-like structure to aggregate these coarse-
grained information for decision-making. Formally, the final
prediction is

Ŷ = Softmax(
L∑

l=1

Readout(Gl)), (6)

where Readout is a global mean or max pooling layer for
generating representation for each sub-graph.

For the network training, the cross-entropy loss is adopted
for WSI classification tasks and the objective loss is defined
as

L = − 1

M

M∑
i=1

C∑
j=1

Yij log(Ŷij), (7)

where M is the number of samples, C is the number of
classes, and Y is the one-hot label matrix. The gradient de-
scent algorithm is adopted for network optimizing.

Experiments
Datasets and Experiment Setting. In this study, we eval-
uate the performance of our proposed H2-MIL on two public
clinical WSI benchmark datasets from The Cancer Genome
Atlas (TCGA) project, i.e., ESCA and KICA. For each
dataset, the WSI classification tasks include tumor typing
and staging. Note that patients with TNM label of I/II are
considered as early stage and patients with TNM label of
III/IV are considered as late stage. We only include pa-
tients whose diagnostic WSI, type and stage records are all
available. All WSIs are standardized in to 3-level pyramids,
where the magnifications are Thumbnail, ×5 and ×10, re-
spectively.

• ESCA is the esophageal cancer cohort that contains 135
cases. For the typing task, all cases are divided into ade-
nocarcinoma (86) and squamous cell carcinoma (49). For
the staging task, all cases are divided into early stage (80)
and late stage (55).

• KICA is the kidney cancer cohort contains 275 cases.
For the typing task, all cases are divided into chromo-
phobe (192) and renal papillary cell carcinoma (83). For
the staging task, all cases are divided into early stage
(205) and late stage (70).

The accuracy (ACC) and the area under the curve (AUC)
of receiver operating characteristic (ROC) are used as met-
rics for both tumor typing and staging tasks. The mean
results and standard deviation of 5 repeated 5-fold cross-
validation (5-fold CV) are reported. Note that during the
cross-validation procedure, 25% of the training data are also
randomly split as the validation data for choosing the check-
point.

Implementation Details. The proposed framework was
implemented with Pytorch Geometric framework (Fey and
Lenssen 2019) and all experiments were conducted on a
workstation with four RTX 3090 (24 GB) GPUs. For fair
comparison with other MIL methods, we used pretrained
KimiaNet (Riasatian et al. 2021) as the feature extraction
network for multi-resolution patches, as KimiaNet achieves
better balance between representation and efficiency. The
size of multi-resolution patches was fixed as 512× 512 and
converted into 1024-dimensional features. The Adam op-
timizer was adopted, and the network was trained for 50
epochs. The learning rate was tuned from {5e-4, 1e-4, 5e-5}.
The output dimension of readout operation was tuned from
{128, 256, 512}.The dropout ratio of linear layers was tuned
from {0, 0.1, 0.2, 0.3, 0.4}. The pooling ratio of IHPool was
tuned from {0.1, 0.2, 0.3, 0.4}.
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Experiment Method
Typing Staging

ACC AUC F1 ACC AUC F1

SOTAs

MIL-CNN 68.74± 3.90 75.50± 4.82 67.89± 2.59 56.59± 2.46 57.73± 7.02 53.20± 2.82
MinMax 86.44± 2.69 91.78± 3.09 85.94± 3.71 58.52± 3.14 60.88± 4.37 57.15± 3.78

MIL-RNN 81.33± 3.16 87.50± 2.65 80.20± 1.99 64.74± 3.43 63.25± 3.05 63.05± 2.69
MS-DA-MIL 88.89± 3.70 92.27± 4.67 88.22± 3.88 69.13± 2.13 72.53± 3.32 64.14± 5.36

DS-MIL 87.26± 2.01 92.47± 1.65 86.26± 1.99 66.67± 1.78 69.23± 2.66 65.38± 2.63
PTree-Net 88.29± 1.27 91.03± 0.97 86.32± 1.12 65.78± 1.44 64.52± 3.18 63.42± 3.49

Ablation
study

GCN + IHPool 87.41± 2.34 92.58± 1.71 85.80± 2.85 68.00± 2.74 71.06± 2.38 67.97± 2.89
GAT + IHPool 89.93± 1.60 91.68± 2.09 89.10± 1.60 69.18± 1.44 71.16± 2.20 68.23± 1.43

HGAT + IHPool 90.96± 1.19 93.15± 1.48 89.71± 0.83 69.48± 2.31 72.14± 0.38 69.86± 2.96
RAConv+GAP 90.07± 1.66 91.57± 1.51 88.58± 2.18 67.25± 2.93 69.59± 3.87 65.11± 5.03
RAConv+TopK 89.63± 1.41 90.84± 2.48 87.97± 1.71 68.00± 1.60 69.43± 1.23 67.26± 1.08
RAConv+SAGP 87.70± 1.97 90.22± 2.79 87.09± 1.71 68.89± 1.23 71.25± 2.24 65.21± 2.74

Ours H2-MIL 91.56 ± 1.60 96.40 ± 0.59 91.01 ± 1.83 72.89 ± 2.32 76.36 ± 1.69 71.92 ± 2.56

Table 1. Classification results on the ESCA cohort. We use the same patch feature extractor for all methods.

Experiment Method
Typing Staging

ACC AUC F1 ACC AUC F1

SOTAs

MIL-CNN 68.44± 4.69 67.66± 5.76 60.40± 4.69 58.98± 3.78 59.68± 1.05 49.72± 1.68
MinMax 92.76± 0.77 96.69± 0.36 91.37± 0.69 64.29± 4.83 59.22± 3.34 54.27± 3.63

MIL-RNN 89.75± 2.27 94.41± 1.32 87.37± 2.29 62.55± 3.64 56.80± 3.43 54.22± 4.18
MS-DA-MIL 93.52± 1.31 94.77± 2.96 87.68± 2.78 65.45± 1.82 64.69± 4.18 62.06± 4.25

DS-MIL 91.19± 1.91 95.87± 1.13 90.10± 1.88 67.41± 4.45 60.25± 3.81 56.08± 4.66
PTree-Net 91.20± 2.19 94.94± 1.46 88.98± 3.40 66.18± 4.66 56.95± 2.83 53.00± 3.13

Ablation
study

GCN + IHPool 91.78± 0.71 95.04± 1.17 89.97± 1.03 65.89± 4.03 61.70± 3.22 56.68± 2.72
GAT + IHPool 93.45± 0.97 96.53± 1.10 92.33± 1.55 69.01± 3.40 62.44± 2.86 58.52± 1.66

HGAT + IHPool 93.16± 1.11 96.57± 0.67 91.99± 1.25 69.75± 4.03 60.42± 2.55 54.23± 1.44
RAConv + GAP 92.58± 1.35 94.51± 1.08 91.00± 1.20 64.80± 4.06 62.51± 5.72 58.73± 3.20
RAConv + TopK 89.45± 1.21 93.89± 0.88 88.32± 1.19 66.04± 2.96 61.69± 5.01 57.63± 3.24
RAConv + SAGP 90.83± 0.84 93.09± 1.67 88.04± 1.67 65.16± 1.58 60.43± 3.35 58.37± 4.48

Ours H2-MIL 95.05 ± 0.49 98.05 ± 0.57 93.30 ± 1.34 70.62 ± 2.60 69.16 ± 1.52 63.51 ± 5.01

Table 2. Classification results on the KICA cohort. We use the same patch feature extractor for all methods.

Comparison with State-of-the-art Methods. We com-
pare the proposed method with three single-resolution
oriented MIL methods: (1) MIL-CNN (2021), (2) Min-
Max (2018), and (3) MIL-RNN (2019), as well as
three multi-resolution oriented MIL methods: (4) MS-DA-
MIL (2020), (5) DS-MIL (2021), and (6) PTree-Net (2021).
The comparative results on ESCA and KICA datasets are
shown in the top half of Table 1 and Table 2, respectively.

Generally, due to the advantage of the WSI pyramid, the
overall performance of multi-resolution MIL methods is ob-
viously better than that of single-resolution MIL methods.
As our method not only considers the heterogeneity of multi-
resolution patches but also excavates the potential struc-
tured information to facilitate tumor analysis, our method
clearly outperforms the existing SOTAs by a large margin on
both datasets for both two tasks. Moreover, we observe that
our H2-MIL achieves more obvious improvement for tumor
staging, as the structured information explored by IHPool
would reflect the aggregation morphology and infiltration
depth of tumor, which provides important value for tumor

staging.

Ablation Study. We conduct an ablation study to demon-
strate the effectiveness of each proposed component. The
results are shown in the bottom half of Table 1 and Ta-
ble 2. We first compare the proposed RAConv with tradi-
tional GCN (2016), GAT (2017), and HGAT (2021). As can
be observed that the proposed RAConv is superior to the ex-
isting graph convolution methods, as RAConv not only con-
siders the heterogeneity of nodes with different resolutions,
but also prevents the attention deviation caused by the node
imbalance with different resolutions. We also compare the
proposed IHPool with widely used pooling methods, such as
global average pool (GAP), TopK (2019) and SAGP (2019).
Overall, the proposed IHPool module largely outperforms
the widely used pooling methods, as the iterative design
principle of IHPool effectively maintains the pyramid struc-
ture of the heterogeneous graph and effectively avoids the
contradiction between the pooling results of different reso-
lutions.
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Figure 3. Visualization of representative structures learned by the network. For each case, the representative structures are
extracted by the last IHPool layer and ordered by the fitness score from left to right. The heatmap is obtained by normalizing
and weighting the fitness of patch and their corresponding structure during the forward propagation.

Scheme
ESCA KICA

Typing Staging Typing Staging
Thu. + Mid. 87.17 70.98 93.31 64.59
Thu. + Bot. 94.49 73.20 96.13 64.57

Thu. + Mid. + Bot. 96.40 76.36 98.05 69.16

Table 3. Comparison of different multi-resolution schemes
in H2-MIL. Thu., Mid., and Bot. denotes the thumbnail,
middle-level, and bottom-level of WSI pyramid, respec-
tively. The mean AUC is reported.

Investigation of Multi-resolution Scheme. We also in-
vestigate the impact of different multiscale schemes (i.e., us-
ing different resolutions) on the performance of the proposed
H2-MIL and the results are shown in Table 3. The “Thu. +
Mid. + Bot.” scheme shows the best performance than other
schemes. This is because the extracted thumbnail, mid-level
and bottom-level WSIs contain complementary diagnostic
information, ranging from global-level, tissue-level, to cell-
level. These experimental results also show that our RAConv
can effectively capture and make use of the heterogeneity
between multi-resolution patches and further dig the advan-
tages of WSI pyramid.

Investigation of Hierarchical Pooling. The number of
pooling L is an important hyperparameter affecting the per-
formance of the hierarchical analysis. Intuitively, if L is too
large, the features learned by each node will tend to be ho-
mogeneous and the network would be overfitting. Thus, it is
not recommended setting the H2-MIL too deep. We inves-
tigate the performance of proposed H2-MIL with different
settings of L and the results are shown in Table 4. It is ob-
served that for ESCA typing, ESCA staging and KICA typ-
ing tasks, the best performance of H2-MIL is achieved by
setting L to 2, while for KICA staging task, the best perfor-
mance of H2-MIL is achieved by setting L to 1.

Visualization of Learned Representations. In clinic, tu-
mor typing and staging tasks require not only high perfor-

Setting
ESCA KICA

Typing Staging Typing Staging
L = 1 94.64 76.04 97.50 69.16
L = 2 96.40 76.36 98.05 68.18
L = 3 95.46 74.86 97.44 65.42
L = 4 93.30 74.09 97.52 64.24

Table 4. Performance of H2-MIL with respect to different
settings of L. The mean AUC is reported.

mance but also a strong rationale for judgment. Our H2-MIL
network could provide abundant interpretability by visual-
izing the learned task-related structures. As shown in Fig-
ure 2, the proposed network can effectively deconstruct WSI
at multiple levels and the extracted structure could well de-
scribe the aggregation morphology and infiltration depth of
tumors, which would be helpful to improve the performance
of many WSI analysis tasks. The other cases shown in Fig-
ure 3 also confirm to this observation.

Conclusion

In this paper, we proposed a novel H2-MIL network to
learn the hierarchical representation from the heterogeneous
graph of WSI pyramid for WSI analysis. Specifically, a
heterogeneous graph is constructed to explicitly represent
the spatial-scaling relationships and heterogeneity of multi-
resolution patches. During the learning process, a RAConv
is proposed to realize a more reliable node updating by
considering the heterogeneity of the neighbors with differ-
ent resolutions, and an IHPool module is designed to dy-
namically explore the task-related structured information of
WSI, leading to performance improvement and richer inter-
pretability. Extensive experiments validate the effectiveness
of the proposed method. In the future, we will develop more
computation-efficient strategy to accelerate the computation
of the framework and evaluate our framework on other tasks.
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