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Abstract

Deepfake has ignited hot research interests in both academi-
a and industry due to its potential security threats. Many
countermeasures have been proposed to mitigate such risks.
Current Deepfake detection methods achieve superior perfor-
mances in dealing with low-visual-quality Deepfake media
which can be distinguished by the obvious visual artifact-
s. However, with the development of deep generative mod-
els, the realism of Deepfake media has been significantly
improved and becomes tough challenging to current detec-
tion models. In this paper, we propose a frame inference-
based detection framework (FInfer) to solve the problem of
high-visual-quality Deepfake detection. Specifically, we first
learn the referenced representations of the current and future
frames’ faces. Then, the current frames’ facial representations
are utilized to predict the future frames’ facial representations
by using an autoregressive model. Finally, a representation-
prediction loss is devised to maximize the discriminability of
real videos and fake videos. We demonstrate the effectiveness
of our FInfer framework through information theory anal-
yses. The entropy and mutual information analyses indicate
the correlation between the predicted representations and ref-
erenced representations in real videos is higher than that of
high-visual-quality Deepfake videos. Extensive experiments
demonstrate the performance of our method is promising in
terms of in-dataset detection performance, detection efficien-
cy, and cross-dataset detection performance in high-visual-
quality Deepfake videos.

Introduction
Motivations. The proliferation of artificial intelligence has
given rise to various human portrait video tampering tech-
nologies, such as DeepFakes (DeepFakes 2018), Face2Face
(Thies et al. 2018), FaceSwap (FaceSwap 2018), and Neu-
ralTextures (Thies, Zollhöfer, and Nießner 2019). Although
these technologies facilitate entertainment and cultural ex-
changes, abusing Deepfake technologies also brings poten-
tial threats and concerns to everyone. For example, illegal
information such as fake news and manipulated pornograph-
ic videos may cause a profound distrust in society, threaten
national and political security, and violate individual rights
and interests. (Whittaker et al. 2020).
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Figure 1: Comparisons of the Deepfake frames with differ-
ent visual quality. The low-visual-quality frame (left) gener-
ated by the DeepFakes (DeepFakes 2018) leaves visible ar-
tifacts and color mismatches. The high-visual-quality frame
(right) generated by the NeuralTextures (Thies, Zollhöfer,
and Nießner 2019) reduces the artifacts and color mismatch.

Limited by technology and hardware resources, most of
the fake videos in some inchoate datasets are with low-
visual-quality, which have perceptible distortions, such as
jitter, blur, and strange artifacts (Zi et al. 2020). Those
low-visual-quality Deepfake videos can be easily distin-
guished by current detection models. However, with the
rapid progress of deep generative models, the visual quality
of fake videos has been improved from many aspects, such
as frame resolution, color correction, smoothness mask,
invisible tampered artifacts, and temporal correlations (Li
et al. 2020). As shown in Fig. 1, the artifacts and color mis-
matches are occurred in fake video with low-visual-quality
but are relieved in that with high-visual-quality. These sig-
nificant improvements bring challenges to current detection
models. Therefore, it is desirable to spend more effort devel-
oping a well-designed method for high-visual-quality Deep-
fake detection.

Related Work and Challenges. Recent Deepfake video
detection methods can be broadly divided into three cate-
gories, i.e., cue-inspired methods, data-driven methods, and
multi-domain fusion methods. Cue-inspired methods (Li,
Chang, and Lyu 2018; Ciftci, Demir, and Yin 2020; Yang,
Li, and Lyu 2019; Koopman, Rodriguez, and Geradts 2018;
Li and Lyu 2019) expose observable features such as blink-
ing inconsistencies, biological signals, and unrealistic de-
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tails to detect Deepfake videos. However, these detection
methods may be circumvented by purposely training during
the generation of fake videos. Data-driven methods (Afchar
et al. 2018; Nguyen, Yamagishi, and Echizen 2019; Nguyen
et al. 2019; Tan and Le 2019; Rossler et al. 2019; Zhao et al.
2021; Liu et al. 2021; Xu et al. 2021) extract the invisible
features to detect these forgeries efficiently. These methods
do not joint spatial information with other domain informa-
tion, which may ignore crucial features of videos. Toward-
s this end, multi-domain fusion methods (Güera and Delp
2018; Zhao, Wang, and Lu 2020; Qian et al. 2020; Masi
et al. 2020; Hu et al. 2021; Sun et al. 2021) train the detec-
tion model across multiple domains such as spatial domain,
temporal domain, and frequency domain making processes.

Although the aforementioned methods achieve good per-
formances in detecting inchoate datasets, they still need
improvement in recent-developed high-visual-quality Deep-
fake videos. Previous methods (Li, Chang, and Lyu 2018;
Afchar et al. 2018; Yang, Li, and Lyu 2019; Hu et al. 2021)
focus on specific features which are easily tracked in the
low-visual-quality videos, while those features may be bad-
ly weakened in high-visual-quality ones and cause the de-
tection performance reduction. Thus we need a more gen-
eral manner to enlarge the tampered traces of fake videos.
Besides, the artifacts dependence of aforementioned meth-
ods (Rossler et al. 2019; Zhao et al. 2021) may also cause
severely overfitting when conducting the cross-dataset de-
tection. An effective way to solve the overfitting problem is
to extend the training data. However, current methods fo-
cus on the performance but not the computation efficiency,
which brings undesirable time costs. Furthermore, most of
the existing detection methods benefit from the powerful a-
bility of CNN, but CNN-based methods lack theoretical in-
terpretation, which is not conducive to the understanding
of detection technology. In summary, there are three ma-
jor challenges when detecting the high-visual-quality Deep-
fake videos, i.e., 1) it is challenging to enlarge the tampered
traces in high-visual-quality Deepfake videos for better per-
formance, 2) it is challenging to improve the robustness for
cross-dataset detection and improve detection efficiency, 3)
it is challenging to provide interpretable theoretical analysis.

Contributions. To address the challenges, we propose a
frame inference-based detection framework (FInfer) to de-
tect high-visual-quality Deepfake videos by inferring future
frames’ facial representations. To predict future frames’ fa-
cial representations, FInfer discards the short-term local in-
formation between frames and infers more long-term global
features. These long-term global features that span multi-
ple time steps are useful for mining the regularities of faces
and predicting the future frames’ facial representations. The
predicted representations will be influenced by Deepfake
modification and result in a mismatch with referenced fu-
ture frames’ facial representations. Based on this idea, we
first employ an encoder to extract useful representations
from current frames and referenced future frames. There-
after, an autoregressive model is utilized to predict the fu-
ture frames’ facial representations. Ultimately, the face rep-
resentations of predicted future frames and referenced future
frames are jointly optimized by a representation-prediction

loss. In this manner, the model can accumulate information
over time to predict the future frame’s facial representations.
Since the correlation of facial representations between pre-
dicted future frames and referenced future frames in the re-
al video is higher than that in the fake video, optimizing
the representation-prediction loss can improve the detection
performance of high-visual-quality Deepfake videos. To the
best of our knowledge, we are the first to consider Deepfake
detection from the perspective of inferring the future frames’
facial representations. The main contributions of this work
are three folds:

1) We transform the Deepfake detection task to a video
frame inference task, which brings a different viewpoint for
Deepfake detection. Different from existing methods that
extract features from frames directly, FInfer infers future
frames’ facial representations by using a video prediction
regression model. Ultimately, FInfer obtains the correlation
of facial representations between the predicted future frames
and the referenced future frames for Deepfake videos detec-
tion.

2) We use information theory to analyze the effective-
ness of FInfer, which theoretically shows the interpretability
of our framework. The joint entropy analysis indicates that
high-visual-quality Deepfake videos with low joint entropy
can be ideally detected by inferring future frames. On the
other hand, the mutual information of fake videos is low-
er than that of real videos. The mutual information analy-
sis demonstrates that the distinction between real videos and
fake videos can be detected by FInfer.

3) We conduct extensive experiments for evaluating FIn-
fer. Experimental results illustrate that FInfer achieves
promising performance in extensive metrics.

FInfer: Frame Inference-Based Detection
Framework

Fig. 2 shows the proposed frame inference-based detec-
tion framework for high-visual-quality Deepfake videos.
The current frames and future frames are considered as
source frames and target frames for predictions, respective-
ly. FInfer consists of four components: faces preprocess-
ing, faces representative learning, faces predictive learning,
and correlation-based learning. First, we extract frames from
videos and detect faces from frames. The Gaussian-Laplace
pyramid block is utilized to transform faces data. Second,
since the data dimensions of video frames are enormous,
we utilize the representative learning to construct an en-
coder to encode the source and the referenced target faces
to low dimensional space. With such an encoder, the spatial
features of faces are encoded into a compact latent embed-
ding space, which ensures the effectiveness of predictions.
Third, we use an autoregressive model to predict the repre-
sentations of target faces. The prediction model integrates
the information of source faces and predicts the representa-
tions of the target faces. Fourth, we leverage the correlation-
based learning module, which optimizes the model with a
devised representation-prediction loss. The representation-
prediction loss allows the whole model to be trained end-to-
end. FInfer can feedback the loss to the representative learn-
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Figure 2: An overview of FInfer. The faces are extracted and transformed from videos. The faces representative learning module
encodes both the source faces and target faces. The faces predictive learning module predicts the target face representations
from the source face representations. The correlation-based learning module utilizes a representation-prediction loss to train
FInfer. By optimizing the model, FInfer can effectively detect the high-visual-quality Deepfake videos.

ing module and predictive learning module, which would
later help the model to encode face representations, predict
the target representations, and detect the videos.

Let X = {x1, x2, . . . , xs, . . . , xs+t} be s + t frames
in a video. The s and t are the length of source
frames and the length of target frames, respectively.
A = {a1, a2, . . . , as, . . . , as+t} be the faces extract-
ed from X . Let AS = {a1, a2, . . . , as} and AT =
{as+1, as+2, . . . , as+t} be the source faces and target faces,
respectively.

Faces Preprocessing
In the faces preprocessing module, operations such as face
detection, Gaussian-Laplace pyramid are utilized to improve
the visibility of tamper traces. The details are provided as
follows.
1. We sequentially extract the consecutive frames X from

videos. Since the tampered part of the Deepfake videos
is the face area, we focus on the face regions and extract
faces A from frames to detect videos.

2. Gaussian-Laplace pyramid block is utilized to expose
the boundary artifacts of faces. The Gaussian pyramid is
used to generate multiple sets of faces at different scales,
which can show the details of faces and the outline infor-
mation of faces. The Laplace pyramid is utilized to min-
imize the face information loss caused by the Gaussian
pyramid. Finally, the boundaries of faces are exposed.

Faces Representative Learning
In the faces representative learning module, an encoder is
utilized to extract source faces information and target faces
information as vectors. With the faces representative learn-
ing module, the curse of dimensionality is avoided, and the
features can be represented. The details are provided as fol-
lows.

An encoder is proposed to obtain the representations of
source faces and target faces, which can extract useful repre-

sentations from high-dimensional frames data and improve
the training efficiency. The encoder f enc consists of four
convolutional layers and a full-connected layer. The first
convolutional layer uses 8 filters with a kernel size of 3 ∗ 3.
The second convolutional layer uses 8 filters with a kernel
size of 5 ∗ 5. The third convolutional layer uses 16 filters
with a kernel size of 3∗3. The fourth convolutional layer us-
es 16 filters with a kernel size of 5 ∗ 5. The dimension of the
full-connected layer is 128. f enc maps the source faces and
target faces to a sequence of latent representations Renc .

Renc = fenc(A) = {renc1 , renc2 , . . . , rencs+t}. (1)

Let Renc
S = {renc1 , renc2 , . . . , rencs } be the representations

of source faces. Let Renc
T = {rencs+1, r

enc
s+2, . . . , r

enc
s+t} be the

representations of target faces.

Faces Predictive Learning
The faces predictive learning module utilizes the regressive
prediction to infer the representations of target faces. The
details are provided as follows.
1. Source faces representations Renc

S are utilized as the in-
put of the regressive prediction. Since the GRU (Oord,
Li, and Vinyals 2018) solves the problem of gradient dis-
appearance and brings high efficiency in the case of ex-
tensive training data, we adopt GRU for the regressive
part that utilizes various gate functions and states.

2. The update gate is utilized to update the information that
the previous faces are carried into the current faces.

3. The reset gate is utilized to infer what is removed from
the previous faces.

4. The candidate hidden states use reset gates to store the
relevant information from the previous faces.

5. The hidden states are utilized to hold information for the
current faces and pass it down to the network.

6. The Time-distributed layer uses facial representations se-
ries to perform a series of tensor operations.
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7. The prediction module gpre transmits relevant informa-
tion along a sequence of facial representations to make
predictions. gpre preserves important features through
various gate functions and infers representations of tar-
get faces. The output predictions can be calculated as fol-
lows,

Rpre
T = gpre(Renc

S ) = {rpres+1, r
pre
s+2, . . . , r

pre
s+t}. (2)

The predicted representations are made up of consecutive
vectors with the dimension of 128 ∗ 1.

Correlation-Based Learning
The correlation-based learning module utilizes the
representation-prediction loss to optimize the model.
The details are provided as follows.

1. The faces representative learning module outputs the rep-
resentations of target faces Renc

T . The output of the face
predictive learning module is Rpre

T . Renc
T and Rpre

T are
integrated into the correlation-based learning module.

2. The correlation corr between the predicted target face
representations Rpre

T and the referenced target face rep-
resentations Renc

T is calculated as follows,

corr = sigmoid

(∑i=s+t
i=s+1 〈R

pre
T , Renc

T 〉
t

)
. (3)

3. In the process of backpropagation, the representation-
prediction loss is employed to train the model end-to-
end. The formula of the representation-prediction loss
LN is shown in Eq. (4),

LN = − 1

N

∑
z

((yz×ln(corr))+(1−yz)×ln(1−corr)),

(4)
where yz represents the labels of the z-th video.

4. In order to optimize the proposed method, we update the
faces representative learning module and faces predic-
tive learning module iteratively and minimize the sum of
the representation-prediction loss LN . Such procedure is
shown in Algorithm 1. The input data isAS andAT . The
faces representative learning module obtains the repre-
sentations of source faces Renc

S and the representations
of target faces Renc

T . The face predictive learning mod-
ule obtains the representations of predicted target faces
Rpre
T . The correlation-based learning module minimizes

the representation-prediction loss LN .
5. After the training, the real videos have a higher correla-

tion corr because of the natural expression. The Deep-
fake videos exist stiff facial expressions, which caus-
es some impact on the prediction. Thus, the Deepfake
videos have a lower corr value. Then, the model can de-
tect the difference in facial variations between real videos
and Deepfake videos.

6. Finally, we get the corr and calculate the accuracy by the
binary accuracy algorithm.

Algorithm 1: The algorithm process of the proposed frame
inference-based detection framework.
Input:

The source faces AS . The target faces AT . The initial learn-
ing rate αdf = 0.001 decayed by the factor 0.2 when the
accuracy plateaus. The batch size b = 8. The number of it-
erations num iter.
Output:

Trained network θdf , fenc , gpre

1: while θdf have not converged do
2: for i = 1→ num iter do
3: Renc

S = fenc(AS)

4: Renc
T = fenc(AT )

5: Rpre
T = gpre(Renc

S ))

6: gθdf ← ∇θdf ( 1b
∑i=b
i=1 LN (Rpre

T , Renc
T ))

7: θdf ← θdf + αdf · Adam(θdf , gθdf )

8: end for
9: end while

Information Theory Analyses
We provide the information theory analyses to show the in-
terpretability of FInfer. Let xi and xj be frames ofX , name-
ly xi, xj ∈ X .

Interpretation for Detecting Videos with High-
Visual-Quality
Let P (xi, xj) be the joint probability of xi and xj . P (xi, xj)
is obtained by the joint probability distribution of the frames.
The joint entropy of frame xi and xj can be calculated as
follows,

H(xi, xj) = −
∑
xi

∑
xj

P (xi, xj) log2 P (xi, xj). (5)

Since the predictive learning module of FInfer uti-
lizes current frames’ facial representations to predict future
frames’ representations, the joint entropy, which demon-
strates the uncertainty between two frames, shows the fea-
sibility of prediction. Namely, the xi and xj with high un-
certainty mean the joint entropy between xi and xj is high,
which may incur low feasibility to predict xi from xj . Fake
frames with low-visual-quality may contain visible tam-
pered traces, such as artifacts and mismatching colors in Fig.
1, which increases the uncertainty between xi and xj . The
uncertainty of low-visual-quality fake videos is higher than
that of high-visual-quality fake videos. Therefore, it can be
seen from the definition of joint entropy that the inter-frame
joint entropy of low-visual-quality videos is higher than that
of high-visual-quality videos.

In addition, statistical analysis is performed. Let
Hh(xi, xj) and H l(xi, xj) are H(xi, xj) with high-visual-
quality videos and low-visual-quality videos, respective-
ly. According to Eq. (5), we calculate Hh(xi, xj) and
H l(xi, xj). Specifically, we randomly selected 200 high-
visual-quality videos generated by NeuralTextures (Thies,
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Figure 3: A joint entropy comparison between the low-
visual-quality videos and high-visual-quality videos.

Zollhöfer, and Nießner 2019) and 200 low-visual-quality
videos generated by DeepFakes (DeepFakes 2018) to calcu-
late the inter-frame joint entropy. These faces have the same
face ID and face attribute. Therefore, the face content is al-
most the same, which can avoid the influence of face content
on joint entropy. The results in Fig. 3 demonstrate that the
joint entropy of low-visual-quality videos is higher than that
of high-visual-quality videos, i.e.,

Hh(xi, xj) < H l(xi, xj). (6)

Thus, the inter-frame joint entropy of fake videos with high-
visual-quality is lower than that with low-visual-quality.
Low joint entropy of two frames indicates low uncertainty
of two frames, which is beneficial for prediction. Therefore,
FInfer has significant advantages for high-visual-quality
Deepfake videos detection by predicting future frames’
faces from current frames’ faces.

Interpretation for Detecting the Difference between
Real Videos and Fake Videos
Let RGB i = {Ri, Gi, Bi} be a set of color value of RGB
channel of frame xi ∈ X , where Ri, Gi, Bi are red, green,
and blue values of xi, respectively. Let L = 256 be the dis-
crete series of RGB channel color value.

The information entropy of xi can be calculated as fol-
lows.

H(xi) = −
∑

v∈RGBi

L−1∑
v=0

Pv(xi) log2 Pv(xi), (7)

where Pv(xi) represents the probability of the existence of
the color value RGBi.

The mutual information can be calculated as follows.

MI (xi, xj) = H(xi) +H(xj)−H(xi, xj). (8)

If the video is a fake video, Eq. (8) can be represented as
follows.

MI f (xi, xj) = Hf (xi) +Hf (xj)−Hf (xi, xj). (9)

If the video is a real video, Eq. (8) can be represented as
follows.

MI r(xi, xj) = Hr(xi) +Hr(xj)−Hr(xi, xj). (10)

Since low entropy of frames indicates few details of frames
(Golestaneh and Karam 2016), real frames with rich details

indicate a higher entropy value than that of fake frames. That
is,

H(xi)
r +Hr(xj) > H(xi)

f +Hf (xj). (11)

The generated faces in fake videos lack of expressiveness
which may bring in the inconsistency between xi and xj .
Then, the uncertainty between xi and xj gets larger. That is,
the value of Hf (xi, xj) gets larger. The faces in real videos
is naturally coherent, which decreases the uncertainty be-
tween xi and xj . Thus, the value of Hr(xi, xj) gets smaller.
That is,

Hr(xi, xj) < Hf (xi, xj). (12)

According to Eqs. (8-12),

MI r(xi, xj) > MI f (xi, xj). (13)

Mutual information between xi and xj demonstrates the
amount of information that xi obtained from xj . Thus, high
mutual information indicates high feasibility to predict xj
based on xi, which introduces a high correlation between
the predicted xj and the referenced xj . According to Eq.
(13), the real videos with lager MI (xi, xj) will get higher
correlation between the predicted xj and the referenced xj
than that of fake videos. Therefore, the proposed FInfer can
detect the difference between real videos and fake videos.

Experimental Evaluations
Experimental Settings
Implement Details. We utilize FFmpeg (Cheng et al. 2012)
to extract frames sequentially from videos for data prepro-
cessing. The dlib (King 2009) is adopted to detect face
regions from frames. We discard videos if the dlib does
not recognize the correct face regions. The extracted face re-
gions are input to the faces representative learning module,
which produces the face representations for experiments.
The batch size is set as 8. In the training phase, we set the
learning rate as 0.001, which will be divided by 5 when the
accuracy plateaus. The Adam optimizer (Kingma and Ba
2014) is utilized to optimize the model. We set the default
threshold, whose value is 0.5, to calculate binary accuracy.
All experiments are conducted in Keras on NVIDIA Titan
Xp. The accuracy (ACC) and area under Receiver Operating
Characteristic Curve (AUC) are utilized to denote the evalu-
ation metrics for extensive experiments.

Datasets. The FaceForensics++ (FF++) (Rossler et al.
2019) dataset, the Celeb-DF dataset (Li et al. 2020), the
WildDeepfake dataset (Zi et al. 2020), and the DFDC-
preview dataset(Dolhansky et al. 2019) are utilized to show
the performance of FInfer. The FF++ dataset contains
1000 original videos and four types of forgery videos, i.e.,
DeepFakes, Face2Face, FaceSwap, and NeuralTextures. The
Celeb-DF dataset contains 5639 high-visual-quality Deep-
fake videos with celebrities generated by improved synthesis
processes. The WildDeepfake dataset contains 7314 high-
visual-quality face sequences extracted from 707 Deepfake
videos. The DFDC preview dataset contains about 5000
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Figure 4: In-dataset ROC curves of FInfer and baseline methods on Celeb-DF, WildDeepfake, and DFDC-preview datasets.

s = 10 s = 20 s = 30 s = 40

t = 10 87.30 88.67 89.26 89.06

t = 20 N/A 89.49 90.47 88.48

t = 30 N/A N/A 86.72 89.45

t = 40 N/A N/A N/A 88.87

Table 1: ACC (%) of FInfer when choosing different s and
t. We do not conduct the experiments on s < t.

Dataset without pyramid block with pyramid block
Celeb-DF 86.68 90.47

WildDeepfake 75.74 75.88
DFDC-preview 77.17 80.39

Table 2: Ablation study - The forgery detection ACC (%)
with and without the Gaussian-Laplace pyramid block.

high-visual-quality videos that manipulated by choosing
pairs of similar appearances.

Baselines. We compare FInfer with the baseline meth-
ods. The FWA (Li and Lyu 2019) is representative of the
aforementioned cue-inspired methods. The Meso4 (Afchar
et al. 2018), MesoInception4 (Afchar et al. 2018), Xception
(Rossler et al. 2019), Multi-task (Nguyen et al. 2019), Cap-
sule (Nguyen, Yamagishi, and Echizen 2019), EfficientNet-
B4 (Tan and Le 2019), SPSL (Liu et al. 2021), and Multi-
attention (Zhao et al. 2021) are representative of the afore-
mentioned data-driven methods. The Recurrent-network
(Güera and Delp 2018), LTW (Sun et al. 2021), FT-two-
stream (Hu et al. 2021), Two-branch (Masi et al. 2020), and
F 3-Net (Qian et al. 2020) are representative of the afore-
mentioned multi-domain fusion methods.

Impacts of s and t
In FInfer, the representations of source faces RencS are used
for predicting the representations of target faces Rpre

T . Ac-
cording to Eq. (5), the joint entropy of xs and xs+t is
H(xs, xs+t), which demonstrates the uncertainty between
xs and xs+t. When t grows large, the uncertainty between
xs and xs+t increases, and the prediction feasibility of pre-
dicting xs+t from xs decreases. Therefore, the length of t
shall be limited to a certain extent. If s < t, the predictions
can be inaccurate, and we only conduct the experiments on

s > t. To reduce the data dimensionality, the length of s
shall be limited to a certain extent. We analyze the impact of
the s and t as follows.

To improve the detection accuracy, we vary s ∈
{10, 20, 30, 40} and t ∈ {10, 20, 30, 40} and test the ap-
propriate s and t for FInfer on the Celeb-DF dataset. Table
1 shows the detection performance of FInfer, which demon-
strates that FInfer achieves the highest detection accuracy
when choosing t = 20 and s = 30. Therefore, in the follow-
ing experiments, we set t and s as 20 and 30, respectively.

Ablation Study: Impacts of the Gaussian-Laplace
Pyramid Block
We perform ablation studies on FInfer to evaluate the effect
of the Gaussian-Laplace pyramid block, which is utilized for
faces preprocessing. Specifically, we evaluate FInfer with-
out and with the Gaussian-Laplace pyramid block and show
the results on the first and second line of Table 2, respective-
ly. The experimental results demonstrate that the detection
accuracy of FInfer with Gaussian-Laplace pyramid block is
better than that without Gaussian-Laplace pyramid block.
That may be because the Gaussian-Laplace pyramid block
can expose the manipulation traces and amplify artifacts. As
a result, FInfer with the Gaussian-Laplace pyramid block is
beneficial for representing the faces and predicting the future
frames’ facial representations.

In-Dataset Detection Performance Comparisons
We use ACC and AUC to measure the detection perfor-
mance on high-visual-quality Deepfake datasets, i.e., Celeb-
DF, WildDeepfake, DFDC-preview. We sample 20 frames
for each video to calculate the frame-level ACC and AUC
scores. The comparison results are listed in Table 3. Com-
pared with baseline methods, FInfer achieves comparable
detection performance.

We also show the receiver operating characteristic (ROC)
curve in Fig. 4. The abscissa shows the false positive rate (F-
PR), and the ordinate shows the true positive rate (TPR). The
closer the curve to the top left corner, the better the detection
performance. Fig. 4 demonstrates that FInfer achieves the
satisfying detection performance compared with baseline
methods in detecting high-visual-quality Deepfake videos.

FInfer learns the facial variation rules of facial expres-
sions by inferring the future frames’ facial representation-
s and comparing the correlation corr . We plot corr of the

956



Meso4 Recurrent-network FWA Xception FT-two-stream Two-branch Multi-attention SPSL FInfer
Mult-Adds 114.34 5003.34 8220.21 913.46 362.81 574.00 1994.76 408.80 96.75

Table 4: Comparisons of the number of Mult-Adds (×106) between FInfer and baseline methods.

Method
Celeb-DF WildDeepfake DFDC-preview

ACC AUC ACC AUC ACC AUC
Meso4 67.53 66.17 64.47 66.50 75.39 76.47

Recurrent-network 71.20 86.52 66.87 67.35 75.02 77.48

FWA 64.73 60.16 55.46 57.92 73.25 72.97

Xception 90.34 89.75 75.26 80.89 79.32 81.58

FT-two-stream 80.74 86.67 68.78 68.09 63.85 64.03

FInfer 90.47 93.30 75.88 81.38 80.39 82.88

Table 3: Comparisons of the in-dataset evaluation (ACC (%)
and AUC (%)) between FInfer and baseline methods on
Celeb-DF, WildDeepfke, and DFDC-preview datasets.

Figure 5: Histogram of correlation scores of fake (green) and
real (red) videos.

videos from the testset. As shown in Fig. 5, with few ex-
ceptions, the corr of real videos is higher than the Deepfake
videos.

Detection Efficiency Comparisons
We evaluate the number of Multiplication-Addition opera-
tions (Mult-Adds) to show the efficiency advantages of FIn-
fer. We utilize k, Cin , Cout , and Mout to denote the kernel
size of a convolutional layer, the number of the input chan-
nel, the number of the output channel, and the size of the
output feature map, respectively. The number of Mult-Adds
MA of the convolutional layer is calculated by adding up the
multiplication computation, addition computation, and bias
computation, i.e.,

MA = 2× k × Cin × Cout ×Mout . (14)

We compare the number of Mult-Adds of FInfer with that
of baseline methods, which are calculated according to Eq.
(14). Table 4 shows that the number of Mult-Adds of FIn-
fer is 96.75 × 106, which is smaller than that of baseline
methods. Therefore, FInfer boosts the detection efficiency
compared with baseline methods.

Method FF++ Celeb
Meso4 84.70 54.80

MesoInception4 83.00 53.60

Recurrent-network 90.13 63.56

FWA 80.10 56.90

Xception 99.70 65.30

Multi-task 76.30 54.30

Capsule 96.60 57.50

EfficientNet-B4 99.70 64.29

Multi-attention 99.80 67.44

LTW 98.50 64.10

FT-two-stream 92.47 65.56

SPSL 96.91 76.88
Two-branch 93.18 73.41

F 3-Net 98.10 65.17

FInfer 95.67 70.60

Table 5: Cross-dataset evaluation (AUC(%)) on Celeb-DF
by training on FF++. Results of some other methods are cit-
ed directly from (Zhao et al. 2021).

Method
WildDeepfake DFDC-preview
ACC AUC ACC AUC

Meso4 59.60 59.74 60.35 59.37

Recurrent-network 63.65 67.03 62.42 66.90

FWA 66.87 67.35 56.65 59.49

Xception 59.32 60.54 63.30 64.29

FT-two-stream 54.69 59.82 60.18 59.09

FInfer 70.82 69.46 69.45 70.39

Table 6: Comparisons of the cross-dataset evaluation (ACC
(%) and AUC (%)) between FInfer and baseline methods on
WildDeepfake, and DFDC-preview datasets.

Cross-Dataset Detection Performance
Comparisons

To evaluate the robustness of FInfer, we conduct the cross-
dataset experiments that are trained on FF++ with multi-
ple forgery methods but tested on Celeb-DF. The cross-
dataset results are shown in Table 5. The first column is
the in-dataset detection performance of FF++, and the sec-
ond column is the cross-dataset detection performance of
Celeb-DF. Multi-attention achieves the state-of-the-art per-
formance in FF++, however, its cross-dataset AUC is behind
ours. Though SPSL and Two-branch achieve better cross-
dataset detection performance than FInfer, the results in Ta-
ble 4 illustrate that the detection efficiency of FInfer is better
than SPSL and Two-branch. In addition, FInfer achieves
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Figure 6: Cross-dataset ROC curves of FInfer and baseline
methods on WildDeepfake, and DFDC-preview datasets.

comparable robustness performance than most of the base-
line methods. Furthermore, we test other high-visual-quality
Deepfake videos datasets, i.e., WildDeepfake and DFDC-
preview. The results in Table 6 and Fig. 6 demonstrate that
FInfer achieves competitive cross-dataset detection perfor-
mance on WildDeepfake and DFDC-preview datasets.

The aforementioned comparison results show that the per-
formance of FInfer is better than most baseline methods in
detecting high-visual-quality Deepfake videos. That may be
because that most baseline methods capture features that are
weakened in the high-visual-quality videos, which causes
an impact on the detection. Furthermore, FInfer detect the
high-visual-quality Deepfake videos by incorporating frame
inferences into the training process. When detecting high-
visual-quality videos, FInfer infers the target frames’ facial
representations and compares the predicted target frames’
facial representations with the referenced target frames’ fa-
cial representations rather than extracting features directly
from the frames, which benefits the detection model.

Conclusions
In this paper, we propose FInfer for a high-visual-quality
Deepfake videos detection case. We formulates the Deep-
fake detection task as a future frames’ facial representation-
s inference task, which presents a different perspective for
Deepfake videos detection. Besides, we adopt information
theory analyses for FInfer, which demonstrates the effec-
tiveness of FInfer theoretically. Extensive experiments show
that FInfer achieves competitive detection performance and
detection efficiency in different detection cases.
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