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Abstract

Homogeneous instance segmentation aims to identify each
instance in an image where all interested instances belong
to the same category, such as plant leaves and microscopic
cells. Recently, proposal-free methods, which straightfor-
wardly generate instance-aware information to group pixels
into different instances, have received increasing attention
due to their efficient pipeline. However, they often fail to dis-
tinguish adjacent instances due to similar appearances, dense
distribution and ambiguous boundaries of instances in homo-
geneous images. In this paper, we propose a pixel-embedded
affinity modeling method for homogeneous instance segmen-
tation, which is able to preserve the semantic information of
instances and improve the distinguishability of adjacent in-
stances. Instead of predicting affinity directly, we propose a
self-correlation module to explicitly model the pairwise re-
lationships between pixels, by estimating the similarity be-
tween embeddings generated from the input image through
CNNs. Based on the self-correlation module, we further de-
sign a cross-correlation module to maintain the semantic con-
sistency between instances. Specifically, we map the trans-
formed input images with different views and appearances
into the same embedding space, and then mutually estimate
the pairwise relationships of embeddings generated from the
original input and its transformed variants. In addition, to in-
tegrate the global instance information, we introduce an em-
bedding pyramid module to model affinity on different scales.
Extensive experiments demonstrate the versatile and superior
performance of our method on three representative datasets.
Code and models are available at https://github.com/weih527/
Pixel-Embedded-Affinity.

Introduction
Homogeneous instance segmentation, also referred to as
intra-class segmentation sometimes, identifies all interested
instances that belong to the same category in the target im-
age. It has a wide range of applications, such as the phe-
notype measurement of cells (Yi et al. 2020) and plants
(Scharr et al. 2016), the spatial arrangement of cancer nu-
clei (Yang et al. 2021) and the 3D reconstruction of neu-
rons and mitochondria in connectomics (Funke et al. 2019;
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Figure 1: A visual example of representative methods for
homogeneous instance segmentation on the CVPPP A1
dataset. Affinity learning (AL-Gao) straightforwardly gen-
erates affinity but suffers from the absence of semantic in-
stance information. Metric learning (ML-De) aims to push
all instances away from each other but ignores the spatial
information between instances. Our method better preserves
the semantic information of instances and pays more atten-
tion to the distinguishability of adjacent instances, produc-
ing superior segmentation results.

Wu et al. 2021; Li et al. 2022). Due to the complex char-
acteristics of homogeneous images, such as similar appear-
ances, dense distribution and ambiguous boundaries of in-
stances, this challenging task attracts sustained attention, es-
pecially for biomedical images (Wu et al. 2018; Yi et al.
2020, 2021; Liu et al. 2021; Dong et al. 2019, 2020). With
powerful feature representation capabilities, deep learning-
based methods have become the mainstream, and remark-
able progress has been made in instance segmentation (Gu,
Deng, and Wei 2021; Hsieh et al. 2021; Vu, Kang, and Yoo
2021; Zhang et al. 2021). According to whether proposals
are required, these methods can be divided into two cat-
egories, i.e., proposal-based (He et al. 2017; Bolya et al.
2019) and proposal-free (Gao et al. 2019; Xie et al. 2020).
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Recently, proposal-free methods have received increasing
attention due to their efficient pipeline for the dense distri-
bution of instances. These methods leverage deep convolu-
tional neural networks (CNNs) to generate instance-aware
information to group pixels into different instances by using
clustering as post-processing.

Two representative kinds of proposal-free methods are
affinity learning (Liu et al. 2018; Gao et al. 2019) and met-
ric learning (De Brabandere et al. 2017; Lahoud et al. 2019).
Affinity learning leverages CNNs to implicitly learn the pair-
wise relationships between pixels, i.e., affinity. However,
this implicit learning suffers from the absence of semantic
instance information. As shown in Figure 1 (b), the embed-
ding predicted by CNNs has limited semantic information.
Metric learning adopts the discriminative loss to pull pix-
els belonging to the same instance together and push those
of different instances away from each other in the embed-
ding space. However, the spatial information of instances is
ignored. In other words, it is easy to distinguish instances
that are far apart in space but difficult to distinguish adjacent
instances due to their similar appearances, dense distribu-
tion and ambiguous boundaries, as shown in Figure 1 (c).
Therefore, in spite of the promising progress, homogeneous
instance segmentation is still a challenging task, and there
remains a large room for improvement.

In this paper, we propose a pixel-embedded affinity
modeling method for homogeneous instance segmentation,
which aims to preserve the semantic information of in-
stances and improve the distinguishability of adjacent in-
stances, as shown in Figure 1 (d). Different from affinity
learning that predicts affinity directly, we propose a self-
correlation module for explicit affinity modeling, which esti-
mates the similarity between embeddings generated from the
input image through a CNN. Moreover, we utilize affinity
labels to supervise the learning of embeddings, which is dis-
tinct from metric learning that simply clusters embeddings
belonging to the same instance together. Nevertheless, for
the adjacent embeddings belonging to different instances,
their corresponding receptive fields on the input image ex-
ist a large overlap. Thus, the adjacent embeddings are prone
to be similar, which could produce incorrect affinity. To ad-
dress this issue, we further design a cross-correlation mod-
ule to improve the distinguishability of adjacent instances.
Specifically, we construct transformed images with differ-
ent views and appearances from the original input, and map
them into an embedding space by a weight-sharing CNN of
that used in the self-correlation module. By mutually esti-
mating the pairwise relationships of embeddings generated
from the input image and its transformed variants, the se-
mantic consistency between instances can be better main-
tained. In addition, to integrate the global instance informa-
tion, we introduce an embedding pyramid module to model
affinity on different scales. It leverages the proposed self-
correlation module to estimate the similarity of embeddings
generated from different feature levels of the CNN.

Contributions of this paper are summarized as follows:
• We propose a pixel-embedded affinity modeling method

for homogeneous instance segmentation. Our proposed
self-correlation module explicitly models the pairwise re-

lationship between pixels, which preserves the semantic
instance information.

• We design a cross-correlation module by mutually esti-
mating the pairwise relationships under different views
and appearances of the input image to improve the dis-
tinguishability of adjacent instances.

• We introduce an embedding pyramid module by mod-
eling affinity on different scales to integrate the global
instance information.

• Extensive experiments on three representative datasets
demonstrate the versatile and superior performance of
our method for homogeneous instance segmentation.

Related Work
Instance segmentation is a fundamental task in computer vi-
sion (He et al. 2017; Hsieh et al. 2021; Vu, Kang, and Yoo
2021; Zhang et al. 2021). It requires not only classifying the
category of each pixel correctly in an image, but also dis-
tinguishing each instance belonging to the same category at
the same time. In contrast, homogeneous instance segmen-
tation focuses on the identification of instances belonging
to the same category in an image, which is desired in many
practical applications, especially for biomedical image anal-
ysis (Funke et al. 2019; Chen, Strauch, and Merhof 2019; Yi
et al. 2020, 2021; Yang et al. 2021; Liu et al. 2021).

Proposal-Based Instance Segmentation
Proposal-based methods combine object detection and seg-
mentation, which first localize instances using bounding
boxes and then segment instances within the cropped region-
of-interest patches. As a fundamental work in this direction,
Mask R-CNN (He et al. 2017) incorporates a mask branch
into the region proposal network (Ren et al. 2017) to obtain
instance masks from the predicted bounding boxes. Based
on Mask R-CNN, many impressive works have been con-
ducted for homogeneous instance segmentation (Yi et al.
2020, 2021; Yang et al. 2021; Liu et al. 2021). However, the
performances of proposal-based methods are highly limited
by the accuracy of the bounding boxes (Gao et al. 2019).
Once the predictions of bounding boxes fail, the final in-
stance masks are also incorrect. Especially, when instances
are densely distributed in the target image, the bounding
boxes of adjacent instances are easy to be suppressed due
to the non-maximum suppression operation (Chen, Strauch,
and Merhof 2019).

Proposal-Free Instance Segmentation
Recently, proposal-free methods have attracted more and
more attention (Kirillov et al. 2017; Liu et al. 2018; Kong
and Fowlkes 2018; Neven et al. 2019; Gao et al. 2019;
Cheng et al. 2020). These methods not only shake off the
drawback of proposals, but also operate faster than proposal-
based methods. They first generate the instance-aware in-
formation, such as instance boundary (Kirillov et al. 2017),
affinity (Liu et al. 2018) and embeddings (De Brabandere
et al. 2017). Clustering algorithms are then adopted as post-
processing to group pixels into different instances (Keuper
et al. 2015; Fukunaga and Hostetler 1975).

1008



Figure 2: (a) The framework of our pixel-embedded affinity modeling method for homogeneous instance segmentation. It
consists of three components, i.e., Self-Correlation Module (SCM), Cross-Correlation Module (CCM) and Embedding Pyramid
Module (EPM). The transformed image I ′ is generated from the original input I by the transformation function ϕ, i.e., rotation,
flipping, intensity adjustment and cutout. I and I ′ are then mapped into the embedding space E and E′ by a CNN f(θ). SCM
estimates the pairwise relationships between adjacent embeddings on E to generate the self-correlation affinity Âs, while CCM
mutually estimates the pairwise relationships of embeddings between E and E′ to obtain the cross-correlation affinity Âc.
EPM models the relationships of embeddings on different scales of E (Ep) based on SCM. ϕ′ is the inverse transformation of
ϕ. Ls, Lc and Lp are three loss functions to supervise the learning of E, E′ and Ep, respectively. (b) The self/cross-correlation
between the current embedding and its adjacent embeddings in a specified range R and neighborhood N .

Affinity Learning. Affinity learning views the affinity as
a multi-channel binary map and straightforwardly gener-
ates it by CNNs (Maire, Narihira, and Yu 2016; Tu et al.
2018; Liu et al. 2018; Gao et al. 2019; Lin et al. 2020; Wolf
et al. 2020b; Xu et al. 2020). For example, GMIS (Liu et al.
2018) predicts the semantic map and the pixel affinity si-
multaneously to segment images. SSAP (Gao et al. 2019)
and DaffNet (Xu et al. 2020) generate the affinity pyramid
and then perform cascaded graph partition to obtain instance
masks. However, these methods do not explicitly model the
pairwise relationships between pixels and suffer from the ab-
sence of semantic instance information. This motivates us to
explore an explicit way to model the affinity that better pre-
serves the semantic information of instances.

Metric Learning. Metric learning leverages the discrim-
inative loss to generate instance-aware embeddings, which
aims to pull pixels belonging to the same instance together
and push those of different instances away from each other
(De Brabandere et al. 2017; Fathi et al. 2017; Kong and
Fowlkes 2018; Payer et al. 2018; Konopczyński et al. 2018;
Lahoud et al. 2019). However, since the relationship be-
tween all instances in the image need to be considered,
these methods are often high computational complexity and
are fragile to distinguish adjacent instances with similar ap-
pearances, dense distribution and ambiguous boundaries. To
pay more attention to adjacent instances, Chen et al. (Chen,
Strauch, and Merhof 2019) impose local constraints to only
push adjacent instances far away instead of all instances. In
contrast, we adopt local constraints between pixels rather
than between instances. Moreover, we leverage affinity la-
bels as strong supervision to guide the learning of embed-

dings. In other words, our method combines the advantages
of affinity learning and metric learning.

Pixel-Embedded Affinity Modeling
In this section, we first briefly revisit the definition of affin-
ity, which inspires the concept of pixel-embedded affin-
ity modeling. The framework of our proposed method is
shown in Figure 2, according to which we then describe the
main components: self-correlation module (SCM), cross-
correlation module (CCM) and embedding pyramid module
(EPM) in detail.

Affinity Definition
For a given image I ∈ RH×W , where H and W represent
the image height and width, we aim to obtain its correspond-
ing affinity Â = [â1, â2, ..., âN ] ∈ RN×H×W to describe
the relationships between the current pixel and its adjacent
pixels, where N represents the number of affinity channels.
Specifically, each channel of affinity ân(n = 1, 2, ..., N)
describes the relationship between the current pixel and its
nth adjacent pixel. We can also obtain the affinity label
A = [a1, a2, ..., aN ] from the segmentation groundtruth
y ∈ RH×W as

an,i =

{
0, if yi ̸= yi+n

1, if yi = yi+n,
(1)

where the index i denotes the ith pixel in the image I , and
yi is the segmentation ID of instance on this pixel. 0 means
that the paired pixels i and i+n belong to different instances
in y, while 1 means the opposite.
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SCM: Modeling Affinity Explicitly
Assuming that the relationships between pixels can be
learned as the effective receptive field increases with deeper
network layers (Ke et al. 2018), affinity learning directly
predicts Â by CNNs, and then adopts the mean square er-
ror (MSE) loss to penalize pixel-wise predictions indepen-
dently. While strong supervision can be guaranteed, this im-
plicit learning skips the definition of affinity, which leads to
the absence of semantic instance information.

To explicitly estimate the pairwise relationships between
pixels, we leverage a CNN f(θ) to map the input image I
into an embedding space E = f(I; θ) ∈ RD×H×W , where
D denotes the dimension of each embedding vector that is a
high-dimensional feature representation for the correspond-
ing pixel in the image I . Inspired by metric learning, we
assume embeddings of the same instance should be similar,
while those of different instances should not. We adopt the
cosine distance to measure the similarity between embed-
dings. The output of the cosine distance ranges from −1 to
1. 1 means that the two embeddings are exactly the same,
while 0 means that they are orthogonal, i.e., completely dif-
ferent. This is consistent with the definition of affinity in
Eq. (1). Therefore, we define the self-correlation affinity
Âs = [âs1, â

s
2, ..., â

s
N ] as the cosine distance between two

embeddings

âsn,i = cos(ei, ei+n) =
eTi ei+n

||ei||2||ei+n||2
, (2)

where ei and ei+n ∈ RD are embeddings of pixel i and i+n
in E.

Metric learning often uses clustering to distinguish dif-
ferent instances, and the discriminative loss (De Brabandere
et al. 2017) is widely utilized to penalize the similarity of
all instances in an image. However, this global constraint
ignores the spatial information of instances. As a rescue, we
turn to affinity that represents local correlation of pixels, and
adopt the MSE loss to supervise the learning of Âs as

Ls = ||Âs −A||2

=
1

N ×H ×W

N∑
n=1

H×W∑
i=1

||âsn,i − an,i||2.
(3)

In theory, we can consider the relationships between the
current pixel and all other pixels in the image I , i.e., the
number of affinity channels N = (H×W −1)/2. However,
besides the high computational complexity and the cost of
GPU memories, the excessive range of affinity severely hin-
ders the semantic information of instances, which is not ben-
eficial for the learning of affinity (Gao et al. 2019). As shown
in Figure 2 (b), typically, we only consider a set of speci-
fied ranges R = {1, 3, 5, 9, 27} in a 4-neighborhood (i.e.,
N = 4) during the training phase. In the inference phase,
however, we can readily adjust the range and neighborhood
to achieve adaptive affinity.

CCM: Distinguishing Adjacent Instances
Due to the large overlap of receptive fields between adja-
cent embeddings, it is still difficult to generate discrimi-
native embeddings to distinguish adjacent instances. This

obstacle motivates us to extract discriminative embeddings
with semantic consistency from the input image under dif-
ferent conditions. To this end, we would like to find an effec-
tive transformation function ϕ to transform the input image
I into its variant I ′ = ϕ(I), which enables the learning of
discriminative embeddings.

We consider the transformed variant from two perspec-
tives, i.e., different views and different appearances for the
same input. In general, convolutions are not transformation
(i.e., flipping, rotation) equivariant, meaning that if one ro-
tates or flips the input, then the feature map will not rotate
in a meaningful or easy-to-predict manner (Worrall et al.
2017). Leveraging this characteristic of CNNs, we apply
flipping and rotation operations to map I to different views.
To obtain different appearances of I , we randomly adjust
the brightness and contrast of I (i.e., intensity) and drop out
parts of I (i.e., cutout).

As shown in Figure 2 (a), we adopt a siamese structure of
f(θ) to generate two embedding maps E and E′ = f(I ′; θ)
from the original input I and its transformed counterparts I ′,
simultaneously. We then mutually estimate the pairwise rela-
tionships between E and E′ and obtain the cross-correlation
affinity Âc = [âc1, â

c
2, ..., â

c
N ] as

âcn,i = cos(ei, e
′
i+n), (4)

which is also supervised by the affinity label A as

Lc = ||Âc −A||2. (5)

As shown in Figure 5, CCM effectively improves the distin-
guishability of adjacent instances.

EPM: Integrating Global Information
Large-scale and small-scale instances often co-exist in the
target image. It is thus difficult to find a suitable affinity
range set R to model their correlations at the same time,
since long-range affinity hinders the semantic information
of small instances while short-range affinity cannot model
the correlations of large instances well. Inspired by (Gao
et al. 2019), we address this problem by multi-scale affin-
ity modeling, i.e., small instances are considered at a higher
resolution while large instances at a lower resolution.

As shown in Figure 2 (a), we generate embeddings Ep

with different resolutions on different scales of the decoder
of f(θ), where Ep denotes the embeddings at the pth layer of
decoder. Dependent on the structure of decoder, we set the
maximal p to 4. In other words, embeddings are predicted
under {1/2, 1/4, 1/8, 1/16} resolutions of the original in-
put I . Leveraging Eq. (2), The corresponding affinity Âp is
obtained by estimating self-correlation on the predicted em-
bedding Ep. We further supervise the affinity on different
scales as

Lp =
∑
p

||Âp −Ap||2, (6)

where Ap represents the affinity label generated from the
correspondingly downsampled segmentation groundtruth
yp. Due to the change of instance size, we gradually shrink
the range set of affinity as the resolution decreases. As
shown in Figure 5, EPM effectively avoids the merging of
large-scale and small-scale instances.
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Methods Param. SBD |DiC|
MSU (Scharr et al. 2016) - 66.7 2.3
Nottingham (Scharr et al. 2016) - 68.3 3.8
Wageningen (Yin et al. 2014) - 71.1 2.2
IPK (Pape and Klukas 2014) - 74.4 2.6
Coloring (Kulikov et al. 2018) 30.2M 80.4 2.0
ML-De (De Brabandere et al. 2017) 23.1M 84.2 1.0
Recurrent (Ren and Zemel 2017) - 84.9 0.8
Aug. (Kuznichov et al. 2019) - 88.7 5.3
Harmonic (Kulikov et al. 2020) 43.1M 89.0 3.0
Synthesis (Ward et al. 2018) 105.7M 90.0 -
PFFNet (Liu et al. 2021) 105.7M 91.1 -

Ours w/ ResNet-50 15.3M 91.7 1.5
Ours w/ ResNet-101 34.3M 91.9 1.4
Ours w/ ResUNet 4.7M 92.3 2.4

Table 1: Quantitative comparison with state-of-the-art meth-
ods on the test set of CVPPP A1.

Training and Inference Details
Our affinity modeling method is network-agnostic. That is to
say, the CNN backbone in the framework can be replaced by
arbitrary advanced structures. The above three loss functions
are combined for the end-to-end training as

Ltotal = αLs + βLc + γLp, (7)

where α, β and γ are weighting coefficients to balance these
three terms.

In the inference phase, we only use the self-correlation
affinity Âs from Eq. (3) as the final affinity prediction, and
we adopt the Mutex algorithm (Wolf et al. 2020a) as post-
processing to obtain instance masks from Âs. In addition,
we merge too small instances to further refine the final seg-
mentation result.

Experiments
Datasets
CVPPP. The Computer Vision Problems in Plant Pheno-
typing (CVPPP) dataset (Minervini et al. 2016) is one of the
most popular benchmarks for homogeneous instance seg-
mentation, where the task is to segment individual leaf in-
stances of a plant growing in a pot. The dataset consists of
five subsets of different plants. Following (Ren and Zemel
2017; Kulikov et al. 2020; Liu et al. 2021), we adopt the
most commonly used subset A1 to demonstrate the superi-
ority of our proposed method. This subset consists of 128
training images (530 × 500) with public ground truth la-
bels and 33 test images with no publicly available labels. We
randomly select 20 images from the training set as the val-
idation set. To evaluate the performance of our method, the
predicted results of test images are submitted to the official
evaluation platform. In order to demonstrate the generaliz-
ability of our method, we further adopt the subset A2 con-
taining 31 images with publicly available labels as another
test set. Two common metrics for quantitative evaluation,
i.e., symmetric best Dice (SBD) and absolute difference in
counting (|DiC|).

Dataset Methods Clustering SBD |DiC|

A1

AL-Gao Mutex 87.1 1.25
ML-De Mean-shift 87.3 1.45
ML-De Mutex 88.5 1.10

Ours Mutex 89.1 0.85

A2

AL-Gao Mutex 71.1 2.61
ML-De Mean-shift 71.2 2.52
ML-De Mutex 73.4 2.00

Ours Mutex 76.3 1.71

Table 2: Quantitative comparison on the validation sets of
CVPPP A1 and A2.

BBBC039V1. The BBBC039V1 dataset from (Ljosa,
Sokolnicki, and Carpenter 2012) contains 200 images (520×
696) obtained from fluorescence microscopy (FM). The
main use of this dataset is the study of segmentation algo-
rithms that can separate individual nuclei instances accu-
rately, regardless of their shape and cell density. Following
the official data split, we use 100 images for training, 50 for
validation and the rest 50 for testing. Three common met-
rics for cell segmentation in FM images are reported for per-
formance evaluation, i.e., Aggregated Jaccard Index (AJI),
pixel-level Dice score (Dice) and Panoptic Quality (PQ).

AC3/AC4. To demonstrate the effectiveness of our pro-
posed method on the 3D instance segmentation task, we
further conduct experiments on a common electron micro-
scope (EM) dataset, i.e., AC3/AC4. This task treats an in-
dividual neuron as one instance and aims to reconstruct
each 3D neuron in the given volume (2D image sequences).
AC3/AC4 are two labeled subsets cropped from the mouse
somatosensory cortex dataset of (Kasthuri et al. 2015) ac-
quired at 3 × 3 × 29 nm3 resolution. They contain 256
and 100 sequential images (1024× 1024), respectively. Fol-
lowing the SNEMI3D challenge (Arganda-Carreras et al.
2015), we adopt the top 80 sections of AC4 as the train-
ing set, the remaining 20 sections as the validation set and
the top 100 sections of AC3 as the test set. Two widely
used metrics for neuron segmentation in EM images are re-
ported for performance evaluation, i.e., variation of infor-
mation (V OI = V OIS + V OIM ) and adapted Rand error
(ARAND), where V OIS and V OIM represent split errors
and merge errors, respectively.

Implementation Details
We adopt three representative CNN backbones to demon-
strate the superiority of our method on the CVPPP dataset,
i.e., residual U-Net (ResUNet) (Ronneberger, Fischer, and
Brox 2015) and ResNet-50/101 (He et al. 2016). The best
performer, ResUNet, is then used as the backbone on the
BBBC039V1 dataset. For the 3D EM dataset, we adopt 3D
ResUNet (Lee et al. 2017) as the backbone. Following (Ku-
likov et al. 2020), we adopt the basic augmentations (flip-
ping, cropping and scaling) to extend the training set of
CVPPP and BBBC039V1, and add the elastic augmenta-
tion for AC3/AC4 (Funke et al. 2019; Huang et al. 2020).
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Methods AJI Dice PQ

Mask R-CNN (He et al. 2017) 0.7983 0.9277 0.7773
Cell R-CNN (Zhang et al. 2018) 0.8070 0.9290 0.7959
UPSNet (Xiong et al. 2019) 0.8128 0.9274 0.7857
JSISNet (De Geus et al. 2018) 0.8134 0.9316 0.7913
PanFPN (Kirillov et al. 2019) 0.8193 0.9320 0.7960
OANet (Liu et al. 2019b) 0.8198 0.9372 0.8085
AUNet (Li et al. 2019) 0.8252 0.9377 0.8090
Cell R-CNN v2 (Liu et al. 2019a) 0.8260 0.9336 0.8010
PFFNet (Liu et al. 2021) 0.8477 0.9478 0.8330

Ours 0.8674 0.9673 0.8420

Table 3: Quantitative comparison with state-of-the-art meth-
ods on the test set of BBBC039V1.

Raw/Groundtruth Embedding Segmentation

Figure 3: Visual results on the test set of BBBC039V1.

We train these networks using Adam (Kingma and Ba 2015)
with β1 = 0.9, β2 = 0.999, a learning rate of 0.0001, and
a batch size of 2 on an NVIDIA Titan XP GPU for 200, 000
iterations. The weighting coefficients of the loss function is
empirically set as α = β = γ = 1. The number of embed-
ding dimensions is set to 16.

Results
Results on CVPPP. We first compare our method with the
state-of-the-art methods on the test set of CVPPP A1. As
listed in Table 1, our method currently achieves the best re-
sult on the main SBD metric. Compared with the most re-
cent methods, our method also obtains superior performance
on the |DiC| metric with significantly fewer parameters.
We then compare our method with two most relevant meth-
ods (i.e., affinity learning (AL-Gao) (Gao et al. 2019) and
metric learning (ML-De) (De Brabandere et al. 2017)) with
the same CNN backbone (ResUNet). For ML-De, its default
post-processing is the mean-shift clustering algorithm. For
a fair comparison, we use our proposed SCM to convert the
predicted embeddings into affinity, and then use the same
post-processing (Mutex) of AL-Gao and Ours to obtain fi-
nal instance masks. As listed in Table 2, our method out-
performs both AL-Gao and ML-De on the validation sets
of A1 and A2. Especially, when trained on A1 and tested
on A2, our method significantly outperforms the competi-
tors on the SBD and |DiC| metric, which demonstrates its
superior generalizability.

We further qualitatively compare our method with AL-
Gao and ML-De, as shown in Figure 1. Since AL-Gao does
not output embeddings, we adopt the feature of the penulti-
mate layer of the network as its embeddings. From the vi-
sual results, we have three observations: (1) Since AL-Gao

Methods V OIS V OIM V OI ARAND

ML-De 1.5752 0.6151 2.1903 0.1964
SuperHuman 1.1445 0.2630 1.4075 0.1220
MALA 1.3039 0.2423 1.5462 0.1203

Ours 0.8522 0.2322 1.0844 0.0938

Table 4: Quantitative comparison with metric learning (ML-
De (De Brabandere et al. 2017)) and two affinity learning
methods (i.e., SuperHuman (Lee et al. 2017) and MALA
(Funke et al. 2019)) on the test set of AC3/AC4.

Raw Groundtruth ML-De

SuperHuman MALA Ours

Figure 4: Visual comparison on the test set of AC3/AC4. We
select 10 neurons for qualitative comparison.

views the prediction of affinity as a binary output, its embed-
dings do not have meaningful semantic information, as can
be seen from the first row (embedding). (2) ML-De aims to
push all instances far away from each other, but ignores the
spatial information between instances, so adjacent instances
are difficult to distinguish, as can be seen from the second
row (affinity). (3) Compared with AL-Gao, our method bet-
ter preserves the semantic information of instances. Differ-
ent from ML-De, our method pays more attention to adja-
cent instances. Both promote segmentation accuracy, as can
be seen in the third row (marked boxes).

Results on BBBC039V1. When employing our method
on the BBBC039V1 dataset, we adjust the range set of affin-
ity to [1, 3, 5, 9, 11], since the size of cells is relatively small.
As listed in Table 3, our method outperforms existing meth-
ods on this dataset by a large margin. Visual results in Figure
3 demonstrate that our method successfully distinguishes ad-
jacent cells, which is the main challenge of this dataset.

Results on AC3/AC4. We compare our method with two
popular methods for neuron segmentation, i.e., SuperHuman
(Lee et al. 2017) and MALA (Funke et al. 2019), both of
which belong to affinity learning. In addition, we reproduce
ML-De (De Brabandere et al. 2017) on this task to compare
with metric learning. For a fair comparison, we adopt the
same backbone (3D ResUNet) (Lee et al. 2017) and the same
post-processing (the Multicut algorithm (Beier et al. 2017)).
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Figure 5: Visual demonstration for the effectiveness of mod-
ules on the CVPPP A1 dataset.

SCM CCM EPM SBD |DiC|
✓ 87.7 1.15
✓ ✓ 88.1 1.00
✓ ✓ 88.5 0.95
✓ ✓ ✓ 89.1 0.85

Table 5: Ablation results for the effectiveness of modules on
the CVPPP A1 dataset.

Table 4 demonstrates the superiority of our method over its
competitors. As shown in Figure 4, our method effectively
avoids split and merge errors.

Ablation Studies
We conduct comprehensive ablation studies with ResUNet
on the validation set of the CVPPP dataset.

The Effectiveness of Modules. As listed in Table 5, our
method achieves the best performance when three mod-
ules are adopted at the same time. We further qualitatively
demonstrate their effectiveness, as shown in Figure 5. When
CCM is removed, the distinguishability of adjacent instances
is reduced. Due to the absence of global instance informa-
tion, large-scale and small-scale instances are prone to be
merged together when EPM is removed.

The Effectiveness of Transformations. Table 6 demon-
strates the effectiveness of each selected transformation.
Note that, once the flipping and rotation transformation
(Flip. & Rot.) is removed, the segmentation performance
drops dramatically, which demonstrates that different views
can effectively reduce the overlap of receptive fields and im-
prove the distinguishability of adjacent instances.

Dimension of Embeddings. As shown in Figure 6 (a),
higher dimensional embeddings are more beneficial for the
representation of pixels in the image.

(a) (b)

Figure 6: Ablation results for dimension of embeddings (a)
and range set of affinity (b) on the CVPPP A1 dataset.

Flip. & Rot. Cutout Intensity SBD |DiC|
✓ ✓ 86.5 1.35

✓ ✓ 87.7 1.00
✓ ✓ 88.6 0.85
✓ ✓ ✓ 89.1 0.85

Table 6: Ablation results for the effectiveness of transforma-
tions on the CVPPP A1 dataset.

R N SBD |DiC|
[1, 3, 5, 9, 27] 4 76.3 1.71
[1, 3, 5, 9, 27] 8 77.1 1.68

[1, 3, 5, 7, 9, 11, 19, 27, 35] 8 77.4 1.55

Table 7: Ablation results for adaptive affinity by extending
the ranges and neighborhoods of affinity during inference on
the CVPPP A2 dataset.

Range Set of Affinity. Figure 6 (b) demonstrates that, as
the range set of affinity shrinks, the segmentation perfor-
mance drops. It verifies that choosing a reasonably large
affinity range set is beneficial to the segmentation results.

Adaptive Affinity. Although we use fixed ranges and
neighborhoods of affinity for training, we can generate affin-
ity with arbitrary ranges and neighborhoods from the learned
model in the inference phase. As listed in Table 7, extending
the ranges and neighborhoods of affinity during inference
can further improve the segmentation performance.

Conclusion
In this paper, we propose a pixel-embedded affinity mod-
eling method for homogeneous instance segmentation. By
jointly taking advantage of affinity learning and metric
learning, the proposed self-correlation module enables ex-
plicit affinity modeling. The cross-correlation module is fur-
ther designed to improve the distinguishability of adjacent
instances. In addition, the embedding pyramid module is
introduced to integrate the global instance information by
modeling affinity at different scales. Through evaluation on
three representative datasets, we demonstrate the versatile
and superior performance of our proposed method.
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